CN103147130B - 过渡金属元素掺杂的ZnO纳米阵列的制备方法及包括该纳米阵列的半导体器件 - Google Patents

过渡金属元素掺杂的ZnO纳米阵列的制备方法及包括该纳米阵列的半导体器件 Download PDF

Info

Publication number
CN103147130B
CN103147130B CN201310033599.4A CN201310033599A CN103147130B CN 103147130 B CN103147130 B CN 103147130B CN 201310033599 A CN201310033599 A CN 201310033599A CN 103147130 B CN103147130 B CN 103147130B
Authority
CN
China
Prior art keywords
preparation
electrolyte
electrode
transition metal
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310033599.4A
Other languages
English (en)
Other versions
CN103147130A (zh
Inventor
朱丽萍
万尾甜
杨美佳
胡亮
李亚光
许鸿斌
陈文丰
文震
周梦萦
张翔宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201310033599.4A priority Critical patent/CN103147130B/zh
Publication of CN103147130A publication Critical patent/CN103147130A/zh
Application granted granted Critical
Publication of CN103147130B publication Critical patent/CN103147130B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明属于半导体纳米材料制备技术领域,是一种利用无模板电化学沉积生长过渡金属元素掺杂的ZnO纳米阵列的方法。本发明采用标准三电极体系,以铂电极为对电极,饱和甘汞电极为参比电极,导电基底作为工作电极。电解液由KCl、锌源ZnCl2、过渡金属元素的氯盐及用于调节Zn2+活性的可溶性溴盐组成,在沉积过程中不断通入O2,水浴加热温度为60~95℃,采用恒电位沉积法,沉积电位为-0.9~-1.1V,沉积时间为0.5~4h。沉积结束后,用去离子水反复冲洗,在导电基底上得到过渡金属元素掺杂的ZnO纳米阵列。此方法利于获得掺杂浓度相对较高的纳米阵列,操作简单,重复性好。所获得的ZnO纳米阵列可应用于各种超低能耗、高密度的新型半导体器件。

Description

过渡金属元素掺杂的ZnO纳米阵列的制备方法及包括该纳米阵列的半导体器件
技术领域
本发明属于纳米材料制备技术领域,特别涉及一种用无模板的电化学沉积法制备过渡金属元素掺杂的ZnO纳米阵列方法及包含该纳米阵列的半导体器件。
背景技术
随着自旋电子学的不断发展,稀磁半导体这种集自旋与电荷于一体,同时具备磁性与半导体特性的材料引起了人们的广泛关注。在将稀磁半导体材料与电子器件相结合时,为了更好的利用其自旋自由度,往往需要使用低维纳米材料,如纳米棒阵列,这对纳米尺度的电子、光电器件的实现非常重要,对于研究各种纳米效应,如纳米尺寸效应,表面效应等对磁性能的影响也具有重要意义。
过渡金属元素掺杂的ZnO纳米阵列被广泛认为是一种具有稀磁特性的半导体材料。目前,人们已通过各种不同的方法如化学气相沉积、磁控溅射、脉冲激光沉积、电化学法、水热、固相反应等制备出基于ZnO纳米阵列的稀磁半导体材料。在众多方法中,电化学沉积法是一种能耗低、易操作且容易实现大面积制备的简单可控的方法,然而要用这种方法获得具有应用前景的稀磁半导体材料,其产物的掺杂浓度还有待提高。因为稀磁半导体的应用需要的掺杂浓度往往比较高,如Ye等计算表明只有在Cu含量达到12.5%以上时,ZnO才更易处于铁磁状态而不是反铁磁状态[L.H.Ye;A.J.Freeman;B.Delley,Half-metallicferromagnetisminCu-dopedZnO:Densityfunctionalcalculations.Phys.Rev.B2006,73(3),033203]。传统的电化学沉积法所制备的过渡金属元素掺杂的ZnO纳米阵列,其掺杂浓度常在10%以下,很难获得10%以上的高浓度掺杂,或掺入后产物不稳定易产生分相。
发明内容
本发明所要解决的技术问题是提供一种简便的制备过渡金属元素掺杂的ZnO纳米阵列的方法。该方法能均匀有效的引入过渡金属原子且其掺杂浓度可调,可获得高掺杂浓度的稳定的ZnO纳米阵列。
本发明采用如下的技术方案:
一种过渡金属元素掺杂的ZnO纳米阵列的制备方法,包括如下步骤:
(1)清洗导电基底;
(2)配制电解液:将过渡金属元素的氯盐、可溶性溴盐、氯化锌、氯化钾溶于水,配制成电解液,所述的电解液中过渡金属元素的氯盐的摩尔浓度为15μmol/L;
(3)电沉积生长:将步骤(2)配制的电解液倒入电解池中,以铂电极为对电极,饱和甘汞电极为参比电极,以步骤(1)清洗好的导电基底为工作电极,保持电解池恒温,并往电解液中不断通入氧气,在恒定电位下采用电沉积法制得过渡金属掺杂ZnO纳米阵列。
其中,电解液中的氯化锌作为锌源提供锌离子,过渡金属元素的氯盐提供过渡金属离子,可溶性溴盐提供溴离子,氯化钾用于提高电解液的导电性,并且为避免因过渡金属元素浓度过高使产物出现分相,过渡金属元素的氯盐摩尔浓度固定为15μmol/L。
与传统电化学沉积中通过改变过渡金属氯盐的摩尔浓度来调节其掺杂浓度的方法不同,本发明只需调节Br与Zn2+摩尔浓度比例即可调节过渡金属元素的掺杂浓度。本发明依据软硬酸碱理论,在电解液中加入可溶性溴盐,电解液中的Br易与Zn2+配位,通过调节溶液中Br及Zn2+的浓度比例,来调节溶液中Zn2+的活性,使得在电化学沉积过程中,溶液中O2在工作电极表面被还原成OH后,Zn2+与OH结合的速度不至于太快,这样有助于过渡金属元素扩散到工作电极表面,并与OH结合。相比于不加可溶性溴盐的电解液来说,这种方法更有利于将过渡金属元素掺入到ZnO晶格中,并实现相对较高浓度的掺杂,同时不引入第二相。
作为优选,所述的可溶性溴盐为NaBr或KBr。
作为优选,所述的电解液中氯化锌的摩尔浓度为0.1~0.5mmol/L。
作为优选,所述的电解液中氯化钾的摩尔浓度为0.05~0.25mol/L。
作为优选,所述的电解液中Br的摩尔浓度为Zn2+摩尔浓度的1~10倍,更优选的,所述的电解液中Br的摩尔浓度为Zn2+摩尔浓度的4~10倍。在水溶液中Zn2+以四配位的状态存在,调节Br与Zn2+摩尔浓度之比可以调节Br与Zn2+的配位程度,Br与Zn2+的摩尔浓度比大于等于4时,更有利于降低Zn2+的活性。
作为优选,所述的过渡金属元素的氯盐选自氯化铁、氯化铜、氯化钴、氯化锰、氯化镍中的任意一种。
作为优选,所述步骤(3)中的恒定电位为-0.9~-1.1V;
作为优选,所述步骤(3)中电解池恒温的温度为60~95℃,电沉积的时间为0.5~4小时。
作为优选,所述的导电基底选自导电硅片、ITO玻璃、FTO玻璃中的任意一种。
本发明采用独特的电解液配方,通过电化学沉积方法制得过渡金属元素掺杂ZnO纳米阵列,通过在电解液中添加一定量的溴离子,巧妙地解决了在制备过渡金属元素掺杂ZnO纳米阵列的过程中难以实现高浓度均匀掺杂的技术难题。与传统的电化学方法相比,此方法无需模板,具有易实现高浓度掺杂的优点,操作条件简便易行,是一种简单高效的制备过渡金属元素掺杂ZnO纳米材料的方法,具有较好的工业化应用前景。
本发明还提供一种半导体器件,所述的半导体器件包含按照上述方法制得的过渡金属元素掺杂的ZnO纳米阵列。
由于采用本发明的方法制得的ZnO纳米阵列过渡金属元素掺杂量可高达10%以上,易于实现获得稀磁半导体材料,从而有利于实现稀磁半导体材料与电子器件的结合,应用于各种超低能耗、高密度的新型半导体器件。
所述的半导体器件包括但不限于信息存储器、逻辑器、自旋偏振光发射器、自旋场效应晶体管、磁传感器、自旋发光二极管、调制器、加密/解码器、自旋共振隧穿器等。例如自旋场效应晶体管,可利用所制得的ZnO纳米阵列作为铁磁电极,注入和收集自旋极化的电子。
附图说明
图1为Cu掺杂ZnO纳米棒阵列的扫描电镜(SEM)照片;
图2为Cu掺杂ZnO纳米棒阵列的X射线衍射(XRD)谱图;
图3为Cu掺杂ZnO纳米棒阵列的EDS能谱图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应该理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明的讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
(1)将规格为2×1cm2的导电硅片依次在丙酮、酒精和去离子水中超声清洗15min,晾干。
(2)配制含ZnCl20.5mmol/L、CuCl215μmol/L、KCl0.1mol/L及NaBr5mmol/L的水溶液作为电解液。
(3)将电解液倒入电解池中,以铂电极作为对电极,饱和甘汞电极作为参比电极,以洗净的导电硅片作为工作电极。并向电解液中通入氧气直到沉积结束,用水浴控制电解池中电解液的温度为85℃,给工作电极施加相对于参比电极为-1.1V的恒定电位,反应1.5小时。
反应完成后,用去离子水反复冲洗样品以去除残留电解液,得到均匀分布的Cu掺杂ZnO纳米阵列,然后在扫描电镜下观察其形貌,如图1所示,在导电硅片上长了一层整齐的ZnO纳米棒阵列,其X射线衍射图谱如图2所示,表明此产物为纤锌矿结构的ZnO,没有观察到Cu或其氧化物的衍射峰,说明Cu进入到ZnO晶格中并没有产生分相;样品的EDS能谱如图3所示,明显可见Cu元素的能谱峰,表明Cu确实进入到了ZnO晶格中。
为了检测所制得的ZnO纳米阵列中Cu的掺杂浓度,将其进行元素分析,利用能谱仪(EDS)检测ZnO纳米阵列中O、Zn、Cu各元素在标准状态下(K表示各元素处于标准状态)的含量,检测结果见表1。
表1制得的ZnO纳米阵列中元素分析结果
元素 重量 原子
百分比 百分比
O K 18.72 48.29
Zn K 70.81 44.96
Cu K 10.47 6.75
总量 100.00
表格的结果显示,由公式CuK/(ZnK+CuK)(公式数值均为原子百分比数据)=6.75/(44.96+6.75)可计算出Cu掺杂的浓度为13.05%。
实施例2
(1)将规格为2×1cm2的ITO玻璃依次在丙酮、酒精和去离子水中超声清洗15min,晾干。
(2)配制含ZnCl20.1mmol/L、FeCl215μmol/L、KCl0.05mol/L及NaBr0.3mmol/L的水溶液作为电解液。
(3)将电解液倒入电解池中,以铂电极作为对电极,饱和甘汞电极作为参比电极,以洗净的ITO玻璃作为工作电极,向电解液中通入氧气直到沉积结束,用水浴控制电解池中电解液的温度为95℃,给工作电极施加相对于参比电极为-0.9V的恒定电位,反应0.5小时。
反应完成后,用去离子水反复冲洗样品以去除残留电解液,得到均匀分布的掺杂浓度为10.02%Fe掺杂ZnO纳米棒阵列。
实施例3
(1)将规格为2×1cm2的FTO玻璃依次在丙酮、酒精和去离子水中超声清洗15min,晾干。
(2)配制含ZnCl20.2mmol/L、CoCl215μmol/L、KCl0.25mol/L及NaBr1.0mmol/L的水溶液作为电解液。
(3)将电解液倒入电解池中,以铂电极作为对电极,饱和甘汞电极作为参比电极,以洗净的FTO玻璃作为工作电极,并向电解液中通入氧气直到沉积结束;用水浴控制电解池中电解液的温度为60℃,给工作电极施加相对于参比电极为-1.0V的恒定电位,反应4小时。
反应完成后,用去离子水反复冲洗样品以去除残留电解液,得到均匀分布的掺杂浓度为10.91%Co掺杂ZnO纳米棒阵列。
为了说明Br-与Zn2+摩尔浓度比不同对掺杂浓度的影响,以对比实施例3说明。
对比实施例3
(1)将规格为2×1cm2的FTO玻璃依次在丙酮、酒精和去离子水中超声清洗15min,晾干。
(2)配制含ZnCl20.2mmol/L、CoCl215μmol/L、KCl0.25mol/L及NaBr0.2mmol/L的水溶液作为电解液。
(3)将电解液倒入电解池中,以铂电极作为对电极,饱和甘汞电极作为参比电极,以洗净的FTO玻璃作为工作电极,并向电解液中通入氧气直到沉积结束;用水浴控制电解池中电解液的温度为60℃,给工作电极施加相对于参比电极为-1.0V的恒定电位,反应4小时。
反应完成后,用去离子水反复冲洗样品以去除残留电解液,得到均匀分布的掺杂浓度为5.03%Co掺杂ZnO纳米棒阵列。
电解液中的Br及Zn2+的浓度比例较实施例3中的低,Br未能完全占据Zn2+的配位位置,导致溶液中Zn2+活性较高,与OH结合速度快,不利于Co2+扩散到工作电极表面,并与OH结合,从而导致Co掺杂浓度较低。
实施例4
(1)将规格为2×1cm2的导电硅片依次在丙酮、酒精和去离子水中超声清洗15min,晾干。
(2)配制含ZnCl20.3mmol/L、MnCl215μmol/L、KCl0.2mol/L及KBr1.2mmol/L的水溶液作为电解液。
(3)将电解液倒入电解池中,以铂电极作为对电极,饱和甘汞电极作为参比电极,以洗净的导电硅片作为工作电极,并向电解液中通入氧气直到沉积结束;用水浴控制电解池中电解液的温度为80℃,给工作电极施加相对于参比电极为-1.05V的恒定电位,反应2小时。
反应完成后,用去离子水反复冲洗样品以去除残留电解液,得到均匀分布的掺杂浓度为10.48%Mn掺杂ZnO纳米棒阵列。
实施例5
(1)将规格为2×1cm2的FTO玻璃依次在丙酮、酒精和去离子水中超声清洗15min,晾干。
(2)配制含ZnCl20.2mmol/L、NiCl215μmol/L、KCl0.25mol/L及KBr1.5mmol/L的水溶液作为电解液。
(3)将电解液倒入电解池中,以铂电极作为对电极,饱和甘汞电极作为参比电极,以洗净的FTO玻璃作为工作电极,并向电解液中通入氧气直到沉积结束;用水浴控制电解池中电解液的温度为70℃,给工作电极施加相对于参比电极为-1.0V的恒定电位,反应1小时。
反应完成后,用去离子水反复冲洗样品以去除残留电解液,得到均匀分布的掺杂浓度为11.25%Ni掺杂ZnO纳米棒阵列。

Claims (9)

1.一种过渡金属元素掺杂的ZnO纳米阵列的制备方法,其特征在于包括如下步骤:
(1)清洗导电基底;
(2)配制电解液:将过渡金属元素的氯盐、可溶性溴盐、氯化锌、氯化钾溶于水,配制成电解液,所述的电解液中过渡金属元素的氯盐的摩尔浓度为15μmol/L;所述的电解液中Br的摩尔浓度为Zn2+摩尔浓度的1~10倍;
(3)电沉积生长:将步骤(2)配制的电解液倒入电解池中,以铂电极为对电极,饱和甘汞电极为参比电极,以步骤(1)清洗好的导电基底为工作电极,保持电解池恒温,并往电解液中不断通入氧气,在恒定电位下采用电沉积法制得过渡金属掺杂ZnO纳米阵列。
2.根据权利要求1所述的制备方法,其特征在于:所述的可溶性溴盐为NaBr或KBr。
3.根据权利要求1所述的制备方法,其特征在于:所述的电解液中氯化锌的摩尔浓度为0.1~0.5mmol/L。
4.根据权利要求1所述的制备方法,其特征在于:所述的电解液中氯化钾的摩尔浓度为0.05~0.25mol/L。
5.根据权利要求1所述的制备方法,其特征在于:所述的过渡金属元素的氯盐选自氯化铁、氯化铜、氯化钴、氯化锰、氯化镍中的任意一种。
6.根据权利要求1所述的制备方法,其特征在于:所述步骤(3)中的恒定电位为-0.9~-1.1V。
7.根据权利要求1所述的制备方法,其特征在于:所述步骤(3)中电解池恒温的温度为60~95℃,电沉积的时间为0.5~4小时。
8.一种半导体器件,其特征在于:所述的半导体器件包括权利要求1-7任一项制得的ZnO纳米阵列。
9.根据权利要求8所述的半导体器件,其特征在于:所述的半导体器件为信息存储器、逻辑器、自旋偏振光发射器、自旋场效应晶体管、磁传感器、自旋发光二极管、调制器、加密/解码器、自旋共振隧穿器。
CN201310033599.4A 2013-01-27 2013-01-27 过渡金属元素掺杂的ZnO纳米阵列的制备方法及包括该纳米阵列的半导体器件 Expired - Fee Related CN103147130B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310033599.4A CN103147130B (zh) 2013-01-27 2013-01-27 过渡金属元素掺杂的ZnO纳米阵列的制备方法及包括该纳米阵列的半导体器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310033599.4A CN103147130B (zh) 2013-01-27 2013-01-27 过渡金属元素掺杂的ZnO纳米阵列的制备方法及包括该纳米阵列的半导体器件

Publications (2)

Publication Number Publication Date
CN103147130A CN103147130A (zh) 2013-06-12
CN103147130B true CN103147130B (zh) 2016-05-11

Family

ID=48545432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310033599.4A Expired - Fee Related CN103147130B (zh) 2013-01-27 2013-01-27 过渡金属元素掺杂的ZnO纳米阵列的制备方法及包括该纳米阵列的半导体器件

Country Status (1)

Country Link
CN (1) CN103147130B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105780118A (zh) * 2014-12-24 2016-07-20 神华集团有限责任公司 氧化锌纳米柱阵列材料及操控氧化锌纳米柱阵列密度与光学带隙的电化学沉积方法
CN104726915A (zh) * 2015-01-19 2015-06-24 陕西科技大学 利用电化学沉积法在导电基体表面制备ZnO@Ag纳米复合阵列的方法
CN109052369B (zh) * 2018-08-15 2020-08-21 深圳大学 一种纳米材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101016648A (zh) * 2006-12-11 2007-08-15 中国科学院上海硅酸盐研究所 一种过渡金属掺杂氧化锌晶体及其水热法生长方法
CN101255600A (zh) * 2007-12-07 2008-09-03 合肥工业大学 一种制备ZnO基稀磁半导体纳米线阵列的方法
CN101333672A (zh) * 2008-08-05 2008-12-31 浙江大学 一种高取向溴化亚铜半导体薄膜的电化学制备方法
CN101348931A (zh) * 2008-09-11 2009-01-21 北京科技大学 一种脉冲电沉积制备均匀透明氧化锌纳米棒阵列薄膜的方法
CN101586249A (zh) * 2009-06-19 2009-11-25 湖南大学 室温下电沉积制备ZnO纳米针尖阵列的方法
WO2012143632A1 (fr) * 2011-04-19 2012-10-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Integration d'une couche 2d cristalline a base de zno sur un substrat plastique conducteur

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356400A (ja) * 2001-03-22 2002-12-13 Canon Inc 酸化亜鉛の針状構造体の製造方法及びそれを用いた電池、光電変換装置
KR100912519B1 (ko) * 2007-07-03 2009-08-18 동국대학교 산학협력단 나노 구조체 및 그의 형성 방법 그리고 그를 포함하는 전계방출 디스플레이소자, 백라이트 유닛, 전계 방출형 램프

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101016648A (zh) * 2006-12-11 2007-08-15 中国科学院上海硅酸盐研究所 一种过渡金属掺杂氧化锌晶体及其水热法生长方法
CN101255600A (zh) * 2007-12-07 2008-09-03 合肥工业大学 一种制备ZnO基稀磁半导体纳米线阵列的方法
CN101333672A (zh) * 2008-08-05 2008-12-31 浙江大学 一种高取向溴化亚铜半导体薄膜的电化学制备方法
CN101348931A (zh) * 2008-09-11 2009-01-21 北京科技大学 一种脉冲电沉积制备均匀透明氧化锌纳米棒阵列薄膜的方法
CN101586249A (zh) * 2009-06-19 2009-11-25 湖南大学 室温下电沉积制备ZnO纳米针尖阵列的方法
WO2012143632A1 (fr) * 2011-04-19 2012-10-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Integration d'une couche 2d cristalline a base de zno sur un substrat plastique conducteur

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Electrochemical deposition of (Mn,Co)-codoped ZnO nanorod arrays without any template;Gao-Ren Li et al.;《Electrochemistry Communications》;20070321;第9卷(第7期);1661-1666 *
Growth of porous ZnO nanosheets by electrodeposition with the addition of KBr in nitrate electrolyte;Qin Hou et al.;《Materials Letters》;20120908;第89卷;283-286 *
基底对电沉积制备ZnO纳米棒阵列的影响;杨传钰等;《化学学报》;20070814;第65卷(第15期);1427-1431 *

Also Published As

Publication number Publication date
CN103147130A (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
Gao et al. Electromagnetic induction derived micro-electric potential in metal-semiconductor core-shell hybrid nanostructure enhancing charge separation for high performance photocatalysis
Hussain et al. Turning indium oxide into high-performing electrode materials via cation substitution strategy: Preserving single crystalline cubic structure of 2D nanoflakes towards energy storage devices
Dubal et al. Conversion of interlocked cube-like Mn3O4 into nanoflakes of layered birnessite MnO2 during supercapacitive studies
CN102556941B (zh) 一种四氧化三钴纳米线阵列、其制备方法以及作为锂离子电池负极的用途
Wiltrout et al. Solution synthesis of thiospinel CuCo2S4 nanoparticles
Hao et al. Facile fabrication of core-shell structured Ni (OH) 2/Ni (PO3) 2 composite via one-step electrodeposition for high performance asymmetric supercapacitor
Das et al. Co3O4 spinel nanoparticles decorated graphite electrode: Bio-mediated synthesis and electrochemical H2O2 sensing
Sarkar et al. Enhanced electrical, optical, and magnetic properties in multifunctional ZnO/α-Fe2O3 semiconductor nanoheterostructures by heterojunction engineering
Zhang et al. Regulation strategy of transition metal oxide-based electrocatalysts for enhanced oxygen evolution reaction
Su et al. Controllable growth of Bi 2 O 3 with rod-like structures via the surfactants and its electrochemical properties
Zhu et al. Synthesis of Zn: Cu2O thin films using a single step electrodeposition for photovoltaic applications
CN102184781A (zh) 一种纳米氧化镍/石墨烯复合材料及制备方法
Sharma et al. Highly energetic and stable gadolinium/bismuth molybdate with a fast reactive species, redox mechanism of aqueous electrolyte
Fu et al. Crystal growth of bimetallic oxides CuMnO2 with tailored valence states for optimum electrochemical energy storage
Qin et al. Magnetic field enhancing OER electrocatalysis of NiFe layered double hydroxide
Ding et al. Formation of Dandelion‐Like Co3O4/CoWO4 Heterojunctions for Enhanced Supercapacitive Performance
CN103147130B (zh) 过渡金属元素掺杂的ZnO纳米阵列的制备方法及包括该纳米阵列的半导体器件
ur Rehman et al. Facile synthesis of novel PANI covered Y2O3–ZnO nanocomposite: A promising electrode material for supercapacitor
Mao et al. Multifunctional delafossite CuFeO2 as water splitting catalyst and rhodamine B sensor
CN104477968B (zh) 一种利用植物酚酸制备氧化亚铜纳米线的方法
Rahman et al. Exploring the structural and charge storage properties of Ni–ZnS/ZnO composite synthesized by one-pot wet chemical route
CN102747398B (zh) CuO和In2O3微纳米异质周期结构功能材料及其制备方法
Qiu et al. Hydrogenation of nanostructured semiconductors for energy conversion and storage
CN102897722A (zh) 一种α-In2Se3纳米花球溶剂热合成方法
Jadhav et al. Hydrothermally synthesized three-dimensional hierarchical CuO nanomaterials for energy storage applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160511

Termination date: 20190127

CF01 Termination of patent right due to non-payment of annual fee