CN103145275A - 一种强化微电解-Fenton氧化法处理废水的方法与装置 - Google Patents

一种强化微电解-Fenton氧化法处理废水的方法与装置 Download PDF

Info

Publication number
CN103145275A
CN103145275A CN2013100833415A CN201310083341A CN103145275A CN 103145275 A CN103145275 A CN 103145275A CN 2013100833415 A CN2013100833415 A CN 2013100833415A CN 201310083341 A CN201310083341 A CN 201310083341A CN 103145275 A CN103145275 A CN 103145275A
Authority
CN
China
Prior art keywords
waste water
liquid
little
electrolysis
packed bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100833415A
Other languages
English (en)
Other versions
CN103145275B (zh
Inventor
刘有智
焦纬洲
祁贵生
袁志国
高璟
栗秀萍
申红艳
张巧玲
刘文丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN201310083341.5A priority Critical patent/CN103145275B/zh
Publication of CN103145275A publication Critical patent/CN103145275A/zh
Application granted granted Critical
Publication of CN103145275B publication Critical patent/CN103145275B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明属于工业生产废水的处理的技术领域,具体涉及一种强化微电解-Fenton氧化法处理废水的方法与装置,解决了现有方法处理工业废水存在的不足。所述方法,步骤如下:将废水进行微电解还原反应,然后在液液反应设备中与双氧水进行撞击,废水中的Fe2+与双氧水构成Fenton试剂,废水中的有机污染物在微电解-Fenton试剂的协同作用下得到降解。所述装置包括撞击流-旋转填料床装置,撞击流-旋转填料床装置的进液管Ⅰ和进液管Ⅱ分别连接双氧水储槽和微电解槽,出液口连接微电解槽。本发明的有益效果:工艺流程简单,操作方便,把三种技术耦合,最大程度的发挥各种技术的优点,达到以废治废的目的,最大限度的减少了处理成本。

Description

一种强化微电解-Fenton氧化法处理废水的方法与装置
技术领域
本发明属于工业生产废水的处理的技术领域,具体涉及一种强化微电解-Fenton氧化法处理废水的方法与装置,其采用物理吸附、电化学还原技术和Fenton法氧化技术的耦合处理共同作用。
背景技术
微电解技术于20世纪70年代由前苏联科学工作者提出并用于印染废水的处理。该方法是一种利用金属腐蚀原理形成原电池来处理废水的工艺技术,又称内电解法。微电解的电极一般选用两种及以上电位相差较大的材料,在无外加电场情况下,阴、阳极之间因电位差形成为电池效应而对污染物产生物理化学作用。微电解法比电解法和化学絮凝法在废水处理方面的成本低,更具应用前景。目前,该处理技术由于工艺简单、预处理效果好、能有效地提高废水的可生化性,以开始广泛研究和应用于印染、制药、油田、垃圾渗滤液及农药等工业废水的处理。但是微电解法作为废水的预处理方法,不能将如硝基苯类化合物等难降解污染物彻底矿化为无机小分子物质,一般与生物法、臭氧法、Fenton法等其他工艺组合使用,以达到高效去除污染物的目的。
Fenton于1894年发现当H2O2与Fe2+共存时,其分解能力会高于两者单独存在时的分解能力。之后一些学者相继发现,Fe2+与H2O2在酸性条件下(pH=2~3)会发生反应,生成具有非选择性强氧化能力的羟基自由基·OH,并放出大量热。Fenton试剂法是一种高级氧化技术,具有操作简便、反应快速等特点,主要用于处理废水中残存的难降解有机物。Fenton试剂产生自由基氧化机理如下:
Fe2+ +  H2O2 → Fe3+ + OH-  + ·OH
Fe3+ + H2O2 → Fe2+ + HO2· + H+
·OH   +   H2O2 → HO2·+H2O
Fe3+    +  HO2· →Fe2++O2+ H+
RH   +  ·OH → Qs
上述反应中Fe2+起催化作用,Fe2+与H2O2反应生成·OH游离基的速度很快,而·OH游离基可破坏染料分子的发色基团,降低废水的色度、COD,能将废水中的有机物分子氧化降解。
但是单独Fenton法存在处理成本高,易生成有毒的中间产物,造成二次污染等问题,因此将Fenton法与其他工艺法联合处理废水以提高废水的降解效率、降低处理成本仍是研究的重点。
发明内容
本发明为了解决现有微电解、Fenton法处理工业废水存在的不足,提供了一种超重力-物理吸附-微电解还原-Fenton试剂氧化处理废水的工艺方法及装置。
本发明采用如下的技术方案实现:
强化微电解-Fenton氧化法处理废水的方法,步骤如下:将废水在带有搅拌装置的微电解槽内充分的进行微电解还原反应,反应时间大于等于10min,还原反应后的废水在液液反应设备中与双氧水进行撞击,废水中的Fe2+与双氧水构成Fenton试剂,废水中的有机污染物在微电解-Fenton试剂的协同作用下得到降解,废水在微电解槽与液液反应设备中循环处理,达到可生化性进入生化系统,所述的液-液反应设备为撞击流-旋转填料床装置。
微电解槽内的废水采用酸性化合物调节pH值为2~3。废水在撞击流-旋转填料床装置中的与双氧水的体积流量比为5:1~10:1,双氧水和废水两股流体进行相向撞击的撞击初速0.5-10m/s ,Fenton试剂中H2O2的浓度为0.01~0.05mol/L。
实现上述的一种强化微电解-Fenton氧化法处理废水的方法的装置包括撞击流-旋转填料床装置,撞击流旋转填料床装置顶部设有两个进液管,包括进液管Ⅰ和进液管Ⅱ,每个进液管的液体出口分别设有喷嘴,两个喷嘴同轴且液体出口相对设置,撞击流-旋转填料床装置底部设有出液口,进液管Ⅰ和进液管Ⅱ分别连接双氧水储槽和微电解槽,出液口连接微电解槽;所述的微电解槽内设置原电池,以废水作为电解质溶液构成原电池反应,微电解槽内设有搅拌装置,底部设置过滤装置,所述的撞击流-旋转填料床装置的转速为300~3000rpm。两个进液管的间距为撞击流-旋转填料床内径的1/2-1/3。两个进液管的间距与旋转填料床内径的匹配是实现高效雾化与反应的关键,自喷嘴喷出形成射流,并发生撞击,形成一垂直于射流方向的圆(扇)形薄膜(雾)面,两股流体实现一定程度的混合接触与反应,混合较弱的撞击雾面边缘进入旋转填料床的内腔,流体沿填料孔隙向外缘流动,并在此期间液体被多次切割、凝并及分散,实现双氧水与废水的良好接触与反应。
撞击流-旋转填料床装置中的填料采用不锈钢丝网填料或多孔波纹板填料。
微电解槽内构成原电池的电极材料为铁屑与炭屑,搅拌装置为电动搅拌器。所用铁屑与炭屑为还原性铁粉与活性炭;质量比为0.5:1~3:1,铁粉在废水中的质量为10~30g/L,电动搅拌器的转速为200~800rpm。
本发明利用物理吸附-微电解-Fenton法氧化三种技术的协同作用以及超重力技术的强化作用来处理工业废水,使之在较短的时间内达到可生化的目的。由于微电解所使用的电级材料可选用工业生产过程产生的铁屑及炭屑,可达到以废治废的目的,并为Fenton试剂的催化氧化提供了廉价的Fe2+,降低了处理成本。与现有技术相比,本发明处理效率提高15%,反应时间缩短20%,大大的减少了处理成本。
本发明具有如下有益效果:工艺流程简单,操作方便,把三种技术耦合,最大程度的发挥各种技术的优点,达到以废治废的目的,最大限度的减少了处理成本。可应用于处理各种有机工业废水如含炸药废水、染料废水、石化废水等。
附图说明
图1 是利用一种强化微电解还原Fenton法氧化处理废水的工艺流程图;
图2 撞击流-旋转填料床装置(IS-RPB)主体结构示意图;
图中:1-双氧水储槽,2-液泵Ⅰ,3-液体流量计Ⅰ,4-撞击流旋转填料床,5-电动搅拌器,6-微电解槽,7-电机,8-变频器,9-液体流量计Ⅱ,10-液泵Ⅱ;
4.1-电机转轴,4.2-密封Ⅰ,4.9-密封Ⅱ,4.3-出液口,4.4-填料,4.5-主体设备的壳体,4.6-端盖,4.7-进液管Ⅰ,4.8-进液管Ⅱ,4.10-转鼓内环,4.11-内挡板,4.12-转鼓外环,4.13-外挡板,4.14-喷嘴。
具体实施方式
强化微电解-Fenton氧化法处理废水的方法的装置,其特征在于其包括撞击流-旋转填料床装置4,撞击流旋转填料床装置4顶部设有两个进液管,包括进液管Ⅰ4.7和进液管Ⅱ4.8,每个进液管的液体出口分别设有喷嘴,两个喷嘴同轴且液体出口相对设置,撞击流-旋转填料床装置4底部设有出液口,进液管Ⅰ4.7和进液管Ⅱ4.8分别连接双氧水储槽1和微电解槽6,出液口连接微电解槽6;所述的微电解槽6内设置原电池,以废水作为电解质溶液构成原电池反应,微电解槽6内设有搅拌装置,底部设置过滤装置,所述的撞击流-旋转填料床装置4的转速为300~3000rpm。两个进液管的间距为撞击流-旋转填料床内径的1/2-1/3。
微电解槽6内构成原电池的电极材料为铁屑与炭屑,搅拌装置为电动搅拌器5。铁屑与炭屑为还原性铁粉与活性炭;质量比为0.5:1~3:1,铁粉在废水中的质量为10~30g/L,电动搅拌器5的转速为200~800rpm。
撞击流-旋转填料床装置4中的填料采用不锈钢丝网填料或多孔波纹板填料。
强化微电解还原Fenton法氧化处理废水的方法,步骤如下:
1、用酸性化合物将微电解槽内的硝基苯类废水的pH值调节至2~3,酸性化合物可采用稀硫酸或稀盐酸;
2、废水在微电解槽13中进行充分的微电解还原预处理,微电解槽内的搅拌装置的搅拌作用可使固液充分接触,加速原电池反应;在此过程中废水中的部分污染物被去除,部分污染物得到转化,废水的可生化性提高。上述微电解所采用的原电池材料为还原性铁粉与活性炭,搅拌装置为电动搅拌器,转速为200~800rpm。
3、双氧水经液体流量计Ⅰ调节流量被液泵Ⅰ送入双氧水进液管,微电解出水经液体流量计Ⅱ调节流量被液泵Ⅱ送入废水进液管,然后双氧水与微电解出水分别从喷嘴高速喷射而出。形成相向撞击,撞击初速约为1~20m/s,撞击作用将两水相形成了以喷嘴为中心的空间液雾混合,撞击形成的空间双伞型液雾同时进入以300~3000rpm的转速旋转的不锈钢填料,不锈钢填料的巨大剪切作用,使得双氧水与微电解出水进一步得到精度混合,双氧水在Fe2+的催化作用下产生氧化性更强的·OH,对废水进一步的氧化降解,降解后的废水由液体出口进入微电解槽进行循环处理,直到达标外排。
本发明所述的工艺方法中,活性炭的作用如下:
活性炭对废水中的污染物具有一定的吸附作用,可作为预处理的手段之一,吸附饱和后的活性炭可充当原电池反应的惰性电极。
本发明所述的工艺方法中,微电解还原反应的作用如下:
1. 电化学作用
铁碳微电解基于原电池作用,金属阳极与阴极材料直接浸没在电解质废水中,发生电化学反应。利用电极产物对废水进行氧化还原处理。电极反应如下:
阳极(Fe): 酸性条件:  Fe  -  2e   →  Fe2+     Eθ=-0.44V
         碱性条件:3OH-  +  Fe3+  → Fe(OH)3
                   2OH-  +  Fe2+  → Fe(OH)2
阴极(C):酸性条件:2H+ 2e →2[H] → H2      Eθ= 0V
     酸性充氧条件:O+ 4H+ 4e → 2H2O      Eθ=1.23V
     中性充氧条件:O+ 2H2O +4e → 4OH-     Eθ=0.40V
从电极反应电势可以看出,酸性充氧条件下,原电池的电极电位差最大,氧化还原能力最强。随着反应的进行,废水的pH值上升,Fe2+的浓度逐渐升高。同时电极反应生成的Fe2+及新生态[H]具有很高的活性,能够与废水中多种组分发生氧化还原反应,使废水色度降低。当溶液的pH值为中性或碱性或有氧存在条件下,会生成Fe(OH)2和Fe(OH)3絮凝体,Fe(OH)3是很好的胶体絮凝剂,可以吸附凝聚废水中原有悬浮物和某些重金属离子。
2. Fe2+的催化作用
在酸性条件下,Fe2+可催化H2O2产生·OH,其机理式如下:
Fe2+ +  H2O2 → Fe3+ + OH-  + ·OH
Fe3+ + H2O2 → Fe2+ + HO2· + H+
·OH   +   H2O2 → HO2·+H2O
Fe3+    +  HO2· →Fe2++O2+ H+
RH         +    ·OH → Qs
撞击流-旋转填料床的作用如下:
在撞击流-旋转填料床装置中,两股流体通过撞击渗入反向流,产生一个较窄的强湍动区,产生的剪切力使液滴破碎、增大了液-液接触面的表面积、加快传递速率,使两股流体流向垂直于原流动方向,撞击后的雾面进入高速旋转的旋转填料内,流体被剪切成液膜、液线、液丝或液滴等微元,这些微元快速连续地经历多次凝并、分散、再凝并、再分散的过程,加速了液-液接触面的更新速率,强化了液-液的接触与反应。
实施例1:处理某印染厂高浓度印染废水。废水成深褐色,pH为2.5,色度1200~1500倍,CODCr15000~32000mg/L。采用微电解对1.5L的废水进行预处理,铁粉加入量为10g/L,铁碳质量比Fe:C=0.5:1,反应时间为1.5h,搅拌器搅拌速度为400r/min的条件下,CODCr降低了30~50%,色度下降20%左右;调节微电解出水与双氧水的体积流量为5:1,添加的H2O2量约为0.05mol/L,反应2h后CODCr去除率达60~70%,色度去除率达到95%以上。而利用撞击流-旋转填料床(IS-RPB)作为液液接触与反应装置,双氧水和废水两股流体进行相向撞击的撞击初速0.5m/s,采用耐腐蚀的不锈钢丝网填料,转速在3000rpm的条件下,不改变H2O2浓度及反应时间等条件,CODCr的去除率达90%以上,可生化系数达0.45,满足后续生化处理的要求;色度去除率几乎为100%。IS-RPB很好的强化了液-液混合,提高了反应效率。
实施例2:处理火炸药厂废水中的二硝基甲苯(DNT)。废水中二硝基甲苯初始浓度为400mg/L,可生化系数仅0.1,采用微电解对2.0L的废水进行处理,在pH=3,铁粉加入量为20g/L,铁碳质量比Fe:C=1.5:1,反应时间为2h,搅拌器搅拌速度为200r/min的条件下,80%以上的硝基化合物转化为苯胺类物质,调节流量计使微电解出水与双氧水体积流量比为8:1,H2O2浓度为0.03mol/L,撞击流-旋转填料床(IS-RPB)的转速为1500rpm,双氧水和废水两股流体进行相向撞击的撞击初速3m/s,降解40min后,其污染物去除率达95%以上;而未采用微电解预处理的废水,在处理量不变的情况下,达到相同的处理效果,所需的H2O2的浓度为0.4mol/L,微电解预处理可显著提高废水的可生化降解性,可生化系数提高到0.25,节约后续的处理成本。
实施例3:处理TNT废水。废水中的三硝基甲苯的浓度为100mg/L,用稀硫酸调节pH值至2.0。取水样2L,采用微电解对的废水进行处理预处理,铁粉加入量为30g/L,铁碳质量比为3:1,搅拌速度为800r/min,反应时间为1.5h条件下,85%以上的硝基化合物转化为苯胺类物质,调节微电解出水与双氧水的体积流量比为10:1,双氧水浓度为0.01mol/L,撞击流-旋转填料床装置(IS-RPB)的转速300rpm,双氧水和废水两股流体进行相向撞击的撞击初速10m/s,采用不锈钢多孔波纹板填料,反应50min后,废水中的有机污染物的去除率达97%。生化系数达0.5以上;而微电解/双氧水工艺在体积流量比、双氧水浓度、搅拌速度、反应时间等不变的情况下其污染物去除率仅有40%左右,超重力技术可有效的强化气液传质,提高反应效率,节约反应时间,降低处理成本。

Claims (8)

1.一种强化微电解-Fenton氧化法处理废水的方法,其特征在于步骤如下:将废水在带有搅拌装置的微电解槽内充分的进行微电解还原反应,反应时间大于等于10min,还原反应后的废水在液液反应设备中与双氧水进行撞击,废水中的Fe2+与双氧水构成Fenton试剂,废水中的有机污染物在微电解-Fenton试剂的协同作用下得到降解,废水在微电解槽与液液反应设备中循环处理,达到可生化性进入生化系统,所述的液-液反应设备为撞击流-旋转填料床装置。
2.根据权利要求1所述的一种强化微电解-Fenton氧化法处理废水的方法,其特征在于微电解槽内的废水采用酸性化合物调节pH值为2~3。
3.根据权利要求1所述的一种强化微电解-Fenton氧化法处理废水的方法,其特征在于废水在撞击流-旋转填料床装置中的与双氧水的体积流量比为5:1~10:1,双氧水和废水两股流体进行相向撞击的撞击初速0.5-10m/s ,Fenton试剂中H2O2的浓度为0.01~0.05mol/L。
4.一种实现如权利要求1或2或3所述的一种强化微电解-Fenton氧化法处理废水的方法的装置,其特征在于其包括撞击流-旋转填料床装置(4),撞击流旋转填料床装置(4)顶部设有两个进液管,包括进液管Ⅰ(4.7)和进液管Ⅱ(4.8),每个进液管的液体出口分别设有喷嘴,两个喷嘴同轴且液体出口相对设置,撞击流-旋转填料床装置(4)底部设有出液口,进液管Ⅰ(4.7)和进液管Ⅱ(4.8)分别连接双氧水储槽(1)和微电解槽(6),出液口连接微电解槽(6);所述的微电解槽(6)内设置原电池,以废水作为电解质溶液构成原电池反应,微电解槽(6)内设有搅拌装置,底部设置过滤装置,所述的撞击流-旋转填料床装置(4)的转速为300~3000rpm。
5.根据权利要求4所述的一种强化微电解-Fenton氧化法处理废水的装置,其特征在于两个进液管的间距为撞击流-旋转填料床内径的1/2-1/3。
6.根据权利要求4或5所述的一种强化微电解-Fenton氧化法处理废水的装置,其特征在于微电解槽(6)内构成原电池的电极材料为铁屑与炭屑,搅拌装置为电动搅拌器(5)。
7.根据权利要求6所述的一种强化微电解-Fenton氧化法处理废水的装置,其特征在于所用铁屑与炭屑为还原性铁粉与活性炭;质量比为0.5:1~3:1,铁粉在废水中的质量为10~30g/L,电动搅拌器(5)的转速为200~800rpm。
8.根据权利要求7所述的一种强化微电解-Fenton氧化法处理废水的装置,其特征在于撞击流-旋转填料床装置(4)中的填料采用不锈钢丝网填料或多孔波纹板填料。
CN201310083341.5A 2013-03-15 2013-03-15 一种强化微电解-Fenton氧化法处理废水的方法与装置 Expired - Fee Related CN103145275B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310083341.5A CN103145275B (zh) 2013-03-15 2013-03-15 一种强化微电解-Fenton氧化法处理废水的方法与装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310083341.5A CN103145275B (zh) 2013-03-15 2013-03-15 一种强化微电解-Fenton氧化法处理废水的方法与装置

Publications (2)

Publication Number Publication Date
CN103145275A true CN103145275A (zh) 2013-06-12
CN103145275B CN103145275B (zh) 2015-02-04

Family

ID=48543663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310083341.5A Expired - Fee Related CN103145275B (zh) 2013-03-15 2013-03-15 一种强化微电解-Fenton氧化法处理废水的方法与装置

Country Status (1)

Country Link
CN (1) CN103145275B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103708648A (zh) * 2013-12-26 2014-04-09 清华大学 还原-Fenton氧化耦合处理偶氮印染废水的方法
CN103880229A (zh) * 2014-03-22 2014-06-25 广东工业大学 一种用于处理垃圾渗滤液的微波催化氧化设备
CN104591449A (zh) * 2015-01-27 2015-05-06 绍兴奇彩化工有限公司 一种分散染料废水的除溴方法
CN104671500A (zh) * 2015-02-11 2015-06-03 福建工程学院 循环变速流化床芬顿催化氧化装置
CN105399153A (zh) * 2015-11-27 2016-03-16 中北大学 一种撞击流旋转填料床制备磁性纳米材料的方法
CN105858856A (zh) * 2016-05-18 2016-08-17 中北大学 超重力在线制备纳米零价铁并同步处理硝基苯废水的方法及装置
CN105884098A (zh) * 2016-05-30 2016-08-24 中北大学 超声波/铁碳微电解-Fenton氧化法处理硝基苯废水的方法及装置
CN106430790A (zh) * 2016-11-22 2017-02-22 南京大学盐城环保技术与工程研究院 一种降低永固紫工艺废水cod的方法及其应用
CN106477786A (zh) * 2016-03-23 2017-03-08 南通大恒环境工程有限公司 一种复合型强化微电解模拟处理方法
CN114573155A (zh) * 2022-03-04 2022-06-03 陕西科技大学 一种焦化反渗透浓缩废水的吸附微电解协同处理方法
CN117865327A (zh) * 2024-03-11 2024-04-12 中国科学院大学 超重力高级氧化废水处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126838A (en) * 1998-05-01 2000-10-03 Industrial Technology Research Institute Method of wastewater treatment by electrolysis and oxidization
CN2892845Y (zh) * 2006-02-17 2007-04-25 中北大学 一种臭氧氧化技术处理难降解有机废水的设备
CN202139138U (zh) * 2011-07-20 2012-02-08 浙江环科环境研究院有限公司 一种改进型芬顿流化床处理废水装置
CN102382312A (zh) * 2011-09-01 2012-03-21 中北大学 一种连续制备乳化石蜡的工艺及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126838A (en) * 1998-05-01 2000-10-03 Industrial Technology Research Institute Method of wastewater treatment by electrolysis and oxidization
CN2892845Y (zh) * 2006-02-17 2007-04-25 中北大学 一种臭氧氧化技术处理难降解有机废水的设备
CN202139138U (zh) * 2011-07-20 2012-02-08 浙江环科环境研究院有限公司 一种改进型芬顿流化床处理废水装置
CN102382312A (zh) * 2011-09-01 2012-03-21 中北大学 一种连续制备乳化石蜡的工艺及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刁金祥等: "旋转填料床中O3/H2O2法处理TNT红水", 《含能材料》, vol. 15, no. 3, 30 June 2007 (2007-06-30) *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103708648A (zh) * 2013-12-26 2014-04-09 清华大学 还原-Fenton氧化耦合处理偶氮印染废水的方法
CN103880229A (zh) * 2014-03-22 2014-06-25 广东工业大学 一种用于处理垃圾渗滤液的微波催化氧化设备
CN103880229B (zh) * 2014-03-22 2016-04-20 广东工业大学 一种用于处理垃圾渗滤液的微波催化氧化设备
CN104591449A (zh) * 2015-01-27 2015-05-06 绍兴奇彩化工有限公司 一种分散染料废水的除溴方法
CN104671500A (zh) * 2015-02-11 2015-06-03 福建工程学院 循环变速流化床芬顿催化氧化装置
CN105399153A (zh) * 2015-11-27 2016-03-16 中北大学 一种撞击流旋转填料床制备磁性纳米材料的方法
CN105399153B (zh) * 2015-11-27 2017-06-27 中北大学 一种撞击流旋转填料床制备磁性纳米材料的方法
CN106477786A (zh) * 2016-03-23 2017-03-08 南通大恒环境工程有限公司 一种复合型强化微电解模拟处理方法
CN106477786B (zh) * 2016-03-23 2019-11-08 南通大恒环境工程有限公司 一种复合型强化微电解模拟处理方法
CN105858856B (zh) * 2016-05-18 2019-07-02 中北大学 超重力在线制备纳米零价铁并同步处理硝基苯废水的方法及装置
CN105858856A (zh) * 2016-05-18 2016-08-17 中北大学 超重力在线制备纳米零价铁并同步处理硝基苯废水的方法及装置
CN105884098A (zh) * 2016-05-30 2016-08-24 中北大学 超声波/铁碳微电解-Fenton氧化法处理硝基苯废水的方法及装置
CN106430790A (zh) * 2016-11-22 2017-02-22 南京大学盐城环保技术与工程研究院 一种降低永固紫工艺废水cod的方法及其应用
CN106430790B (zh) * 2016-11-22 2019-05-17 江苏南大华兴环保科技股份公司 一种降低永固紫工艺废水cod的方法及其应用
CN114573155A (zh) * 2022-03-04 2022-06-03 陕西科技大学 一种焦化反渗透浓缩废水的吸附微电解协同处理方法
CN117865327A (zh) * 2024-03-11 2024-04-12 中国科学院大学 超重力高级氧化废水处理方法

Also Published As

Publication number Publication date
CN103145275B (zh) 2015-02-04

Similar Documents

Publication Publication Date Title
CN103145274B (zh) 一种高级氧化法处理废水的方法及装置
CN103145275B (zh) 一种强化微电解-Fenton氧化法处理废水的方法与装置
CN103145273B (zh) 一种吸附还原氧化降解硝基苯类废水的方法及装置
CN106915802B (zh) 难降解有机废水处理的一体式电化学反应装置及处理方法
Zhang et al. Electro-Fenton treatment of mature landfill leachate in a continuous flow reactor
CN101462788B (zh) 一种高级氧化降解硝基苯类废水的工艺方法及装置
CN102180557B (zh) 复合型有机废水高级氧化装置
CN102976451A (zh) 一种原位电产生h2o2协同o3氧化的废水处理装置及方法
CN105540947A (zh) 一种处理钻井废水的方法和系统
CN104710052B (zh) 一种吹脱‑微电解‑Fenton氧化法处理含高浓度硝基苯废水的方法及装置
CN103613254B (zh) 精细化工园区污水处理厂难降解有机废水的深度处理方法
CN110980999A (zh) 过氧化氢-臭氧微纳米气泡处理有机废水的方法
CN107777830A (zh) 一种高浓度难降解制药废水处理方法及系统
CN204752450U (zh) 一种用于废水处理的温和催化氧化装置
CN111470679A (zh) 一种废乳化液的预处理方法
CN204873961U (zh) 一种磁性催化-电芬顿反应装置
US20220356086A1 (en) Method for electrolysis-ozone-corrosion inhibitor/electrolysis-ozone-hydrogen peroxide-corrosion inhibitor coupling treatment on toxic and refractory wastewater
CN2791033Y (zh) 一种造流曝气灭藻装置
CN202063803U (zh) 复合型有机废水处理系统
CN201240898Y (zh) 一种新型微电解反应装置
CN204022601U (zh) Meo微电解高级氧化反应器
CN214422314U (zh) 一种采用电芬顿处理污染地下水的装置
CN203307159U (zh) 一种强化微电解-Fenton氧化法处理废水的装置
CN110981039A (zh) 铝碳-臭氧微纳米气泡处理有机废水的方法
CN203307158U (zh) 一种吸附还原氧化降解硝基苯类废水的装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150204

CF01 Termination of patent right due to non-payment of annual fee