CN103109081A - 能量转换单元及包括该单元的能量转换系统 - Google Patents

能量转换单元及包括该单元的能量转换系统 Download PDF

Info

Publication number
CN103109081A
CN103109081A CN2011800446182A CN201180044618A CN103109081A CN 103109081 A CN103109081 A CN 103109081A CN 2011800446182 A CN2011800446182 A CN 2011800446182A CN 201180044618 A CN201180044618 A CN 201180044618A CN 103109081 A CN103109081 A CN 103109081A
Authority
CN
China
Prior art keywords
conversion unit
energy conversion
volume
piston
restricting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800446182A
Other languages
English (en)
Other versions
CN103109081B (zh
Inventor
S.兰德巴克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corpower Ocean AB
Original Assignee
Corpower Ocean AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corpower Ocean AB filed Critical Corpower Ocean AB
Publication of CN103109081A publication Critical patent/CN103109081A/zh
Application granted granted Critical
Publication of CN103109081B publication Critical patent/CN103109081B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1845Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom slides relative to the rem
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/12Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type
    • F01C1/14Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1845Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom slides relative to the rem
    • F03B13/187Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom slides relative to the rem and the wom directly actuates the piston of a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1885Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is tied to the rem
    • F03B13/189Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is tied to the rem acting directly on the piston of a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/18Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/406Transmission of power through hydraulic systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Abstract

本发明涉及一种适于将往复力(Fl)转换成至少一个力传递轴上的旋转轴运动和/或转换成电力的能量转换单元。该单元包括至少一个限制装置(3,4,5),其直接连接到力并布置成将传入的往复力(Fl)转换成至少一个转换模块(2a-d,56,64,73,80,81,87,Cm)上的运动。能量转换单元的特征在于,至少一个限制装置(3,4,5)通过能量转换单元限定完全或部分通过至少一个转换模块(2a-d,56,64,73,80,81,87,Cm)的一个封闭往复容积的界限。往复容积可包括布置成将传入力转换成至少一个转换模块(2a-d,56,64,73,80,81,87,Cm)上的往复流体运动的非压缩性流体,和/或往复容积可包括适合至少一个转换模块的至少一个机械的力传递装置。该单元还包括至少部分包围至少一个转换模块的紧凑的中央单元(1a-q)。

Description

能量转换单元及包括该单元的能量转换系统
技术领域
本发明总体涉及一种适于将往复式流体运动转换成旋转轴运动的能量转换单元。本发明还涉及一种包括这样的单元的能量转换系统,例如波浪发电站。
背景技术
如专利申请US2007/0158950和专利申请US7385301中描述的,海洋波同时产生水平的和竖向的旋转振荡运动。振荡运动每运行米波可包含数十千瓦的并且有时候数百千瓦的能量,并因此多次尝试建立能够将这种巨大能量转换成有用的和有竞争力的能量的系统,即将所述能量转换成例如电力的转换器。为了实现这些目标,使用不同类型的框图不足以透露某能量转换器是如何将波浪运动转换成例如旋转运动,同时也无法说明这个结构为何要求具有低的监督维护成本和很长的寿命。
本发明旨在建立一种紧凑且有成本效益的能量转换器单元,通过使用公知的方法和经验,该能量转换器单元在功能上和几何形状上已被优化,以便能够计算关于材料、流体、气体以及机械部件、电气部件和电子部件的寿命和维护成本。
本发明的灵感来自申请人对现实的心脏的泵送和自动控制功能的发现,这在文件“室间隔的心脏泵送和调节功能(Cardiac Pumping and RegulatingFunctions of Intraventricular Septum)”(Lundback,1986年)中有所描述。在文件中公开了一种新的泵原理的发现,现命名为动态自适应活塞泵(DAP),还公开为DeltaV-泵(△V-泵),参见专利US4648877。这些泵利用了两种之前已知的泵原理的最佳特性的优点,即:动力泵的原理(例如离心泵)和容积式泵的原理(例如活塞泵)。△V-泵在较低的流量和频率期间可以被视为容积式泵,其中活塞被设计成使得其具有单向力,除了泵工作也产生往复容积,△V-容积,其可以存储并转换能量,以便生成名为△V-功能的活塞液压返回。美国专利US7239987中用数学方法描述了与真正的心脏泵功能相同的新的泵功能。
利用心脏肌肉细胞的特性和功能,大自然结构心脏并且使之像△V-泵般活动。这些细胞通过单向纵向减少和收缩来完成它们的工作,并需要用于它们的返回运动的被储存能量,△V-功能。肌肉细胞的单向发电以及如心脏的心肌瓣膜面一样的活塞液压返回可与波涛起伏的波浪发电进行比较,并且启发了本发明,也就是一种紧凑的能量转换器。
为了将海浪的能量转换成机械功和/或电流,需要能量产生装置,其能够将竖向的和/或水平的力转换成水分子运动所产生的波浪运动。在较深处,波浪是圆形的水分子运动,该运动在强度上随着远离测量表面而降低或者进行了能量吸收。在较小的深度处,波浪是椭圆形的水分子运动。在较深处,波浪的竖向力相对于它们的水平力相同,即50/50%。在较小的深度处,竖向力相对水平力越来越增加,其连同例如对底部的摩擦最终产生了对波浪的冲击。
为了进一步解释本发明在哪些方面可用作简单的且有成本效益的能量转换单元,下面给出了一些例子,其中在历史上熟知的能量产生装置或多或少地被连接到后来的复杂能量转换器。
在US1791239(1931年,原始1919年OWC,即Oscillating Water Column振荡水柱)中,Braselton描述了一种通过让波浪运动充当“汽缸”-波浪捕获器中的大活塞而将波浪能量转换成电力的方式。波浪运动将大量有弹性且可压缩的空气移向汇集管。在此管中安装了将气流转换成电力的空气涡轮机。大的且通常陆基的OWC结构具有非常低的效率。也就是说,除其它事情外,空气涡轮机难以处理作为空气往复运动结果的大变化的压力和流量。坐落于挪威特隆赫姆的挪威科技大学(NTNU)在70年代和80年代期间在Budal指导下通过使用点吸收器(在海面上的浮标)对OWC技术进行了广泛研究。在2003年,发表了包含这些研究结论的摘要。在该摘要中,他们揭示,为了以具有成本效益的方式将波浪能量转换成电力,使用弹性空气作为力转换器应当转变为具有闭锁控制的浮标运动的现代液压技术。此外揭示了“小即为美”,也就是说浮标大小不应该大于波长的5-10%,并且闭锁技术在恶劣天气期间还能够保护整个系统。例如通过提高涡轮机效率,OCW技术的实验仍在进行中。
US4355511(1982年)描述了其中例如使用闭锁技术(latch technique)的实施方式。
US4172689(1979年)描述了一种方式,其中浮动的浮标或船只布置成使得其在一侧收集波浪并且将这些波浪改变方向朝着船只相对侧的水轮机。该能量吸收方法及其它利用海面上波峰和波谷之间差异的方法(例如Pelamis“海蛇”)都需要大的结构来运行。
US4001597(1977年)描述了基于底部的能量输送单元“波浪翻转装置(wave tilter)”在浅水如何基于海浪运动的水平力而能够向后及向前倾斜的。波浪翻转装置的运动影响水汽缸(water cylinders)提供带有水流的陆基涡轮机。使用该技术的一个例子是Aquamarine的海浪发电技术Oyster波浪能量转换器,其中“波浪翻转装置”操作水汽缸,该水汽缸在高压下提供带有水流的陆基水斗式水轮机。另一个例子是美国专利7131269(2006年),其中,波浪翻转装置经由活塞来压缩在上面取自水中的空气,并经由底部的空气提升泵而产生操作涡轮机的水流。另一个例子是US2006/0150626(2006年)Al,其中具有各种单向阀的旋转容积式泵被连接到波浪翻转装置,以提供一种具有加压流体的相邻液压系统。
US3989951(1976年)描述了具有柔性橡胶膜的基于底部的能量输送单元如何捕捉海面处波峰和波谷所产生的统计压力变化。这些压力变化向产生电流的气体涡轮机传输气体。该转换器具有的效率可媲美经典的OWC转换器。
1998年5月提交的US6229225以及1998年12月提交的6392314展示了US3989951(1976)的实施方式,其中,位于水面之下的柔性浮标受波浪运动的统计压力变化影响,使得浮标的压缩和解压缩带来位移变化。这导致可用于产生机械功的拉力的变化。浮标的大小以及气体迁移穿过柔性浮标材料可造成长期问题。
US4081962(1978年)展示了水面下的活性物质如何能够用于产生与水面上水的运动相反的力,以及这些反力如何能够用于提取能量。这个基本概念这些年来已做出若干修改。Wavebob是使用该技术的一个例子。
在US1318469(1919年)中,Wilkinson介绍一种简单的装置,其中,连接到浮标的绳索被用于将浮标的运动转化成机械功。其他人具有相同的基本思想,该基本思想提出的解决方案在环形丝线、带、链条和齿条的帮助下将浮标运动转换成轴的旋转运动,其可用于例如生产电力。这些转换方式通过其直接连接到浮标而带来了效率,该效率主要是在不同的转数下由发电机的效率决定。借助于Budal所展示的闭锁技术,但常常被人遗忘或不可能实现,可以通过影响波浪中浮标的运动来优化来自波浪的能量吸收和转换器系统的效率。
即使在最理想的条件下,就绳索和线结构而言,看似很简单的且容易理解的结构的寿命却是很短的。如果具有带、链条和齿条的结构在最佳条件下操作,则它们的寿命可以相当长久。关于这些纯机械结构的另一个棘手因素在于,当系统到达它们的闭合位置时,要找到持久的解决方案来保护它们。采用钢弹簧和橡胶形式的减震器可能是沉重的、耗费容积的,并且产生并不总是积极的回弹力。
在US628657(1899年)中,Max Gehre介绍的设备通过使用浮标和直线发电机能够从波浪运动产生电流。这一概念多年来已经成为一些变型例的目的。这些发电机的问题是,尽管用今天的磁性材料,但它们相对于快速旋转发电机是体积庞大的、笨重的且昂贵的。然而,这些看似简单的结构必须补充有额外的闭锁技术、减震器以及系统,以防止水泄露通过连接到发电机房的直线通道。此外,这些系统无法如单独的动力源那样设有使能量生产平稳的简单设备。
最常见的将波浪吸收器的向后及向前运动转变为旋转运动方式是借助于液压,其中水或油操作连接到发电机的涡轮或液压发动机。对于这些种类的技术而言,“波浪翻转装置”是理想的,因为它受可以由双作用活塞或旋转汽缸恢复的双作用力影响。另一方面,点吸收器(浮标)确实需要某种形式的能量来执行其累积的返回运动。
专利申请US2005/0167988提出了一个例子,关于通过使用常规液压连接如何能够将“点吸收器”的向后及向前运动转换成电流。该专利申请还可用作背景技术来阐明与本创新方案的区别。专利申请US2005/0167988中的浮动浮标被柔性连接到中空活塞杆,液压缸经由延伸管被柔性连接到中空活塞轴,中空活塞轴的液压缸经由细长管被弹性连接到海底的浮标沉降器。经由活塞轴和活塞,浮标产生了活塞移位,该活塞移位通过中空活塞杆在高压下被累积在高压腔中,该高压腔位于浮标中。该高压腔经由受控可变液压发动机和冷却系统与另一具有低压的压力腔接触。液压发动机经由发电机将两腔之间的流动物内的压力差转换成电流。低压腔中的剩余压力用于带回活塞,并且还将所连接的浮标带向位于下面波谷中的新的起始位置。具有通风器及连接到贮存器的小泵的控制系统从该系统中添加或移除油,以便获得储罐中在不同的时间、浪高、天气情况等之下的合适压力,使得在活塞和浮标的返回运动期间可进行在液压电机上的连续流动。
该系统是单向作用的,即系统在波浪运动的上升阶段中利用并存储波浪能量,以在整个波动周期期间将该能量分配在整个大储罐的装置之上。大的压力差可造成储罐之间的气体迁移问题,由此,必须经常进行控制。
发明内容
本发明包括在其两个基本方面的最免维护和长寿命的实施方式中。
根据本发明的第一方面,设置了能量转换单元,其适于将外力转换成至少一个力传递轴上的旋转轴运动,其中能量转换单元包括适于将外力转换成旋转轴运动的转换模块和至少一个限制装置,至少一个限制装置布置为在转换模块上将外力(F)转换成往复运动,由至少部分围住转换模块的中央单元描述其特征,其中往复运动是流体在封闭容积内的往复运动和/或将外力转换成转换模块上的往复运动的机械布置的往复运动。
根据本发明的第二方面,替代于包括适于将能量转化成封闭容积内的旋转轴运动的转换模块,输入和/或输出流道设有一个或多个闭锁阀,其适于将自由往复的流体流变换成阻碍往复容积的运动的封闭流。
在这些实施方式中,优选包括非压缩性流体或可压缩气体的往复容积可用于:转换两个限制装置之间的压力,并贡献为液压端部限位器/终端位置阻尼。当使用非压缩性流体时,可以添加闭锁阀功能,以提供优化的能量吸收并促成用于力学的优化环境。
用于基本实施方式的转换模块可以认为是扭矩转换器,并可以优选根据连续容积式泵的原理进行结构,诸如向内和向外的齿轮驱动的泵、高吊旋转泵和翼式泵(lobrotating and wing pumps),但如果还提供了一个或多个闭锁阀,由于大型结构的集成闭锁技术,替代地可以包括涡轮叶轮。能量转换器中的所有部件在这样的条件下进行操作,使得可以计算具有相关寿命和维修间隔的可行尺寸。
部分通过能量转换,并且部分通过在相对限制装置中的至少一个限制装置-例如初级限制装置-上产生压力梯度,基本实施方式产生的力与朝向能量转换器传入力相反,该至少一个限制装置可以将被储存的能量转换成返回的拉动和/或推力并有助于持续的能量转换。
除其它事项外,长的寿命的重要因素是防止气穴现象。由于这个原因,能量转换器中的流体不应该与同一能量转换器中的气体的可能容积直接接触。这通过限制优选具有但不一定具有相同大小的两个限制装置之间的往复流体加以防止,其中例如次级限制装置直接或间接地由活塞将压力从外部或内部柔性腔(compliance chamber)转换到相对的限制装置。如果限制装置被结构成具有不同的尺寸,则可以产生较小的旁通流,该旁通流例如通过油过滤器可以直接被引导至可能的柔性腔。另外,具有液压转换模块的实施方式已结构并尺寸设计为使得横跨转换模块的压力降并不需要减少超过约1-4倍,以便获得标称效果。
当实施方式配备有机械转换模块时,往复流体没有气穴问题。这些机械转换模块可以是齿条、链条、薄钢带、同步带、钢丝或合成线。
本发明的实施方式必须选择成或适于使它们得到就重力加速度而言的优化函数。这是由于能量转换器在某些情况下在液体和气体之间的集成连接中进行操作,其水平依赖于能量转换器关于重力加速度的取向。
在几个实施方式中,能量转换器可以被修改,以便例如从如先前公开的波浪转换装置提取能量,但它还可用于从例如由风和水流产生的其它往复运动提取能量。在大多数情况下,将拉力传输到能量转换器中是最有希望的解决方案。在决定何种实施方式最适合于期望的能量转换器时,制造和安装成本、维护成本和寿命是决定性因素。
因此,本发明涉及一种适于将往复力转换成至少一个力传递轴上的旋转轴运动和/或转换成电力的能量转换单元。该单元包括至少一个限制装置,其直接连接到所述力,并布置成在至少一个转换模块上将传入力转换成容积平移运动。能量转换器的特征在于,至少一个限制装置通过能量转换单元限定完全或部分地通过至少一个转换模块的一个封闭往复容积。往复容积可以包括非压缩性流体或气体的流,其布置为将传入力转换成至少一个转换模块上的往复运动,和/或往复容积可以包括至少一个机械的力传递装置,其适合至少一个转换模块。该单元还包括紧凑的中央单元,其至少部分地包围至少一个转换模块。
由限制装置和能量转换单元隔离的往复容积通过往复力转换成发电转换模块上的往复运动。这些运动可以通过动力传递轴或发电机由转换模块转换成有用的能量/电力。往复容积可以认为是非压缩性流体或机械的力传递布置,诸如活塞/活塞轴、齿条、同步带、链条或占用越过或通过转换模块的一定容积的其它类似装置。当往复容积包括机械装置时,转换模块适合于上述装置,例如如果该装置是齿条,则转换模块包括对应的齿轮。
根据本发明的一个实施方式,至少一个限制装置与至少一个易变形的柔性腔直接或间接相连,以便使往复容积以及吸收能量成为可能。
在另一实施方式中,至少一个柔性腔是从其周围环境隔离。
至少一个柔性腔可以是外部腔(对周围环境开放)或内部腔(从周围环境隔离),其中填充了可压缩介质,诸如气体。通过压缩或解压缩该可压缩介质,限制装置和柔性腔之间产生的压力梯度可以存储为能量。通过使用不会将负载施加在转换模块上的推或拉装置,所存储的能量可转移到限制装置。另外,限制装置还可以连接到两个柔性腔,例如一个内部柔性腔和一个外部柔性腔,其中外部腔可以是周边环境,而内部柔性腔可以从周围环境隔离并在内部放置在能量转换单元中。限制装置还可以与两个来自周围环境的隔离柔性腔相连,以使具有双能量存储的内部往复容积成为可能。当限制装置与柔性腔直接连接时,作用于往复容积上的往复运动可直接产生限制装置上的压力梯度。在这种情况下,往复容积可以是机械的力传递装置。当限制装置与柔性腔间接连接时,往复容积可以是非压缩性流体。
在另一实施方式中,至少一个柔性腔设有负压,并通过单向阀连接到周围环境。
如果传入的外力连接到双作用限制装置(优选的是当限制装置是活塞或旋转翼的时候),则大的负压(真空)可以发生在位于柔性腔中的可压缩介质之中,通常会发生在限制装置的一侧。然后,传入力可以转换成转换模块上的拉力。通过提供由具有阀的双作用限制装置产生的负压容积,该阀可以通过限制装置的返回运动打开,于是例如活塞密封件上的流体泄漏可以排出,并且可保持最大尺寸的负压容积。
在一个实施方式中,隔离的往复容积是流体并受限于任何以下部分:限制装置和转换模块、两个彼此分离的限制装置、限制装置和至少一个柔性腔。
通过限制往复流体容积,产生可用于能量提取的振荡位移量。往复流体容积或者直接或间接地作用在柔性容积上,或者创建外部或内部的封闭流体回路。如果流体容积由与至少一个可压缩柔性腔相互作用的至少一个限制装置限制,则能量可以存储在柔性腔中。
在一个实施方式中,至少一个限制装置连接到至少一个力传递装置,使得传入的外力被存储在至少一个柔性腔中,平行于变换成中央单元中的机械动力和/或电力的力。
力传递装置可以是非压缩性流体和或诸如活塞轴等的机械单元。并行存储的力能够将所存储的能量转换为拉回复力。因此,即使没有外力作用在该单元上,能量转换也会继续。
在一个实施方式中,能量转换单元包括布置在中央单元每一侧上的两个相对的限制装置,其不必具有相同的大小。相对的限制装置例如可以是一个较低的初级限制装置和一个较高的次级限制装置。这些限制装置限制往复容积从至少一个柔性腔越过至少一个转换模块。
相对的限制装置还可以机械连接。如果是这样,则它们的动作是统一的和关联的。由限制装置封闭的流体容积可以容易地与内部气体容积分离,并且如果次级限制装置是活塞,则该活塞还起到极好的引导装置的作用,用于引入活塞轴。在只有一个限制装置(例如只有初级限制装置)被连接到外部传入力的实施方式中,次级限制装置原则上是外柔性腔和/或内柔性腔,其中的内部压力通过外部和/或内部流体被传送到初级限制装置。
在另一实施方式中,至少一个限制装置机械连接到传入的外力,从而产生两个容积传送运动,这在所述至少一个转换模块上通过流体运动创建外部或内部的封闭循环。
如果您不希望将能量储存在可压缩柔性腔中,则限制设备可以完全地机械连接(例如像波浪翻转装置中旋转臂的两侧),或机械连接但限制设备之间具有流体。这创建了外部或内部流体回路,该流体回路导致中央单元及其转换模块上的往复流体容积运动。
在本发明的一个实施方式中,中央单元包括输入和输出流道,该流道来回导引所述至少一个转换模块,往复流体布置成被引导在所述至少一个转换模块中。
因此,中央单元是紧凑的单元,其可以描述为容积封闭并向至少一个转换模块提供输入和输出流道,该输入和输出流道适于引导通过作用于至少一个限制装置上的外力产生的流体流。
在另一实施方式中,输入和/或输出流道可设有适于将自由往复流体流转化成封闭流的一个或多个闭锁阀/切断阀,封闭流阻碍往复容积的运动。
输入和输出流道中的往复容积包括在初级和次级限制装置之间具有压力输送作用的流体。优选是控制和通信模块所控制的转换模块上的流体流,该控制和通信模块通过打开和关闭闭锁阀/切断阀得以控制并优化力吸收和运动,以匹配能量转换单元构建的行程。通过使用内部传感器和可控力学结构(controllable mechanics),控制和通信模块适于自动监督并优化能量转换器的功能。
在另一实施方式中,至少一个限制装置连接到与周围环境隔离的服务容积。
服务容积可包含流体,诸如气体、液体和包含在一系统中的其它组分,该系统优化用于力学结构的内部容积以及能量转换单元的功能。服务容积还可以防止气穴的出现,并同时提供足够的流体用于产生限制装置的液压减速和端部限位器/终端位置阻尼。服务容积中的容积最好由一定压力进行加压。
在另一实施方式中,该单元还包括制动装置,该制动装置是机械或液压制动器,适于使能量转换单元的一个/多个终端位置中的被传输流体运动减速。
制动装置可以设计成使得阀、汽缸顶部和活塞形状产生用于限制装置的液压端部限位器/终端位置阻尼,或者限制装置本身可设计为产生抵抗中央单元的液压端部限位器/终端位置阻尼。为了保护中央单元免受不必要的力,制动安排布置成使得它们所产生的力与作用于转换模块及围绕这些转换模块的流体之上的力分开。
在另一实施方式中,转换模块包括至少一些以下部分:容积式泵、齿条、链条、线、同步带、钢带或合成带、丝线、绳索或磁力发射器。
例如,往复流体运动可以操作两个或多个转换模块,例如两个高吊旋转泵,以增加转换器的能量密度并增加创建对称设计的可能性。往复机械运动可以由一个或多个齿条、链条、同步带、钢带或合成带、丝线、绳索或用于永磁体的轮廓进行传送。如果使用齿条,则它们优选地成对布置,具有两个相应的且连接的小齿轮,以增加转换器的能量密度并增加产生对称的动力输出的可能性。齿条建立两个相对限制装置的活塞之间的稳定适应性连接,这导致齿条上的均匀的力分布。如果使用两个或多个链条,则可增加转换器的能量密度,并且还增加创建对称设计的可能性。该链条可以柔性地连接到限制装置/活塞,并可以通过永磁体朝向杆而固定到位,该杆将传入的外力机械且刚性地连接并传送到两个相对的限制装置。链条在其使用寿命期间伸展并变得更长。因此,链条也可以连接到链条伸展环或轮,以便不断地吸收链条的延长。如果使用两个或两个以上的同步带,则它们优选地安装在到两个相对且刚性连接的限制装置的预拉伸弹簧状连接部中。弹簧状连接部将预拉伸力调整至实际力,同步带将该实际力转换到转换模块。这将延长同步带的寿命。如果使用两个或更多个薄钢带、钢丝或合成绳索,则通过在上部和下部配置中的两个或更多个鼓上逆缠绕和解开将往复运动转化为旋转轴运动。用于每个鼓的钢带可以包括两个薄层,以接收与鼓的直径和所发送的力有关的优化寿命及强度。每层钢带都具有到机械刚性连接的相对限制装置的附接装置。附接装置提供了薄层的均匀的力分布、补偿一个薄层的较长延伸、当附接装置被缠绕时拉紧钢带并且补偿在上部和下部装置与刚性连接的限制装置之间缠绕和解开所产生的总长度差。每个丝线或绳索都具有到机械刚性连接的相对限制装置的附接装置。附接装置提供了到丝线或绳索的均匀的力分布、当附接装置缠绕在鼓上时拉紧丝线或绳索,并在鼓的旋转期间,附接装置遵循鼓中的螺旋形凹处,以防止不必要的磨损。如果使用包括永磁体的轮廓,则通过使用布置在连接相对限制装置的机械连接部中的永磁体,产生磁力分布。布置在中央单元中的线圈可以建立直接将往复运动转换成电流的一个或多个直线发电机。
优选地,转换模块配置成使得旋转轴及其附接的能量转换单元产生了具有良好对称性和重量分布的组合能量转换器。转换模块还可以配置成使得其旋转轴可以接合到具有双旋转方向或单向旋转方向的一个居中放置的旋转轴中。该旋转轴可以操作具有或没有飞轮或高压泵的一个或两个相对的发电机,用于产生电力或用于淡水生产。
在另一实施方式中,至少一个限制装置包括至少一个下列部分:具有带有活塞的直线汽缸的或带有旋转活塞元件的汽缸的形状的双作用限制装置,或诸如封闭波纹管、回弹直线汽缸或螺旋形弹性汽缸的单向作用限制装置。
如果次级限制装置由具有非密封活塞的汽缸创建,则除了次级限制装置到初级限制装置的活塞的连接,它还具有到外密封弹性汽缸或波纹管的连接。采用该结构,可以将外部往复力转移到转换器,无需使用线性引入件(lead-throughs),诸如活塞轴。弹性汽缸还创建无能量存储的内部封闭循环,其可用于液压转矩变换或用作双内部布置的能量存储容积。还可以使用转矩平衡的螺旋形弹性汽缸。转矩平衡的汽缸是分裂成两个大小相似部分的汽缸,其中一个部分转向右边,而另一部分转向左侧,即50%右转和50%左转,在中间具有接头。非密封活塞在次级限制装置中可以设有锥形管,其部分地让流体通过来匹配弹性汽缸或波纹管的附加区域产生的容积变化,这又通过初级限制装置的活塞区域加以匹配,并部分地创建配合汽缸顶部中的合适凹处的液压端部限位器。
在另一实施方式中,一个或多个液压汽缸位于服务容积中。这些液压汽缸适于将能量转换单元定位在某一位置中,以优化力吸收并以优化的方式使用能量转换单元的行程。
在又一实施方式中,能量转换单元连同所集成的装备被封闭容积完全或部分地包围。封闭容积中可以用惰性气体加压,以防止氧化并给予变换单元期望的密度。
本发明还涉及一种能量转换单元,其适于将往复的外力转换成从至少一个转换模块离开的至少一个力传递轴上的旋转轴运动。该单元包括中央单元,中央单元包括转换模块和它的至少一个力传递轴以及流入和流出通道,其导引包括来回于所述至少一个转换模块的流体的封闭的往复容积。通过该单元并通过至少一个初级限制装置和一个次级限制装置来限定往复容积的界限,其中初级限制装置可具有带有密闭顶部的波纹管或弹性直线汽缸或螺旋形弹性汽缸的形状,或具有活塞的形状,通过带有密闭顶部的波纹管或弹性直线汽缸或螺旋形弹性汽缸来包围该活塞的延伸活塞轴。密闭顶部适于由外力来施加。相对的次级限制装置具有包括往复活塞的汽缸的形状,其中往复活塞使内部柔性腔与通过限制装置限定的封闭往复容积隔离。另外,该单元包括一个或多个机械的力传送装置,其将封闭顶部与往复活塞连接,将力传送装置相对于彼此锁定,并传送每个限制装置之间的外力。由此,通过压缩或解压柔性腔而将能量存储在所述腔中,使得封闭的往复流体容积在不受外力影响的情况下遵循限制装置的往复运动,并将所存储的能量转换在转换模块中。
通过该设计,通过压缩或解压柔性腔而将能量存储在所述腔中,使得布置在限制装置之间的流体可以在不受外力影响的情况下遵循限制装置的往复运动。因此,通过移动转换模块上的封闭流体容积可以将所储存的能量转换成可用的旋转运动。
本发明还涉及一种能量转换单元,其适于使用一个或多个直线发电机将往复的外力转换成直接产生的电力。在本实施方式中,该单元包括中央单元,中央单元包括用于直接生产电力的至少一个线圈以及输入和输出流道,该流道导引封闭的往复容积,往复容积包括越过所述至少一个线圈的流体。通过该单元并通过至少一个初级限制装置和一个次级限制装置来限定往复容积的界限,其中初级限制装置可具有带有密闭顶部的波纹管或弹性直线汽缸或螺旋形弹性汽缸的形状,或具有活塞的形状,通过带有密闭顶部的波纹管或弹性直线汽缸或螺旋形弹性汽缸来包围该活塞的延伸活塞轴。密闭顶部适于由外力来施加。相对的次级限制装置具有包括往复活塞的汽缸的形状,其中往复活塞使内部柔性腔与通过限制装置限定的封闭往复容积隔离。该单元还包括一个或多个机械的力传送装置,力传送装置包括用于直接生产电力的永磁体。力传送装置将封闭顶部与往复活塞连接,将力传送装置相对于彼此锁定,并传送每个限制装置之间的外力,由此,通过压缩或解压柔性腔而将能量存储在所述腔中。
该实施方式可以使用发电机直接产生电力,无需使用转换模块。当外力作用在带有密闭顶部的波纹管或弹性直线汽缸或螺旋形弹性汽缸形状的限制装置上时,可以使用往复运动中的能量,无需使用具有难以尺寸设计的必要的活塞轴密封件的活塞轴。因此,该单元的内部容积可密封,并能够避免内部流体和/或抽吸外部流体的泄漏问题。
在一个实施方式中,能量转换单元还包括液压制动装置,其适于保护中央单元及其转换模块或直线发电机,免受破坏性的压力峰值。在中央单元中布置的输入和/或输出流道还可设有一个或多个闭锁阀,其适于自由往复流体流转换成阻碍往复容积的运动的封闭流。由此,来自例如波浪运动的能量提取可以优化,并且往复运动能够以有效的方式转化为提供有效的转化成机械功和生产例如电力的运动。
在本发明的另一实施方式中,能量转换单元的直线汽缸和螺旋形弹性汽缸设有用于电流馈送和通信的导丝或导线。
本发明还涉及一种能量转换系统,其特征在于,根据上述实施方式中任一个的能量转换单元已经集成在能量吸收器中或者与能量吸收器封闭接触,该能量吸收器具有任何以下部分的形状:具有通过海底或洋底的活性物质或重量创建的反力的点吸收器、锚定在海底或洋底适当深度处靠近海滨以捕捉破碎波的波浪翻转装置、或适于转换往复的风或水流的能量转换单元。
根据上文的能量转换单元可以柔性地安装在沉降器中,或安装在海上或湖底的沉降器和点吸收器之间。点吸收器可以是适于受水面下的水压力影响的可压缩浮标,或者是适于漂浮在水面上的浮标。点吸收器还可以是锚定在洋底或湖底适当深度处的波浪翻转装置。能量转换单元还可以安装在锚定点和用于风或水流的能量吸收单元之间,或者安装在两个锚定点之间作为柔性能量生产环节,该柔性能量生产环节与保持系泊绳缆或锚定线并行使用。能量转换单元还可以连接到基座,该基座包括具有连接到可转矩转换部分的双作用可旋转活塞元件的汽缸。转矩转换部分可以是能够在能量转换单元的转换模块上将外部机械或液压往复力转换成封闭回路中的内部往复流体运动的杆或板。
附图说明
现在,通过举例参考附图来描述本发明,其中:
图1a-j公开了实施方式示例,其中具有直线汽缸和活塞以及波纹管和带有活塞状端盖的回弹弹性汽缸的本发明可以在包括转换模块的中央单元上产生开放的往复容积,其中周围环境是在操作周期内对周围环境中开放的吸收柔性腔的唯一容积。
图2a-j公开了实施方式示例,其中具有直线汽缸和带有贯穿式活塞轴的波纹管的本发明可以在包括转换模块的中央单元上产生开放的往复容积,其中周围环境是在操作周期内对周围环境中开放的吸纳柔性腔的唯一容积,并且具有发动机的切断阀(闭锁阀)可以集成在中央单元中。
图3a-f、图3h-m公开了实施方式示例,其中具有直线汽缸和波纹管的本发明可以在包括转换模块的中央单元上在内部的一个和朝着周围环境对柔性容积开放的一个之间产生开放的往复容积。
图3g公开了示例,关于单向阀如何在施加外部压力时通过使用活塞返回运动将可能的泄漏通过阀挤出去而能够布置成使得内柔性腔总是具有高真空。该阀还可以布置成使得除产生高真空之外的活塞返回运动还可以产生活塞运动结束时的液压减速。
图4a-e公开了实施方式示例,具有包括直线汽缸、波纹管和回弹弹性汽缸的两个机械连接的限制装置的本发明在包括转换模块的中央单元上隔离封闭的往复容积,该往复容积与周围环境配合而建立闭合的往复循环操作,其中周围环境是共用柔性腔。由此,在这些和以下附图中,往复容积从能量转换单元的周围环境以某种方式封闭起来。
图5a-e公开了实施方式示例,具有包括波纹管和回弹弹性汽缸的两个机械连接的限制装置的本发明在包括转换模块的中央单元上密封地划分了封闭的往复容积,该往复容积与具有绝对密封的活塞轴引入件的环境配合而建立闭合隔离的往复循环操作,其中周围环境是共用柔性腔。
图6a-e公开了实施方式示例,其中具有两个机械连接的限制装置的单元在包括转换模块的中央单元上在两个分开的柔性腔之间产生隔离的往复容积,该限制装置包括具有活塞的直线汽缸和具有活塞状端盖的波纹管,其与它们的运动联接至传入的外部力,两个分开的柔性腔一个在内一个朝着周围环境配合柔性腔。
图7a-e公开了实施方式示例,其中具有两个机械连接的限制装置的本发明在包括转换模块的中央单元上隔离往复容积,该限制装置包括直线汽缸、波纹管和具有活塞状端盖的回弹弹性汽缸,与图6a-e的实施方式类似,该往复容积可在密封条件下存储和提供能量。
图8a-e、图f-j公开了实施方式的其它示例,其中两个相对的内部柔性腔可以与它们之间的流体相互作用,流体由至少一个密封汽缸和活塞功能被从柔性腔隔离,使得施加在该活塞上的外力产生了用于能量储存和释放的压力梯度累积。该被存储能量可释放为拉力和/或推力,该拉力和/或推力由转换模块转化为旋转。
图9a-e公开了实施方式示例,其中通过将具有流体和气体泵的服务容积连接到能量转换器,本发明的两个内部柔性容积之一可以得到改变的特性。另外,公开了关于活塞轴引入件和流体闸的示例,用于吸收最终不均匀的负荷以及防止气体泄漏。
图10a-c公开了实施方式示例,其中本发明已设有弹性螺旋形加壳弹性管或汽缸,其覆盖贯穿式活塞轴,以防止流体渗漏以及气体从能量转换器迁移,并且其中与图1c中的弹性汽缸类似,螺旋壳(spiral armoring)还可以包括或包含不同组之中用于电流和信号传输的传导材料。
图11a-b公开了能量转换单元如何通过可变的锚定系统能够附接成使装置适应不同的海平面,该锚定系统集成在浮动浮标或枢转的至浮标的附件中。
图12-d公开了关于能量转换器的示例,其中具有直的刚性或略有弹性的外部汽缸的发明在包括转换模块的中央单元上建立了内部往复循环操作,其原则上仅需要可吸收来自活塞轴的被排出容积的内部或外部的柔性容积。
图13a-d公开了关于能量转换器的示例,具有采用直线汽缸形状的限制装置的本发明在中央单元上建立了内部往复循环操作,其中活塞已配备有相对的活塞轴,由于平衡的活塞轴截面面积,该活塞轴在往复循环体系中不产生任何容积变化。
图14a-b在两个投影中公开了根据本发明实施方式的示例,其中以翼状配备有限制装置的旋转汽缸适于中央单元,使得转换模块上的内部封闭的往复循环操作产生了适于连接到发电机的以直角抵靠旋转汽缸的两个动力输出端。
图15a-b在两个投影中公开了根据本发明实施方式的示例,其中配备有两个翼状件以避免破坏性侧向力的旋转汽缸已适于操作两个中央单元。由此,对于两个分开的转换模块,创建了两个分开的、内部封闭的往复操作循环,每个转换模块都具有适于连接到发电机的、以直角抵靠旋转汽缸延伸轴的一个动力输出端。
图16a-f公开的示例关于在具有或没有自由轮的情况下如何将转换模块附接至发电机,以及相关飞轮如何集成在具有水平取向的转换模块的中央单元中。
图17a-d公开的示例关于在具有或没有自由轮和相关联的飞轮的情况下如何将附接至发电机的转换模块能够集成在具有竖向取向的转换模块的中央单元中。
图18a-b公开了关于能量变换单元的示例,其中两个限制装置中的一个是波纹管,并且其中转换模块是两个高吊旋转泵。
图18c公开的示例关于中央单元可由若干片结构成的方式。
图19a-b公开了能量转换单元的示例,其中两个限制装置中的一个包括弹性汽缸,并且其中使用了具有齿条形状的一个机械转换模块。
图20a-c公开了能量转换单元的示例,其中两个限制装置中的一个包括弹性汽缸,并且其中机械转换模块由一个或多个链条操作。
图21a-c公开了能量转换单元的示例,其中两个限制装置中的一个包括弹性汽缸,并且其中机械转换模块由一个或多个逆缠绕和解开的带操作。
图22a-b公开了能量转换单元的示例,其中两个限制装置中的一个包括弹性汽缸,并且其中机械转换模块由具有小直径和细丝线的一个或多个钢的或合成的线操作。
图23a-d公开了本发明的优选的基本实施方式。
一般来说,一个单独的附图可包括不同平面中的投影,以便说明功能及取向。
具体实施方式
在下面,将给出本发明的实施方式的详细描述。将理解,这些附图仅用于图示目的,并且不以任何方式限制本发明的范围。由此,诸如“向上”或“向下”的任何方向参考仅仅指附图所示的方向。同样,图中所示的任何尺寸等作示意用途。
必须指出,如本说明书和所附权利要求中使用的,不定冠词的单数形式“一个(a)”、“一个(an)”和定冠词“the”包括复数对象,除非上下文另作明确规定。
弹性应理解为材料以弹性方式变形的能力。当材料在应力(例如外力)下变形时,发生弹性变形;但当应力消除时,返回到其原始形状。更富弹性的材料应理解为具有较低的弹性模量或杨氏模量的材料。物体的弹性模量被定义为其在弹性变形区中应力-应变曲线的斜率。弹性模量被计算为应力除以应变,其中应力是变形引起的力除以力所施加的面积;而应变是由应力引起的变化率。
涉及紧凑的、有成本效益的能量转换器的本发明在其优选的实施方式中包括一个中央单元,中央单元包括适于往复机械运动和振荡容积的力学结构和流体通道,从而将由至少一个集成的限制或移位装置所产生的流体和或机械运动转移至集成于中央单元中的转换模块。
在一些实施方式中,限制装置在开放的(图1-2)或闭合的(图12-15)循环操作中与自身相互作用,或在其它实施方式(在其它附图中公开的)中与至少一个柔性腔相互作用。限制装置可包括例如具有活塞的直汽缸、封闭的波纹管、回弹弹性汽缸或具有旋转活塞或转子的旋转汽缸。转换模块可包括面向内的以及面向外的齿轮驱动的泵、适于往复流体运动的高吊旋转泵和翼式泵。这些通过使用管道系统经过中央单元的实施方式可将往复流体运动转换成旋转输出力,该旋转输出力适用于机械功(图1-17)和/或如图2-23中用于参与集成在中央单元中的流动体系之中,该中央单元包括切断阀或闭锁阀。被集成的切断阀、闭锁阀适于从例如来自波浪运动的能量输出优化动力输出,并以有效的方式将这种能量转变成运动,该运动可以转变成机械功以及例如电力的生产。如图2-23中所公开的,输送流体运动的往复容积可以是整个系统的用于液压端部限位的部分,其不会将中央单元暴露于破坏性的压力和力。
能量转换器可适应进入的单向或双作用的压力和/或拉力。当适应单向作用力时,例如当系统仅在波浪上行阶段接收并存储波的能量时,能量转换单元可设有至少一个内部柔性腔,其容积直接通过活塞装置改变(不包括附图6c、6d)或间接通过活塞流体运动(不包括6a、6b)而改变,所述容积与同样朝向第二外部(图6、图7)或内部(例如图8)布置的柔性腔的传入力运动相连。由此,单向作用力可以转换成双作用力,该双作用力在中央单元中的转换模块上被转换成往复流体和或机械传输运动。中央单元从而受到更小且更均匀的力。如果两个机械连接的限制装置的两个活塞皆密封向它们各自的柔性容积,则它们之间的流体可设定到合适的压力,例如设定到服务容积中的压力。这可以通过在转换模块和服务容积之间完成流体连接而做到。当振荡液流将能量转换到转换模块时(图1-18),这种互连可配备有单向阀,该单向阀不允许从转换模块流出,但允许流入其中,以防止转换模块周围的气穴。当往复的机械单元(图19-23)将能量转换到转换模块时,互连将在转换模块中产生卸压,该卸压减少了中央单元内的分离力,这使得它更轻、更便宜并且更易于构建。
能量转换器的结构非常适合密封系统(不包括图11),其中交互式的波纹管和弹性汽缸与周围环境的压力和内部柔性腔中的压力相配合,以便将单向作用力转换成转换器内的双作用力。能量转换器进一步适合脉动的以及连续的能量输出,并可以设有能够控制并优化能量产出以及发送和接收信息的电子模块。
在例如集成的闭锁阀以及适于液压和机械的转换模块的协助下,由于能量转换器可以将往复运动转换成具有相对高的转速的转矩,转换模块变得小而轻,因此易于与中央单元集成。
中央单元还可包括转换模块,转换模块具有直线发电机的形状,直线发电机可直接将机械往复运动转换成电力。在这种应用中仍使用往复流体的优点在于,可使用闭锁阀和液压端部限位器,而不对内部环境产生负面影响。
图1a-j、图2a-j在两个投影中公开了中央单元1a-j的实施方式的示例,中央单元包括一个或多个转换模块2a-e,转换模块结构为根据内部和外部齿轮泵、适于往复流体运动的高吊旋转泵或翼式泵的原理。在此实施方式和下面的实施方式中,转换模块包括两个相连的齿轮,取决于它们水平布置或竖向布置,在图1a-j中这两个相连的齿轮在单组中被命名为2a和2b;并且图2a-d及2f-j中在双组中被命名为2c和2d;或者图2e-j中在几组中命名为2e。中央单元可以被描述为包围并提供具有输入和输出流道的至少一个转换模块的容积,该至少一个转换模块适合至少一个直接作用的限制装置,诸如具有活塞器3a-3、4a-d的直线汽缸3或波纹管4或具有汽缸顶部5a的回弹弹性汽缸5。活塞和汽缸顶部5a与转换模块2a-e一起隔离出可变的封闭往复容积V1,其包括在本实施方式中是相同流体的流体Fl和FX。容积V1完全通过转换模块2a-e。当活塞经由活塞轴6a、6b设有双作用力F时,活塞产生与周围流体FX开放合作的可变压力P1。转换模块另一侧的压力P2在这些实施方式中与周围流体的压力PX相同。如果例如往复流体FX是净化水时,则周围流体原则上可通过柔性连接(未示出)对周围环境闭合。中央单元中的转换模块直接将往复流体转换成旋转轴运动7,旋转轴运动适用于机械功,诸如发电机的直接运行。
图2a-j进一步公开了示例,关于活塞3a、4a如何能够分别形成3b-d、4b-d,使得它们与各自中央单元配合,并且当活塞在其路径上朝向及离开各自中央单元接近它们的端部限位器时,相配合的端部限位器产生液压阻尼B1、B2。这提供了动力传递的软减速。如果波纹管用作往复机构,则活塞4d可以布置成产生液压阻尼B1,其还减少了由波纹管包围的流体Fl中的压力。在发动机9和集成的切断阀的协助下,转换模块上的流动得以抑制,直到其压力梯度和转换模块上计算出的流量被优化为附加力F的最大能量提取,该切断阀还称为闭锁阀8,其布置在中央单元的流道中。通过让压力传感器(未示出)记录压力P1以及通过让电子设备和软件改变转换模块上的负载,使得压力不低于预定的最小压力,可以避免气穴现象。还可以使用辊膜类型的限制装置。然而,这些导致了更庞大的结构,并且与波纹管式单元相比未提供任何优势,因此这些实施方式没有在此进一步公开。
图3a-m在一个投影中公开了优选实施方式的示例,其中外汽缸10包围汽缸3或波纹管4,以便产生具有压力P2的封闭的气体容积V2,从而创建内部柔性腔C1。替代地,直线汽缸3本身可以由包括单向阀11的山形壁围住,使得它与活塞3b-c一起来产生限定的气体容积V3,其还可以产生具有压力P4的内部柔性腔C1。当封闭往复容积V1中的往复流体Fl经由活塞3a-3、4a-c而收缩容积V2时,气体容积V2可以基本上大于V3,这意味着,它可以包含加压气体,但压力的增加不会超过期望值。容积V3具有更收缩的容积,并非常适于包含在整个活塞行程期间具有巨大的、几乎恒定的负压的气体。在活塞上的泄露迟早将产生泄漏容积V4,该泄漏容积能影响柔性腔C1中的气体容积。这不会是根据图3l、3m中实施方式下的情况,在图3l、3m中,没有用于活塞轴的引入件的外汽缸(10)包围波纹管4。具有波纹管的实施方式不承受如此高的压力梯度,并可导致气体迁移过弹性体的问题。可以手动或用小型一体化电动泵(未示出)移除泄漏容积V4。泄漏容积V4也可以在图3c-f中所示的往复活塞的返回运动协助下自动移除。由于开放连接到外部流体FX,压力P2采用外部压力PX。当力(F)和压力(P1)在转换模块上降低到其平衡值之下时,这个被采用的压力将迫使转换模块(2a、b)在另一方向上旋转。在活塞返回结束时,泄漏容积(V4)将通过单向阀(11)被挤出去。传入力(F)的变化将产生往复流体运动,该往复流体运动直接在中央单元内可以被转换成适用于机械功的旋转轴运动。通过让压力传感器(未示出)记录压力P1以及通过让电子设备和软件改变转换模块上的负载,使得压力不低于预定的最小压力,可避免气穴现象。
图3g公开的详细细节是,与活塞3b中的槽相连的单向阀1如何能够布置成在直线汽缸3中保持高真空。在活塞返回把已通过活塞密封件的过量流体放出的协助下,保持高真空。在同一时间,在一些实施方式中,提供在足够的流体V4已被抽吸到汽缸中之前不会密封的阀,使得当活塞以减少或倒置的压力梯度将泄漏挤压出时,总是有活塞软减速的可能性,从而也使容积V4减速。
图4a-e在一个投影中公开了优选实施方式的示例,其中两个限制装置包括:两个直线汽缸3;替代地,一个波纹管4和一个直线汽缸3;替代地,一个回弹弹性汽缸5和直线汽缸3,其中活塞3b-b、3c-c、4b-3b、4c-3c和5a-3c由活塞轴6b彼此连接,并将流体Fl分成往复的封闭容积,该往复的封闭容积可以与外部流体FX分离。活塞和流体Fl在中间的转换模块上创建具有反馈至周围环境的循环系统,其中施加到活塞的双作用力F产生往复流体运动,该往复流体运动直接在中央单元内可以被转换成适用于机械功的旋转轴运动。
当回弹弹性汽缸5工作时(图4e),回弹力F5可以促使活塞运动返回,使得另外单向作用力可以被转换成适用于机械功的旋转轴运动。
具有优选为相同大小的两个相对的直线汽缸的实施方式(图4a-b)可以在转换模块上沿着两个方向处理较高的压力梯度。仅具有一个直线汽缸的实施方式(图4c-e)只能在朝着相对的波纹管4或回弹弹性汽缸5的方向上处理转换模块的高的压力梯度。在另一个方向上,可管理的压力梯度取决于弹性体能够承受的压力。在周围环境之上的反馈循环系统导致其压力不能用作弹性体的支持。由于活塞轴6b原则上位于活塞之间的封闭往复容积中,活塞轴通过中央单元的馈通不必是绝对的。因此,中央单元仅设有包含曲径式密封轴承的滑动轴承,其提供了对活塞轴的长期和广泛的支撑。
由于往复流体Fl在转换模块上是两个机械连接的限制装置之间的封闭容积,具有或没有压力传感器的该容积可设有转换模块每一侧上的恒定的过压,而不会影响力F产生的压力梯度。以这种方式,在转换模块上可避免气穴现象。恒定的过压可以例如由周围压力PX构成,或由图9、图10、图12、图13中所示的内部压力布置来产生。这些压力可经由单向阀CV在图4a中所示的转换模块的每一侧上加压流体Fl。中央单元还可设有横跨转换模块的安全旁通阀(未示出),以防止过高的过压。
图5a-e在一个投影中公开了优选实施方式的示例,其中两个优选的与周围环境相反及抵触的密封封闭限制装置由弹性体制成,该弹性体与周围环境配合而产生中央单元的转换模块上的往复流动。
限制装置可包括两个相对的波纹管4(图5a),替代地包括一个回弹弹性汽缸5和相对的波纹管的组合(图5b),其活塞状装置5a、4a通过往复流体Fl液压连接到彼此。在图5b中,活塞轴6b构成对波纹管4的中央支撑。该实施方式可以适用于更简单的能量转换器,并且例如当作灵活的动力生产环节,该环节连接到力传递细长元件,诸如系泊绳索或锚定线。
除了用于液压连接,限制装置还可用未示出的例如像活塞轴6b一样的外部装置或内部装置彼此机械连接,活塞轴6b还可以构成对波纹管4的稳定支撑。
与周围环境相抵触,实施方式创建了封闭但相互作用的流通系统,该系统需要双作用力来产生往复流体运动。当回弹弹性汽缸5工作时(图5e),回弹力F5可以促使活塞运动返回,使得另外单向作用力可以被转换成适用于机械功的旋转轴运动。
在相对的活塞5a、4b-c由活塞轴或轮廓6b机械连接的实施方式中,力F可以切换方向,并且还可以在转换器上承受比没有机械连接的实施方式更高的压力梯度。这是由于机械连接的活塞产生了压力梯度,通过在转换模块的一侧增压同时在另一侧降压,该压力梯度操作转换模块。通过让不需要贯穿件的外部压力PX间接地在弹性体上不断对流体Fl加压,避免了气穴现象。
图6a-e在一个投影中公开了优选实施方式的示例,其中包括直线汽缸3和波纹管4的双限制装置在转换模块2c、2d连同由活塞轴6b连接的图6a、6d中的活塞3b、图6b、6e中的活塞3c和图6c中的活塞3c、4c之上产生了封闭的往复容积。在同一时间,限制装置中的一个创建了内部柔性腔C1,该内部柔性腔通过所连接的活塞与外部户外并与连接柔性腔的周围环境相连,使得内部能量存储可以发生,用于能量提取和活塞的返回运动。由此,压力梯度产生在内部柔性腔和外部柔性腔之间,其可以用作被储存的能量,在例如传入单向力的期间不会影响转换模块2c、2d,使得具有更均匀的力分布的双作用力影响转换模块。
全部或部分通过转换模块的由活塞封闭的流体Fl可以通过力Fl将转换模块上柔性腔C1之间具有压力P3或P4的往复运动和具有流体FX和压力PX的周边环境作为柔性腔。往复流体Fl通过活塞3b、3c与外部流体FX分离,因此可被选择为使得其以优化的方式保护转换模块避免消磨。根据图4a-e中所描述的相同原理,通过连接CV可避免气穴现象。
图7a-e在一个投影中公开了优选实施方式的示例,其中两个机械连接的活塞之间的流体Fl往来于由汽缸10、3在内部创建的具有压力P3及P4的柔性腔C1和由波纹管4及回弹弹性汽缸5创建的外部柔性腔之间。外部柔性腔可以是周围环境,即具有它们各自压力的空气或水。
通过将活塞轴6a、b固定至活塞状端盖4b、c和5a,根据图7a-e创建密闭的能量转换器。
通过让山形壁提供图7a-c中的汽缸10,创建内部柔性腔C1,以分别围住具有活塞3b和4c的直线汽缸3或波纹管4,这产生了具有压力P3具有或不具有流体容积V4的封闭容积V2。在图7c-e中,直线汽缸3连同阀8一起产生了封闭容积V3,封闭容积V3还可用作具有压力P4的内部柔性腔C1。
通过围住内部柔性腔C1及其具有闭合汽缸13的底阀11,产生可填充流体和气体的服务容积V6。该流体与往复流体Fl种类相同,并且该气体可连接到发电机房中的气体(未示出)。服务容积V6既可将流体提供至阀11又可从阀11接收流体,从而能够履行其双重功能,即给予压力P4最大负压以及给予活塞3b、3c靠近其终端位置的液压减速。服务容积V6还提供了用于根据图7c-e的实施方式的对周围环境的密封,并用于添加、恢复、重新布置能量转换器中的流体和气体以及卸载或预设转换模块中的压力。
在根据图7a、7c-7e的实施方式中,将存在活塞上的泄漏,其连同泄漏容积V4一起侵入柔性腔C1中的气体容积。泄漏容积V4可以返回到具有小型一体化电动泵R1的往复流体Fl。通过外部压力PX经过弹性汽缸间接使流体Fl加压的情况,可避免气穴现象。通过让压力传感器(未示出)记录压力P1以及通过让电子设备和软件改变转换模块2c、2d上的负载,使得压力不低于预定的最小压力,也能够避免气穴现象。
依靠所连接的活塞,柔性腔C1中的气体压力P3和P4与外部流体FX及其压力PX直接相连。通过图7a、7d-7e中的弹性体,周围压力PX或多或少无压力损失地被发送至往复流体Fl。这导致为压力P2采用具有非常低的级数的外部压力PX。在图7b-7c中,压力P2由周围压力PX和弹性汽缸5的回弹力F5产生。转换模块另一侧的相反压力P1是内部柔性腔C1中的压力P3和P4形成在活塞区域上的力以及外力F的结果,外力F影响活塞轴6a、6b。
因此,依靠活塞轴6a,压力P1和P2可以与施加在活塞上的单向作用力F平衡,使得力的变化导致往复流体运动,该往复流体运动直接在中央单元内可转化为适用于机械功的旋转轴运动。周围压力PX、活塞面积和弹性汽缸5的回弹力F5是参数,其与柔性腔C1中的压力P3和P4一起在转换模块上产生压力梯度。
当连接到具有位移量的浮动浮标时,活塞轴6a可以例如产生拉力F,拉力F与这些压力梯度相平衡。在由于波浪运动的失衡期间,转换模块上的压力梯度被改变,使得它们根据压力梯度的变换方向而旋转。在切断阀8协助下,转换模块上的流动可以停止,直到在转换模块上的被计算流动物后面的压力大到足以从具有其有限行程的活塞提供优化的能量转换。增加操作压力没有主要变化的方式之一是,通过将能量转换器置于较大的深度处来增加压力PX
图7b中的实施方式无法承受可导致在弹性体上气体迁移的如此高的压力梯度。如果通过弹性体主要是明晰的外部压力PX高的话,则剩余实施方式可承受转换模块上的高压力梯度。
图8a-j在一个投影中公开了优选实施方式的示例,其中流体Fl往来于两个内部柔性腔C1、C2之间,并且其中只有来自活塞轴6a的移位容积与周围环境相互作用。柔性腔C2优选由汽缸12创建,汽缸12围住具有压力P5的气体容积V5,其直接或间接影响往复流体Fl中的压力P2。两个分离的且相对的内部柔性腔C1、C2可以通过中间流体Fl相互作用,中间流体Fl至少通过密封汽缸12和活塞功能受限于柔性腔,使得作用于该活塞的外力导致累积压力梯度,该压力梯度用于将能量储存到两个柔性腔中以及将能量释放出两个柔性腔。当使用往复流体Fl朝向具有相连的活塞和汽缸功能的两个内部柔性腔C1、C2的双限制时,气体混合的风险降低。具有双活塞的该布置还提供用于传入活塞轴6a的优异的引导,并可以在能量转换器的端部位置中结构有效的液压制动功能。两个内部柔性腔C1、C2使这些腔之间产生的压力梯度可预先设定并自动调整,使得可以进行优化的能量提取。
在根据图8a-d的实施方式中,压力P5直接由流体Fl和弹性体发送至转换模块2b、2c的一侧。转换模块另一侧的压力P1由内部柔性腔中的压力P3、P4形成在活塞区域上的力以及外力F产生,该外力F影响活塞轴6a、6b。因此,压力P1和P2可以与通过依靠活塞轴6a施加在活塞上的单向作用力F平衡,使得力的变化导致往复流体运动,该往复流体运动直接在中央单元内可转化为适用于机械功的旋转轴运动。
在根据图8e-i的实施方式中,压力P5和出入柔性腔C2的流量被间接发送到气体压力P3和P4,并且由弹性波纹管和/或规则汽缸来发送出入内部柔性腔C1的流动物,弹性波纹管和/或规则汽缸的具有附接的轴或轮廓6b的活塞被机械地连接到与柔性腔C1接触的活塞。活塞限定中间流体Fl的界限,中间流体Fl可以在转换模块2d上通过往复运动出现能量。如果活塞面积大小不同或变化,这始终是使用波纹管的状况,则它们的动作导致不同的行程量和流量。流中的这种差异通过例如穿过流体清洁系统(未公开)的旁路管道bp可以直接连接到柔性腔C2,使得流体的局部清洗总是进行。在图8f-h公开的实施方式中,内汽缸3和活塞3c使往复流体Fl不暴露于与柔性容积V5中的气体不必要的接触,并使出去的活塞轴6a具有优异的导向。类似于其它实施方式,由压力P1和P2产生的压力梯度可以与单向作用力F平衡,使得直接产生于中央单元内的往复流体运动可转化成适用于机械功的旋转轴变动。
图8j公开了已组装活塞4b的放大部分。当4ba遇到4bd时,或者当4bb遇到中央单元1h中的端部限位器4bf时,部件4ba、4bb、弹簧4bc连同流体Fl、阻尼器容积V4及汽缸10山形壁上的调节器4bd和活塞轴6a上的4be形成液压阻尼功能。这导致软减速以及朝向波纹管在其端部位置中朝向和来自中央单元的流体压力降低。
为了拥有很长的寿命,所有的实施方式需要相关联的服务容积(见根据图9-10的实施方式),该服务容积包括流体、气体、用于手动和/或自动控制的机械及电气部件、转向系统、服务和通信功能。通过防止柔性腔C2中气相和流体相之间不必要的湍流,例如通过放置浮动的阻尼材料,比如根据图8a-d的实施方式中的流体上的聚结过滤器(未公开),可以例如避免气穴现象。通过让压力传感器(未示出)记录压力P1以及通过让电子设备和软件改变转换模块上的负载,使得压力不低于预定的最小压力,生理溶解的气体被防止扩大。在根据图8e-i的实施方式中,能够以与图4a-e描述的相同的方式避免气穴现象。
图9a-e在一个投影中公开了优选实施方式的示例,其中集成的或外部的服务容积V6连接到具有两个内部柔性腔C1和C2的能量转换器。图9a、9b公开了实施方式,其中柔性腔C2由具有引入件14和15的闭合汽缸12创建。柔性腔C1由闭合汽缸13围住,从而产生服务容积V6。图9e、9e公开了实施方式,其中柔性腔C2由闭合汽缸12创建,闭合汽缸12在没有引入件的情况下围住了内部柔性腔C1。
在这些实施方式中,具有其引入件17的闭合汽缸13可以连接到中央单元,使得服务容积V6围住活塞轴6a、6b。如图9d公开的,服务容积还可以连接到作为单独单元的中央单元1e。
图9a和9d、9e中的引入件14、17具有针对柔性腔C2中的气相V5的自然流体锁。然而,在图9c中放大的引入件15必须设有内置的流体锁,以防止气体从柔性容积泄漏到预期具有较低压力的周围环境。这可以通过提供具有类似的补充引入件18的正常的或弹性居中17液压活塞引入件来完成,使得封闭容积V7产生于这些引入件之间。该容积可以通过连接件19填充流体Fl,其压力和流量在该示例中在中央单元1i的转换模块2d上由压力梯度产生。流体流过止回阀20的盈余平放到活塞3c上,并与直接朝向柔性腔C2的活塞密封件一起防止朝向往复流体Fl的气体泄漏。当转换模块上的压力梯度改变方向时,止回阀20防止在容积V7上的回流。
阀11在图9d、9e的实施方式中已设有盖11b,盖11b通过管道系统11c与外部或集成的服务容积V6连通。压力梯度可以建立在柔性腔C2和服务容积V6之间,这可以保证有足够的力排空阻尼和泄漏容积V4。
图9b中汽缸3和活塞3c的放置意味着,机械连接的活塞之间的流体Fl可以在转换模块2d的两侧加压有恒定的基本压力,以便根据图4a-e的前述说明来防止气穴现象。该基本压力可以例如由作用在服务容积V6中的压力所产生。缸体3还稳定了活塞轴6a、6b,还可包括在液压终端位置阻尼B1中。
在根据图9a、9d、9e的实施方式中,通过压力从柔性腔C2直接冲击到流体Fl上以及让压力传感器(未示出)记录压力P1并且通过让电子设备和软件改变转换模块2c上的负载使得压力不低于预定的最小压力,避免了气穴现象。服务容积V6和单向阀11在同一时间通过包围直线汽缸3及阀8保证汽缸3内存在适量流体,以产生优化的负压并用于活塞的液压减速。
活塞转换的活塞所限定并包围的流体接收力F所产生的叠加压力,并与柔性腔C1和C2中的压力P4和P5所产生的反力平衡。力F的变化导致转换模块每一侧上的叠加压力P1和P2在其上产生压力梯度,该压力梯度可以转化成旋转的机械功。
服务容积V6通过小的流体和气体泵R1和R2还与柔性腔C2接触。通过手动和/或自动控制例如位于服务模块中的这些泵,流体和气体可以在服务容积V6和柔性腔C2之间转移。
例如,柔性腔C2中的预先设定的基本压力P5可以例如挑选成使得柔性腔C1和C2之间产生的压力梯度被拉力F平衡,从来自无波浪的水面上的浮动浮标的被排出水容积来产生该拉力F。例如如果静水中具有拉力F的被排出水容积相当于浮标总浮力的50%,波浪运动将产生围绕预先设定的力F的振荡的力变化。这些力变化可以通过柔性腔C1和C2中的低压力变化及低压力级数原则上直接转换成转换模块中的旋转运动。
主要通过服务容积V6和柔性腔C2之间的流体的运动,预先设定的基本压力可以与压力同级数地变化。如果通过将流体Fl从服务容积V6传送到柔性腔2而减小柔性容积V5,则预先设定的基本压力P5和压力变化的级数由于减小的柔性容积V5而增加。如果流体从柔性腔C2传送到服务容积V6,则发生相反的情况。该调整功能可以保证,流体Fl的往复运动发生在活塞的可能行程范围内,即,在用于被优化能量转换的附加力和运动之后可以连续地适应能量转换器。
为了进一步以优化的方式利用有限行程的能量转换器,具有发动机9的切断阀或闭锁阀8已集成到例举的中央单元1h、1i、1e、1f中。大的压力差和转换模块上的流动物促使高动力输出。在切断阀8的协助下,转换模块2c、2d上的流动可以停止,直到转换模块上的压力和有限流量大到足以让活塞将其有限行程用于被优化的能量转换。闭锁阀可以通过这种方式将形成提取力的正弦变换成更多的方波状力,用于从波浪更好地提取力、更好地利用行程长度以及更快地旋转例如使发电机具有更好效率的运动。
例如,用柔性腔C1中的最大化负压P4以及柔性腔C2中的适合过压P5,同时用用于非常低的级数的基本设定,能量转换器的压力梯度可以调适成使得它总是需要强大的拉力F,以便它们能够处于平衡。以这种方式,能量输出可以由正波以及负波运动产生,这给出了更均匀的能量生产,参阅图16-17。
图10a-c在图10a中在一个投影中公开了图9c中描述的能量转换器的优选实施方式如何包括具有分离的服务容积V6的两个内部柔性容积C1和C2,并且弹性居中的活塞轴密封件17已被修改并补充有具有较小滑动间隙23的弹性汽缸/管22,其用有或无气体的润滑流体或聚合物包围活塞轴6a。通过该完成,具有暴露到周围环境的活塞轴的所有能量转换器可制成密封的。覆盖活塞轴的管还可包括直的或螺旋缠绕的波纹管(未公开)。
图10b公开了图10a中的密封引入件的放大部分。通过拉伸弹性汽缸22产生间隙23中的负压,气体通过扩散从柔性容积耗散的风险已最小化。间隙23由来自转换器的流体填充,或者由通过反扩散的气体填充,即从周围环境中朝向间隙23。
弹性汽缸22可以由螺旋形状成壳,其中壳还可以由用于电力和通信分布的传导材料和玻璃纤维组成。连接部25可以例如通过硫化或夹紧接头而附接至弹性汽缸22,并且可以包括用于动力输出和通信的连接器和附件。此外,连接部可以形成为使得封闭的电气部件和接头联接器用于通信和高电流。围在弹性汽缸中的电气管道可以包括由弹性汽缸材料分离的一个或多个线圈。管道还可以由各自的绝缘涂层包围。在较高的电流下,若干管道可连接在连接装置25中,该连接装置25具有绝缘体25b以保护管道以及保护并覆盖适应部分25c。弹性汽缸以这种方式设有用于电气管道和通信51的入口和出口。当使用螺旋形波纹管时,管道还可置于分开的螺旋形管中,其松弛地或固定地仿效螺旋形波纹管的内轮廓。
在弹性汽缸22可以是具有非预期过压或负压的对象的实施方式中,弹性汽缸或波纹管可以设有压力释放连接部25d。具有或不具有单向阀(未示出)的该连接部可以与服务容积V6连接,或连接到图11、16和17中封装件34创建的容积V34,该封装件34可以是一部分,或者在例如图10a的一些完全封装的实施方式中已经适于覆盖并接管服务容积的功能。
图10c公开了如图7c中描述的密封能量转换器的优选实施方式。由活塞3c、5a分离的流体Fl来往于转换模块2d上,同时内部柔性容积V3和周边环境FX受制于直的弹性体缸5。机械连接的活塞不需要移动相等的容积,因为弹性汽缸再者波纹管可以调整它们的与周围环境相互作用的容积,这意味着,往复流体Fl以及图10b中的往复活塞轴6a一直对汽缸提供相关的不可压缩的支撑,这也用作摩擦降低膜。类似于图10b中的弹性汽缸,弹性汽缸5可设有螺旋缠绕的电气管道和相关连接(未示出)。同样,具有螺旋缠绕的波纹管的实施方式可以设有根据上文的电气管道。当使用具有波纹管的结构时,其中行程量随波纹管的长度变化而变化,相对的限制装置可以调适成使得行程量的变化可以在其自己的改造和变形可能性之内加以处理。
具有其弹性管道的弹性汽缸和螺旋形波纹管满足两个重要的功能,即:
1.它可以提供密闭的能量转换器,没有任何液体泄漏;
2.目前的供应和通信可以设置在海面和海底之间,无需处于削弱运动和机械损伤的大的风险下不断往复上下的线缆。
图11a-c公开了可变锚定系统的三个示例,其中具有活塞和活塞轴的液压汽缸42能够以简单的方式集成在能量转换器的服务容积中,其由汽缸13创建以手动和自动用电子模块E(在这些投影中不可见)优化能量转换器的用于改变水位的往复基本位置。
图11a公开了图7e中描述的密封的能量转换器,其适于锚定在海底,以便让周围压力PX连同内部柔性腔C1中的压力P4去平衡海面上浮标所产生的拉力。海浪的运动产生活塞3c、4c的和围在其间的流体Fl的往复运动。为了优化利用活塞的行程,这些运动须从排出容积的浮动浮标来往于中间/基本位置周围。这可以在较小的程度上通过将来自服务容积V6的流体传递到图9a-e中之前描述的柔性腔C2来加以调整。
集成的闭锁阀由电子模块E(未公开)及其软件控制,电子模块E与电力及其软件和控制装置配合。通过闭锁阀,可以延迟波浪的弯曲点中浮标的运动,直到足够大的位移已发生在浮标基本位置周围。由此,波浪的正弦形运动可以转化为方波。这导致,可以使用能量转换器的有限行程,使得其尽可能以大的力和速度将能量转移到发电机。闭锁技术还可以在恶劣的天气下锁定浮标的运动。
活塞轴43可以直接或间接地由轮44以及例如丝线45连接到海底的锚定模块。电子模块E及其软件所控制的液压泵(未公开)可转移具有活塞轴43的活塞,使得能量转换器例如通过潮汐变化获取其位置,在该位置可产生有效的能量。可变的锚定系统还可以在恶劣的条件下用于保护整个系统。如果大的改变必要(大的潮汐变化),则通过延伸汽缸42可提高活塞的行程,汽缸42允许穿过山形壁板46和/或具有轮44和丝线45的补充装置,这在示例中使能量转换器的优化可能性加倍。
整个转换器绕旋转轴线被装入对称的密封室34中,该密封室34可以被调适成使得能量转换器接收的密度导致:当受波浪、海流和风力影响时,转换器容易沿浮标给予的拉伸方向。这意味着,线性轴承上的最终侧向力被减少到最低限度。
在长的寿命和长的保养间隔里,能量转换器的包括发电机的内部环境能够以有成本效益的方式进行优化。包含在系统中的气体例如可以是氮气,以便不氧化所包含的组件。往复流体Fl可以包括有机油Tellus(得力士)E46,其同时是用于所有被包含部件的完美润滑剂。当使用叶转子泵时,振荡的流体可以是水或水基流体。具有相关联的自动控制、引导及服务功能的封装件甚至可以导致完全免维护的电力生产,直到它被完全重新修复或更换(对比于被装入的致冷器压缩机)。
在图11b中,公开了配备有可变锚定系统的并集成在浮动浮标50中的根据图10b的密闭能量转换器的示例。具有活塞及活塞轴43的液压汽缸42已被置于由汽缸13创建的服务容积V6中,汽缸13用其山形壁46围住柔性腔C2。类似于图11a中的实施方式,电子模块E既可以手动又可以自动地适应能量转换器的当前水位之后的动力生产位置。具有滑动间隙23和电气管道24的弹性汽缸22可以将高压直流从能量转换器转移到电气管道51向下朝向底部的锚定装置。
图11c公开了图11的变型例,替代将转换器嵌入在浮标50中,活塞轴43已设置有万向接头,其适于联接到浮标,使得可以吸收浮标的摇动,从而以有意义的方式减轻活塞轴和轴承的有害负荷。芯状和低质量的能量转换器将难以以有意义的方式实现浮标的能量吸收功能。或多或少浮动的这些能量转换器可以有利地在适当的地方被用于气体和/或淡水的生产。可变的锚定系统还导致,锚定区域内小的深度变化对本系统配备的能量转换器将是不太关键。
图12a-d在一个投影中显示了关于实施方式原理的示例,其中在图12a中,具有活塞3a的开放式直线汽缸3被刚性汽缸12包围,使得形成内部闭环反馈系统的往复流体Fl联接在转换模块上。对具有压力P5的柔性容积V5的需要受限于排出容积的活塞杆,并且可以建立在闭环反馈系统之内或之外。对柔性容积的需要还可以被一个屈服结构所覆盖,例如图12b的具有有限扩大可能性的橡胶汽缸26。
为了提供转换模块上的往复流体运动,转换模块在本实施方式中需要将双作用力F施加在活塞上。由活塞轴有效区域上压力P5和PX所形成的压力梯度在具有单向力的一些实施方式中可以给予用于活塞的足够大的返回力,并且例如具有自由轮毂功能的转换模块上的流体应返回到起点。
图12c-d中的实施方式已设有由封闭汽缸13形成的集成服务容积V6。服务容积V6经由小的流体和气体泵R1、R2与反馈循环系统接触,用于手动和/或自动补偿活塞轴密封件上的以及转换模块的轴7周围的密封件上的流体损失,还用于根据之前指示促使避免气穴现象。如图11b,服务容积V6还可以包括具有相同功能的独立容器。,这个简单又紧凑的实施方式的两个相对能量转换器可以很好地适于例如通过波浪翻转装置进行操作。
图13a-d在一个投影中显示了关于实施方式原理的示例,其中具有活塞3b和3c的开放直线汽缸3被具有活塞轴6a引入件17的一个外部刚性汽缸12所包围,使得往复流体Fl在转换模块上形成一个内部封闭的反馈循环系统。
通过提供具有相对的活塞轴6b的活塞3b和3c,活塞轴6b具有的总面积等于贯通中央单元1e和1f的活塞轴6a,往复流体的需要的柔性容积向零减少。由于这个原因,在内部循环周期内没有发生容积变化。
图13c-d中的实施方式已设有封闭汽缸13所形成的服务容积V6。它涵盖活塞轴6b的引入件。服务容积V6可以作为流体和气体的仓库,并且可以用自身的压力或用一个小的内部柔性罐28及泵系统来加压流体Fl,以避免气穴现象并自动更换转换模块的轴7上的及活塞轴6b周围的密封件上的泄漏。
在本实施方式中,能量转换器需要,以便能够在转换模块上产生双作用力F作用于活塞上的往复流体运动。
图14-15在两个投影中显示了关于由中央单元1k和1l形成的两个换能器的示例,其具有调整成旋转汽缸TC的2a、2b型的纯转换模块,旋转汽缸TC具有外部汽缸35、山形壁36、轴承和轴密封件37和转子38以及所需集成的一个或两个发电机。
在图14a-b中,转子设有翼状件39,翼状件39将外部汽缸35延伸在具有压力P1和P2的两个充满流体的腔中,并在2a型转换模块上向具有压力P1和P2的中央单元1k提供往复流。本实施方式接触到与旋转的汽缸轴平行的两个可能的动力输出端。翼状件39的面向各自腔的表面可认为是两个机械连接的活塞或限制装置,其限定了由来自周围环境的往复流体Fl包围的外部汽缸35和山形壁36,使得中央单元1a-1q中产生内部往复容积。
在图15a-b中,旋转汽缸设有两个翼状件39,这两个翼状件39在两个2b型转换模块上向两个相对的中央单元11提供具有压力P1和P2的往复流。这些配备的电机没有自由轮毂和飞轮。两个实施方式在中央单元中均可配备有集成的闭锁阀8和发动机9。
与图13a-d所描述的能量转换器类似,旋转汽缸TC在转换模块上形成封闭循环操作,这原则上不需要任何柔性腔。转子的由杠杆或枢转板40传送的往复运动通过流体Fl被直接输送到转换模块2a上的往复流体运动。
具有两个翼状件的旋转汽缸给出了对转子上有害的不均匀载荷的更好的平衡。翼状件可以供给有流出物中间的小扩散部,以形成端部处的液压阻尼。服务容积V6可以由附接至能量转换器的外部单元形成。它可以作为流体和气体站,并且用其自身压力或用内部柔性罐28通过加压流体Fl并防止气穴现象的泵系统自动地替换密封件37上的及转换模块的旋转轴7周围的密封件上的泄漏。
具有旋转汽缸的能量转换器要求双作用力F生成往复流体运动。两个实施方式均可配备有中央单元和转换模块,其适合于具有或没有自由轮毂和飞轮的一个或两个发电机。这些实施方式适合于集成在波浪翻转装置中。它们还可以包括在杠杆系统中,其中例如浮标提高通过其自身重量返回的杠杆。
图16-17在原理上公开的是,优选地,对称性和重量平衡的两个发电机单元可以如何连接到转换模块2c、2d,转换模块2c、2d相对于能量转换器的长轴具有水平和竖向布置的传动轴7。如果你使用包括这些转换模块2a、2b的中央单元,则连接到转换模块2a、2b是相同的。双作用力发射器用闭锁阀8提供强大的和短的开关周期,其可以由具有自由轮毂29和飞轮31的发电机单元30桥接,这导致在平整的能量生产。没有自由轮毂和飞轮,发电机更轻,并且能量转换器的转换单元接收更加紧凑且在旋转中对称的外壳34,外壳34仍然具有两台对称的发电机,然后它提供了严重脉动的能量生产。
图16a-f公开了关于如图9a和10a所描述的能量转换器的示例,其中转换模块2c导致在水平取向的传动轴。
在图16c-d中,两个发电机单元30已配备有自由轮毂29和飞轮31,其布置成使得:当转换器在一个方向上旋转时,转换模块2c操作一个发电机;并且当转换器在另一个方向上旋转时,转换模块2c操作另一个发电机。发电机的转子还设有飞轮31,当转换模块停下来改变方向时,飞轮31存储能量并将能量转移到这些发电机。这导致了用于一个发电机的自由轮毂释放传动轴,同时另一发电机中的自由轮毂抓握传动轴。该实施方式提供了平整的电流供给,当一个或几个能量转换器用于产生电力时,这可以是很好的选择。
在图16c中,具有自由轮毂29和飞轮的两台发电机30安装成联接到转换模块4的齿轮所操作的一个共用轴7a。该联接提供了具有非对称重量和容积分布的能量转换器,但同时意味着,两个相对的齿轮可以与两个分开的轴7b连接。这意味着,各自的齿轮和花键的匹配不那么重要,两个齿轮连接各自仅将1/4的扭矩加载到发电机。
在图16d中,发电机联接到各自轴7a、7b。这意味着,能量转换器接收对称的重量分布,但两个齿轮连接中的操作一台发电机的一个必须用共享轴将总扭矩的3/4发送至位于共用轴上的发电机。这增加了两个所涉及齿轮上的磨损。如果两个发电机由非分离轴操作,则两个齿轮连接每个仅加载有总扭矩的1/4,但相对分开的齿轮和花键的匹配很重要。
具有根据图1a-j的中央单元la-d和转换模块2a-b的能量转换器仅具有两个齿轮连接,但最好具有加倍的宽度。在这些实施方式中,齿轮的磨损不依赖于发电机的放置。
图16e-f公开了没有自由轮毂和飞轮的发电机30的安装。这些能量转换器具有更紧凑的外壳34,但提供严重脉动的能量生产。在所有的剩余中,以与根据图16c-d的实施方式中相同的方式影响该机构。
图17a-d公开了如图7e和9b中所描述的能量转换器的示例,其中转换模块2d导致在竖向取向的传动轴。
在图17c中,配备有自由轮毂29和飞轮31的两个发电机单元30已布置成与图16c中相同的方式。由于转换模块的两个传动轴位于中央单元1i的竖线中央,重量和容积分布是对称的。相对的齿轮可以利用如图16c中描述的相同优点被锚定在分开的轴7b上,这未予公开。
图17d公开了没有自由轮毂和飞轮是发电机30的安装。该实施方式提供了高脉动电流,但也提供了外壳34所图示的最轻便小巧的电力生产转换模块。发电机的优选是两个的转子从转换模块2d直接连接到共用轴,这意味着,能量转换器接收对称的重量分布,同时,分开的齿轮和花键之间的匹配不那么重要。
转子以及定子在更小的单元中可以被往复流体Fl围绕(对照屏蔽电机)。因此,所有的轴密封件被清除,同时油接收大量冷却区域并能提供具有优化润滑的所有轴承。相比于转子的质量可以传递的减速功率输出,该质量(约5kg/10kW)可以忽略不计。这意味着,用于其加速的且在其减速期间产生的所有力也可以忽略不计。因此,闭锁技术8可以利用充分效果在该实施方式中用于从发电机的两个方向提供有效的能量输出。
作为转换器小型化的示例,可以提出,根据实施方式15d所创建的、具有两个集成的收集效果66kW及收集发电机重量160kg的发电机Alaxion500STK4m、包括中央单元1i及转换模块2d中的容积、闭锁技术8、9、电子箱E和其它未公开装备的容积被容纳在具有小于40cm半径的球形外壳34内。这可以比较直线发电机的重量,对于只有30kW其预期重量约1300kg,并且占据非常大的容积。脉动发电需要供给管道上的更大区域,这是缺陷,但是这可以通过使用若干电力生产单元加以补偿,电力生产单元通过使用电力电子技术可以连接到一个共同的馈送线,用于进一步配电。
图18a和18b公开了关于能量转换器的示例,其中两个限制装置中的一个位于波纹管4中。这导致密闭的能量转换器,其具有更短的长度,即比具有两个相对汽缸的能量转换器更紧凑。因此,该实施方式适于附接至波浪翻转装置。两个相对的活塞4a、3b与两个相对的贯穿和支撑的活塞轴6b刚性相连。活塞3a被设计为提供沿两个行程方向的液压终端位置阻尼。
用于高流量和低压力梯度的例如是Vogelsang VX136Q218型号的两个高吊旋转泵56在该实施方式中用作转换装置。它们已被放置并修改,使得它们具有贯穿轴57。这是为了能够将齿轮58和自由轮毂59添加到其内部的机械师,并且能够加载具有较高压力梯度的泵,从而获得更高的效率。由于这些修改,它们的共同作用可以传递在一个共同的中心轴60上,该中心轴60在与独立于流过高吊旋转泵的方向相同的方向上旋转。这提供了具有针对整个能量转换器的理想对称性的几何形状和重量分布两者,其总密度可以接近排出的水量。另外,发电机获得由飞轮配合延伸的统一体。
由周围水压PX和回弹力F5提供的压力以及由柔性腔C1中运作的压力(负压)产生了操作高吊旋转泵的力。当使用波纹管时,力F5成比例地变低。活塞3b上的总压力梯度每十米增加一巴,转换器降低到湖泊或海洋中。力F与例如水面上浮动浮标产生了力FX平衡。这种平衡的所有变化产生活塞之间的往复流体运动,这又可以由高吊旋转泵转化成用于能量传送的转矩。
例如橡胶混合物的弹性波纹管材料适合用于环境友好的油Fl,以便优化内部力学的寿命。由于波纹管下降到水中,它不会暴露于可降解臭氧和太阳光,从而波纹管的寿命预期与能量转换器的其它部件相同。
初级汽缸C3可设有单向阀11和导致阀功能(未公开)的入口61两者,如果气穴问题应该发生则这可以降低负压P4。包括阀11的汽缸闭合装置还可以取代根据图6a的汽缸闭合装置,这意味着,服务容积V2也成为柔性容积。能量转换器已设有切断阀(闭锁阀)和水平调节液压汽缸,以便优化能量吸收并以优化的方式使用能量转换器的有限行程。
图18c公开了关于中央单元1m如何可以由若干板62结构的示例,这种安装创建了夹层结构,该夹层结构能够建立流道63、包围转换模块及其连接力学结构、提供对贯穿轴和其它贯穿件的支撑,并提供对诸如限制设备、服务容积、发电机、控制系统、电子设备和密闭外壳34的外部附件的支撑。夹层结构中的不连接到出入转换模块的流动物的容积可设有贯穿轴周围的密封件,并可连接到服务容积中的压力,使得夹层结构不暴露于过多不必要压力。
该结构可以尺寸设计为用于长久寿命,连续运行,无需维护。这是可以做到的,即:通过轴承尺寸充裕化以及操作具有环境友好的油的系统,通过使用系统中气相的惰性气体来抗氧化保护该系统。该系统还可设有内部(未公开)油净化系统。
下面简要说明能量转换单元,其适于将往复流体运动转化成如图19-22所公开的机械转换模块上的旋转轴运动。在这些实施方式中,往复流体本身无助于转矩变换过程,但通过切断阀有助于优化能量吸收、液压终端位置阻尼,并有助于给出寿命长的力学优化机会。
图19a公开了能量转换器的示例,其中两个限制装置之一是弹性汽缸5,其导致密闭的能量转换器。通过一个或多个齿条64,其优选地成对布置成背对背以增加转换器的能量密度并增加创建对称的、相互作用的解决方案及中央单向功率吸收的机会,两个相对的活塞彼此机械连接。
如当齿条彼此分开时的这个示例一样,齿条可连接到具有接头力学结构的活塞(图9b),例如由接头头部65、平衡托梁66和橡胶轴承67传递该接头力学结构,以便在齿条上实现均匀的功率分配并防止齿条的轴承和引导件上的不必要负荷,这可发生在它们通过中央单元1n的时候。
齿条的精确引导对实现长寿命是必要的。由于这个及其它原因,能量转换器已设有内支撑汽缸3,其中活塞68通过轴69被牢固附接至弹性汽缸的活塞状端部4a。
在该实施方式中,用机械转矩变换,内部往复流体Fl将弹性汽缸周围的外部压力PX和细长弹性汽缸的回弹力F5所产生的压力通过具有切断阀8的流道70传输到初级汽缸的活塞3a。
即环境友好的油的流体在终端位置中贡献阻尼,这产生在活塞68上侧的锥形管71逐渐防止油排出活塞和端盖72之间所创建的容积的时候。部分通过活塞68上侧和汽缸的端盖72之间容积减少,部分通过须流过活塞68以容纳更大直径的弹性汽缸的附加流,在它的运动期间其厚度有差距,从而产生油流。弹性汽缸运动和厚度差异造成的容积变化是由于弹性汽缸机械联接到相对活塞3a上的合适活塞面积而造成的容积相互作用。弹性汽缸甚或波纹管状汽缸可以与周围环境相互作用,因此容积平衡发生在上汽缸和下汽缸之间。
流体Fl作为液体有三个主要功能。它用作符合终端阻尼功能的液压介质,它与切断阀8一起防止振荡运动,并且它还具有非常重要的润滑和冷却功能用于齿条、小齿轮、齿轮球轴承和线性轴承。齿条进入到转换模块中适合于齿条的轮廓,从而产生曲径式密封。当切断阀8关闭时,这防止压力被传递到转换模块中。
如上文所述的,活塞3a设计为提供液压终端位置阻尼。
利用机械转矩变换,没有气穴风险,并且机械效率非常高。齿条已被放置并修改,使得它们所生成的效果在齿轮和自由轮毂的协助下可以在一个共用的中心轴上进行传递,该中心轴穿过中央单元1n在独立于齿条移动方向的相同方向上旋转。这提供了具有针对整个能量转换器的理想对称性的几何形状和重量分布两者,其总密度可以接近排出的水量。另外,发电机获得由飞轮配合延伸的统一体。
在图19c的另一实施方式中,成对布置的齿条的背部已合并在一起。来自合并齿条的转矩变换由安装在四个轴的中心中的四个传动小齿轮Pi进行转换。在传动小齿轮的每侧,安装了齿轮Sg。所有齿轮的力被传递到两个中心齿轮Cg,每个中心齿轮位于齿条的一侧。这些中心齿轮供能给两个对称放置的轴,该轴使具有自由轮的两个独立发电机运行。该实施方式将使能量转换器的使用时间和能量密度加倍。
当如图9中使用内部柔性容积和服务容积时,具有机械变速器Cm的转换模块中的流体压力可以设定到一压力,例如服务容积中的压力。这将造成转换模块中的压力释放,这减少了中央单元内的分离力。这使得它更轻、更便宜并更容易构建。
当如图8中没有使用服务容积时,转换模块中的及周围的压力和发电机容积可以设定为接近例如上柔性容积C2,以减少中央单元内的分离力。
在具有如图4-7中外部柔性容积的实施方式中,转换模块中的及周围的压力和发电机容积可以设定为接近能量转换器的周围压力,以减少中央单元内的分离力。
通过周围水压PX和回弹力F5提供的压力,并且还通过柔性腔C1中运作的压力(负压),产生了驱动齿条的力F。活塞3a上的总压力梯度每十米增加一巴,转换器降低到湖泊或海洋中。
由例如橡胶混合物或弹性汽缸的厚度来确定回弹力F5。用与未工作汽缸的长度的100%比较的延伸率,当汽缸降低于水中且不暴露于可降解臭氧或太阳光时,汽缸预计具有很长的寿命。弹性汽缸还可用线圈状外轮廓制成,这可导致材料中的较小应力。
弹性汽缸还可设有用于电流供给和通信的管道24,其可以接合在弹性汽缸的端盖中(图19b),并且例如具有管道51,管道51可以将电流和通信传输到水面处的点吸收器。另外,这个和其它实施方式可以设有调平汽缸42、43。该结构的尺寸设计为用于长久寿命,连续运行,无需维护。其中这是可以做到的,即:通过齿条轴承尺寸充裕化并且将附加力分配到多个小齿轮传动装置中,以及传动装置和轴承运行在油槽中,该油槽可具有内部(未公开)油净化系统。
在具有如图9b中的刚性汽缸、内部柔性容积、服务容积和机械连接的活塞的另一实施方式中(未公开),通过覆盖具有直的或螺旋状弹性汽缸的贯穿式活塞轴6a,该弹性汽缸具有图10所描述的密闭顶部,制成密封的能量转换器。图10中所需的流动端口25d可以设有与服务容积连接的外部管。利用该实施方式,转换模块Cm可使压力释放,并存在防止油泄漏的双安全件。
图20a-d公开了能量转换器的实施方式,其中两个限制装置之一是弹性汽缸,这意味着能量转换器是密闭的。本实施方式中基本以图19实施方式的相同方式起作用。不同的是,齿条已替换成一个或多个链条73,简单化三元实施方式,优选地成对布置,以增加转换器的能量密度并增大创建对称和配合的解决方案的可能性。
在所公开的实施方式中,三元实施方式中的四个链条组已附接至活塞68和3a。活塞68用轴69牢固地附接至弹性汽缸的活塞状端盖4a,其具有如图19中描述的用于终端位置阻尼的装置。
活塞68还通过两个U梁74被牢固地附接至活塞3a。U梁背靠背地放置成彼此相距一距离。这可以通过链条将被传递的转矩主要从四个旋转轴联接到一个共用中心轴中,中心轴在独立于链条运动方向的相同方向上旋转。
链条(图20b)通过例如接头头部65和平衡托梁66附接至活塞。链条到活塞的这种灵活附接以及粗调张力螺栓75简化了装配,并在同一时间将传入力自动分配到用于两对统一方式的三元链条73a的支持器。
在U梁腿之间的内侧,安装了聚合物凸缘76,其设有适应链条的表面轮廓的切口。轮廓凸缘在相对侧具有用于永磁体77的切口。这些磁体将能够不依赖它们相对于重力的取向使链条保持在适当位置。此外,它们还能够吸引磁性碎片。通过中央单元1o离开和进入的链条设有类似于曲径式密封件的密封件,当阀8切断活塞3a和4b之间的流体Fl的动力传递功能时,这防止泄漏。
链条在佩带期间延长,因此能量转换器已设有位于初级力吸收链条轮79之间的链条张紧器78(图20c)。这意味着,它们同时用弹簧张紧能够伸展链条,直到它们已接收其最终长度,即链条总长度3%的延长。通过例如选择一设计,其中在每个运动周期中链条只受力弯曲,并且该弯曲在油槽中进行,该结构可以尺寸设计成用于长久寿命,连续运行,无需维护。
图20e公开了关于使用同步带作为能量转换系统的能量转换器的示例。在该实施方式中,振荡流体是气体,并且不能使用闭锁阀。该系统具有两个活塞,其具有位于它们之间的刚性机械连接部6b。在该示例中,该连接部将同步带分为两个带,一个带位于连接部的一侧上。存在安装在两个轴上的四个中心轮CW,其通过自由轮将动力转换到两台发电机。每侧的一个中心轮是支撑轮,以确保同步带具有与被供能的轮的最佳接触。两个相互作用的轮中哪一个当支撑轮取决于同步带运动的方向。
在一个时间,两个双面同步带均向一个轴供能。这些带延伸过机械连接部6b中的缝隙,并且定位成偏心的、在下面而彼此对称的。这些轴通过两个自由轮向具有飞轮30的两台发电机供电。
同步带运行在轮上,轮位于由一个或多个杆彼此机械牢固附接的两个活塞中。活塞中的轮具有到活塞的弹簧状连接部,以便当它们并未由待转换的拉力提供动力时使同步带保持预拉伸。一旦存在待转换的拉力,则这些力将使拉动活塞中的弹簧状连接部变得僵硬。完成这种预拉伸力中的变化,以延长带的使用时间。
为了加快旋转并在没有齿轮箱的飞轮中储存更多的能量,同步带的端部附接至轮SW,在拉伸同步带之后,该轮SW可以牢固地锁定到中央单元。以这样方式,同步带的规格化的环将导致带接收两倍的活塞运动速度。更高的转速增加存储容量,使得能够使用更紧凑的发电机,并能够给出更均匀的电力输出。
图21a-c公开了关于能量转换器的实施方式,其中两个限制装置之一是弹性汽缸,这意味着,能量转换器是密闭的。该实施方式基本上以图19和20实施方式的相同方式起作用。不同的是,齿条和链条已经替换为一个或多个逆缠绕和解开的带。
在该示例中,带是0.1mm厚的钢带80。它们分别旋转为两个上带装置和两个下带装置81,其在两个上鼓82a和两个下鼓82b上下滚动之间交替。鼓位于中央单元中1p中。根据图18-20的实施方式,带装置和鼓定位成使得它们通过齿轮和旋转轮毂可以将主要在四个轴上形成的所有被产生动力发送到一个中央旋转轴,独立于逆缠绕还是解开正在进行的情形,该中央旋转轴在相同的方向上旋转。
替代使用单一的和较厚的钢带,使用例如由0.1mm厚的两个薄钢带组成的带装置。这增加了整个带装置的强度,并且避免了单一0.2mm将具有的刚度。由于这些带一起在彼此顶部逆缠绕,外带将运行稍长的距离,该距离必须被调整。这种调整的发生是由于带装置到活塞68、3a的柔性和滑动布置,其类似于图20实施方式中的活塞由两个U梁74彼此牢固附接,U梁74延伸通过中央单元1p。
每个带装置具有两个附接点83(图21b),其例如通过轴颈支柱84、球轴承65或平衡梁结构66而彼此接合。这意味着,每个带获得相对于彼此执行自调节平行运动的可能性,并且它们还将自调节力发送到缠绕在鼓形轮82a、82b上的带。
两个上带装置和下带装置关于能量转换器的中心线镜像,并通过到一弹簧的轴颈连接部86a而彼此接合,该弹簧悬置力传递板85,其任务是,当它们在没有负载的情况下逆缠绕在鼓上时伸展带。在负载期间,即当带利用拉力来传递努力从鼓上解开带的力,力传递板85将靠在略有弹性的橡胶板86上。贯穿式U梁也意味着,相对的带装置只受力传递板的弹力影响,其从而可以吸收长度差,原因在于带分别逆缠绕以及解开时整个鼓直径的差异。
当两个薄带被用于每个带装置中时,鼓在直径上可以做得更小,仍产生相同的动力,该动力导致能量转换器具有高的能量密度,并可以工作在起初较高的旋转下。逆缠绕的和解开的双带装置之间的总长度差大约1厘米,它可以容易地被力传递板吸收。两个逆缠绕的和解开的单一带之间的差只有几毫米。
通过中央单元1p的带装置的入口和出口是细长缝隙,当切断阀8使流过流道63的流动物停止时,该细长缝隙不让任何较大的流动物经过。
例如通过选择一设计,其中钢带在每个运动周期中只受力弯曲,该结构可以尺寸设计为用于长久寿命,连续运行,无需维护。如果需要的话,还可以安装未公开的内部油净化系统,其包括例如磁性碎片分离。如果不使用闭锁阀,则流体可以包括气体。
根据上文描述的过程,例如通过使用上部居中的较宽带和两个位于周界中的具有分为两半以操作共用轴的宽度的下部带,还有在共用的鼓上逆缠绕和解开带的可能性。
如图21c所公开的,还有使带的运动加倍的可能性。替代将带附接至活塞,在它们已经通过附接至活塞的叶轮或引导轮之后,它们通过力传递装置可以附接至中央单元。优选是较薄的带,例如石墨烯层压体。较厚的带需要来自力传递装置的较大弹性特性和逆缠绕轮和解开轮的较大直径。
为了进一步延长带的寿命,带的边缘可压延成更薄并更硬。这将减少边缘处开始的开裂的风险,否则这种情况会是经常的。
还与具有链条和线的力传动装置有关的后一实施方式可以适合于具有较小能量吸收的简单系统,其具有或没有切断阀,具有机械的流体和/或气体液压终端阻尼器。该系统还可具有对寿命和维修自由的较少需求。
图22a和22b公开了关于能量转换器的示例,其中两个限制装置之一是弹性汽缸,这意味着能量转换器是密闭的。该实施方式基本上以图21实施方式的相同方式起作用。不同的是,带已替代为具有小直径和薄层的钢丝或合成绳索87。丝线直径和鼓直径之间的关系应优选超过因子40。小的丝线直径意味着,中央单元1q中的上鼓88a和下鼓88b接收较小的直径,并由此接收起初较高的旋转速度。另外,鼓可设有适合的线圈状切口,用于逆缠绕和解开丝线。
将丝线机械柔性附接至图22b中的活塞68和3a不同于附接图21b中的带,因为附接装置须适于丝线在鼓88a、88b上下滚动时所发生的侧向转移。这是通过让梁66设置在球窝接头89上完成的,其反过来设置在轴向滚子轴承90上,轴向滚子轴承90又设置在螺栓91上,螺栓91附着在悬置力传递板85的弹簧中。丝线的附接装置92是略有弹性的钢轴,以便在丝线的附着点处减少可能的侧向力。在力传递期间,力传递板以根据图21的实施方式已经说明的相同方式受影响,因此可以吸收在一段时间期间可能发生的丝线延长。
在中央单元中1q中的两个上鼓装置和下鼓装置之间,存在密封壁,其在切断阀8关闭时防止泄漏。如同上文的实施方式中,丝线不暴露于液压或机械终端阻尼期间所产生的力,也不暴露于能量转换器的双作用功能所需的力。本示例中的丝线在每个操作周期仅加载有一个弯曲运动。
类似于图21a中所示实施方式的实施方式还可设有成为机械扭矩转换一部分的丝线。
图23a-e公开了本发明的优选的基本实施方式。
图23a公开的是,通过轴和/或轮廓3xa或通过可包含永磁体3xb的齿条和轮廓3xb,使得它们的相关运动连同外壳4x一起创建内部或外部或外部的封闭循环操作,用于封闭往复容积中的流体Flx,该流体Flx全部或部分通过中央单元5x,从而机械接合具有活塞2xa、2xb的两个限制装置lxa、1xb,两个限制装置一个初级和一个次级。
中央单元5x包括能量转换模块6xa、6xb、6xc;其中6xa是液压能量转换模块,6xb是机械能量转换模块,而6xc是直接将永磁体的往复运动转换成电力的线圈。如果使用流体Fl,则能量转换器是液压的;如果当含有永磁体的振荡轮廓3xa、3xb附接至活塞2xa、2xb时,使用齿条、链条、同步带、带、钢带、丝线、绳索或线圈,则能量转换器是机械的7x。活塞的机械连接部3xa、3xb导致传入的外部力F被发送过中央单元5x,使得它们总是可以适于能量转换单元上的合适的力,即液压力传递期间的压力梯度或机械力传递期间的拉力和推力。流体Flx可以是液体或气体。
能量转换单元6xa、6xb、6xc可以作为液压装置6xa成为例如齿轮泵和凸轮转子泵(lobe rotating pumps)2a-d、56,并且作为机械单元6xb成为由齿条、链条、同步带、平带、钢带、丝线和合成绳索64、73、80、81、87、Cm或由线圈6xc操作的转换器,用于直接将往复运动转换成电力。
图23b公开了一个实施方式,其中由图23a中外壳4x和流体Flx创建的外部或内部封闭的循环操作替换成至少一个或此图中公开的两个柔性腔Cxa、Cxb,用于存储能量。活塞2xa、2xb之间的轴和/或轮廓3xa、3xb传递传入力,使得能量可以被存储在柔性腔Cxa、Cxb中,不会将能量转换模块7x、6xa、6xb、6xc暴露于这种能量存储所需的力。如果流体Flx是液体,则柔性腔还将包含气体GX
通过使用该过程,传入的单向作用力F可以存储在能量转换器中作为过压Pxa和负压Pxb两者,在存储阶段中不会影响能量转换模块,但在能量转换器的返回运动所需要的时间期间,该传入的单向作用力F与飞轮中的能量一起被用作能量源。这将提供均匀的电流生产,并减少用于运输电力的电线的面积。
不必密封的汽缸1xa和活塞2xa建立用于流体和气相Pxa之间不必要接触的屏障、提供用于活塞轴的优异引导并提供创建简单的液压终端阻尼的可能性。
如果两个机械连接的限制装置的两个活塞被密封朝向各自的柔性容积,则它们之间的流体可以设定为合适压力,例如设定为服务容积中的压力。当振荡流将能量转化到转换模块时(图1-18),这种互连可以配备有单向阀,其不允许流出转换模块,但允许流入它们中,以便防止转换模块周围的气穴现象。当往复机械单元(图19-23)将能量转化到转换模块时,互连将创建转换模块周围的压力释放,其降低了中央单元内的分离力,这使得它更轻、更便宜且更容易构建。
图23c公开了一个实施方式,其中图23b中的柔性腔Cxb已经改进成为服务容积SX,并且其中直接作用在密封活塞2xb上的高真空腔Cxc创建了用于往复流体运动的柔性腔。单向阀VX监督:在活塞2xb上泄漏的流体可以穿过阀通过例如柔性腔Cxa中的过压Pxa被挤出,并且可以结构终端位置阻尼Dxb。通过活塞之间的机械连接,产生相互作用,其中终端位置阻尼主要被布置在4个终端位置处,当两个活塞从中央单元移动或向中央单元移动时,创建了终端位置。第二液压终端位置阻尼在该图中命名为Dxa。
图23d公开了实施方式,其中柔性腔Cxa已替代为可伸缩的柔性腔Cxc,其还创建了上限制装置。由例如波纹管或者直的或线圈状弹性汽缸结构可伸缩的柔性腔,直的或线圈状弹性汽缸具有或没有带有支撑活塞Spx的内支撑汽缸Scx。
支撑活塞Spx可以产生液压终端位置阻尼Dxc,不会将中央单元5a和能量转换模块6x及它们的联接器7x或3xb暴露于用于非期望力的活塞Spx、2xb。
中央单元5x还可设有切断阀8x,切断阀8x可以将传入的正弦形运动转换成强大的方形运动,以便优化动力吸收并将能量转化成转换单元的可用行程。
可伸缩的柔性腔Cxc使整个能量转换器被密封,并使周围环境操作为外柔性腔。另外,直的或螺旋状弹性汽缸可设有线圈缠绕导线或丝线,用于电流馈送和通信Lx到例如水面上的点吸收器。
已经描述了能量转换单元的优选实施方式。将理解,这些可以在所附权利要求的范围内进行修改,而不脱离本发明的想法。因此,除非抵触,否则不同实施方式的特征可用于所有的实施方式中,使得例如具有发电机或直线发电机的实施方式可表现出其它实施方式的特征。

Claims (25)

1.一种适于将外力(F)转换成至少一个力传递轴(7)上的旋转轴运动的能量转换单元,其中,所述能量转换单元包括:
转换模块(2a-d,56,64,73,80,81,87,Cm),其适于将外力转换成旋转轴运动,
至少一个限制装置(3,4,5),其布置成将所述外力(F)转换成作用于所述转换模块(2a-d,56,64,73,80,81,87,Cm)的往复运动,
其特征在于
至少部分地包围所述转换模块(2a-d,56,64,73,80,81,87,Cm)的中央单元(1a-q),
其中,所述往复运动是流体(FL)在封闭容积内的往复运动和/或机械装置的往复运动,以将外力转换成作用于所述转换模块(2a-d,56,73,80,81,87,Cm)的往复运动。
2.根据权利要求1所述的能量转换单元,包括两个限制装置(3,4,5)以及一个或多个机械的力传送装置(6b,74),所述一个或多个机械的力传送装置(6b,74)连接所述两个限制装置,将它们相对于彼此锁定并且传送所述两个限制装置(3,4,5)之间的外力(F)。
3.根据权利要求1或2所述的能量转换单元,包括至少一个易变形的柔性腔(C1,C2),其中所述至少一个限制装置(3,4,5)与所述至少一个易变形的柔性腔(C1,C2)相连,以实现所述往复运动及能量吸收。
4.根据权利要求3所述的能量转换单元,其中,所述至少一个柔性腔(C1,C2)通过单向阀(11)连接到周围环境。
5.根据前述权利要求中任一项所述的能量转换单元,其中,中央单元(1)包括输入和输出流道,所述输入和输出流道通向所述转换模块(2a-d,56,64,73,80,81,87,Cm)并且从所述转换模块(2a-d,56,64,73,80,81,87,Cm)引出,其中流体(Fl)布置成被引导,以及
一个或多个闭锁阀(8),所述一个或多个闭锁阀(8)设置在所述输入和/或输出流道中并且适于将自由往复流体流转化成阻碍所述往复运动的封闭流。
6.根据前述权利要求中任一项所述的能量转换单元,包括制动装置(B1,B2,68),所述制动装置是机械制动器或液压制动器,适于使所述至少一个限制装置(3,4,5)的一个/多个终端位置处所传送的流体运动减速。
7.根据前述权利要求中任一项所述的能量转换单元,其中,所述往复运动是流体的往复运动并且所述流体(FL)受限于以下任意部分:
-限制装置(3,4,5)和转换模块(2a-d,56),
-两个彼此分离的限制装置(3,4,5),或
-限制装置和柔性腔(C1,C2)。
8.根据前述权利要求中任一项所述的能量转换单元,其中,所述流体(FL)包括气体或非压缩性流体。
9.根据权利要求3或4所述的能量转换单元,其中,所述至少一个柔性腔(C1,C2)与其周围环境隔离。
10.根据权利要求3、4和9中任一项所述的能量转换单元,其中,所述至少一个限制装置(3,4,5)连接到至少一个力传递装置(6b,74),使得传入力(F)存储在所述至少一个柔性腔(C1,C2)中,平行于力(F)成为所述中央单元(1a-q)中的机械动力的转换。
11.根据前述权利要求中任一项所述的能量转换单元,其中,一个限制装置(3,4,5)机械地连接到传入力(F),并且所述一个限制装置(3,4,5)适于产生两个传送运动,所述两个传送运动通过流体(Fl)的运动产生穿过所述转换模块(2a-d,56)的内部封闭循环。
12.根据前述权利要求中任一项所述的能量转换单元,包括服务容积(V6),所述服务容积与周围环境隔离,并且可连接到所述至少一个限制装置(3,4,5)和/或所述转换模块(2a-d,56,64,73,80,81,87,Cm)和/或所述能量转换单元的任意其它部分。
13.根据权利要求12所述的能量转换单元,包括一个或多个液压缸,所述一个或多个液压缸位于所述服务容积(V6)中,并且适于将所述能量转换单元定位在某个位置,从而优化力吸收并且以优化的方式使用所述能量转换单元的行程。
14.根据权利要求12或13所述的能量转换单元,其中,所述能量转换单元与整个装备一起被封闭容积完全地或部分地包围,所述封闭容积还可以充当或作为所述服务容积的一部分。
15.根据前述权利要求中任一项所述的能量转换单元,其中,所述至少一个限制装置(3,4,5)包括以下部分至少一个:具有带活塞(3a-c)的直线汽缸形状或具有带有旋转活塞元件(39)的汽缸(38)形状的双向作用限制装置(3,4,5),或诸如封闭波纹管(4)、直的或螺旋形的回弹弹性汽缸(5)之类的单向作用限制装置。
16.根据前述权利要求中任一项所述的能量转换单元,其中,转换模块(64,73,74,80,81,87,Cm)包括以下至少一种机械装置:齿条、链条、同步带、线、钢带、丝线或绳索。
17.根据前述权利要求中任一项所述的能量转换单元,其中,所述能量转换单元与周围环境密闭。
18.根据权利要求17所述的能量转换单元,其中,往复容积由所述单元以及至少一个初级的和一个次级的限制装置(3,4,5)界定,其中所述初级限制装置(3,4,5)具有带密闭顶部(4a,5a)的波纹管或弹性直汽缸或螺旋形弹性汽缸(5)的形状,或具有直汽缸的形状,其延伸的活塞轴(6a,b)被带有密闭顶部(25)的波纹管或弹性直线汽缸或螺旋形弹性汽缸包围,并且所述密闭顶部(4a,5a,25)适于由所述外力(F)来施加,并且
所述相对的次级限制装置(3,4,5)具有包括往复活塞(3a)的汽缸的形状,其中所述往复活塞(3a)使至少一个内部柔性腔(C1)与所述限制装置所界定的封闭往复容积隔离,并且
一个或多个机械的力传送装置(6b,64,74),其将封闭顶部(4a,5a,25)与往复活塞(3)连接,将它们相对于彼此锁定,并传送每个限制装置(3,4,5)之间的外力(F),由此,能量通过所述腔(C1)的压缩或解压被储存在至少一个柔性腔(C1)中,使得封闭的往复流体容积在不受存储能量中的外力(F)影响的情况下却能够通过跟随所述限制装置的往复运动而有助于转换所述转换模块(2a-d,56,64,73,80,81,87,Cm)中的能量。
19.根据前述权利要求中任一项所述的能量转换单元,其中,所述能量转换单元是将外力(F)转换成电力的直线发电机。
20.根据权利要求19所述的能量转换单元,包括用于直接生产电力的至少一个线圈(6xb)以及输入和输出流道,所述输入和输出流道导引封闭的往复容积,所述往复容积包括越过所述至少一个线圈(6xb)的流体(Fl),其中所述往复容积由所述能量转换单元和至少一个初级限制装置和一个次级限制装置(3,4,5)界定,其中
所述初级限制装置(3,4,5)具有带密闭顶部(4a,5a)的波纹管或弹性直线汽缸或螺旋形弹性汽缸的形状,或具有直线汽缸的形状,其延伸的活塞轴(6a,b)被带有密闭顶部(25)的波纹管或弹性直线汽缸或螺旋形弹性汽缸包围,并且所述密闭顶部(4a,5a,25)适于由外力(F)来施加,并且
所述相对的次级限制装置(3,4,5)具有包括往复活塞(3a)的汽缸的形状,其中所述往复活塞(3a)使至少一个内部柔性腔(C1)与由所述限制装置界定的封闭往复容积隔离,并且
一个或多个机械的力传送装置(7x)包括用于直接生产电力的永磁体(3xb),所述一个或多个机械的力传送装置将封闭顶部(4a,5a,25)与所述往复活塞(3a)连接,将之相对于彼此锁定,并传送每个限制装置(3,4,5)之间的所述外力(F),由此,通过压缩或解压所述至少一个内部柔性腔(C1)而将能量存储在所述腔(C1)中。
21.根据权利要求19或20所述的能量转换单元,其中,所述能量转换单元还包括液压制动装置(B1,B2,68),所述液压制动装置适于保护所述中央单元(1a-q)及其转换模块(64,73,80,81,87,Cm)或直线发电机,免受破坏性的压力峰。
22.根据权利要求15、18和20中任一项所述的能量转换单元,其中,所述直线汽缸和螺旋形弹性汽缸设置有用于电流馈送和通信的导丝或导线。
23.一种适于将外力(F)转换成至少一个力传递轴(7)上的旋转轴运动的能量转换单元,其中,所述能量转换单元包括:
转换模块(2a-d,56,64,73,80,81,87,Cm),其适于将所述外力转换成旋转轴运动,
至少一个限制装置(3,4,5),其布置成将所述外力(F)转换成作用于所述转换模块(2a-d,56,64,73,80,81,87,Cm)的容积转换往复运动,其特征在于
由所述至少一个限制装置(3,4,5)界定的封闭的往复容积,其中所述往复容积包括布置成将外力转换成作用于转换模块(2a-d,56)的往复运动的流体(FL),以及
至少部分地包围所述转换模块(2a-d,56,64,73,80,81,87,Cm)的中央单元(1a-q),
其中,输入和/或输出流道设置有适于将自由往复流体流转化成封闭流的一个或多个闭锁阀(8),所述封闭流阻碍所述往复容积的运动。
24.根据权利要求23所述的能量转换单元,其中,所述转换模块包括涡轮机。
25.一种能量转换系统,其特征在于,根据前述权利要求中任一项所述的能量转换单元被集成到或连接到能量吸收器,所述能量吸收器具有任何以下部分的形状:
-具有由海底或洋底的活性物质或重量产生的反力的点吸收器,
-锚定在海底或洋底适当深度处或者锚定在海滨处或靠近海滨以捕捉破碎波浪的枢轴波浪板、或适于转换往复的风或水流的能量转换单元。
CN201180044618.2A 2010-07-16 2011-07-18 能量转换单元及包括该单元的能量转换系统 Active CN103109081B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US36501510P 2010-07-16 2010-07-16
SE1050811-7 2010-07-16
SE1050811 2010-07-16
US61/365,015 2010-07-16
SE1051357-0 2010-12-22
SE1051357 2010-12-22
PCT/SE2011/000136 WO2012008896A1 (en) 2010-07-16 2011-07-18 Energy transforming unit and energy transforming system comprising such a unit

Publications (2)

Publication Number Publication Date
CN103109081A true CN103109081A (zh) 2013-05-15
CN103109081B CN103109081B (zh) 2018-01-02

Family

ID=45470123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180044618.2A Active CN103109081B (zh) 2010-07-16 2011-07-18 能量转换单元及包括该单元的能量转换系统

Country Status (7)

Country Link
US (2) US9441484B2 (zh)
EP (1) EP2593666B1 (zh)
JP (2) JP5952273B2 (zh)
CN (1) CN103109081B (zh)
AU (3) AU2011277145A1 (zh)
CA (1) CA2803758C (zh)
WO (1) WO2012008896A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106415069A (zh) * 2014-03-18 2017-02-15 串联驱动器公司 齿轮装置
CN109435701A (zh) * 2018-10-24 2019-03-08 大乘汽车有限公司 一种用于并联式混合动力系统的泄荷装置及其控制方法
CN109915308A (zh) * 2017-12-01 2019-06-21 Z光谱创新设计有限责任公司 一种用于从海浪中产生能量的装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8648481B2 (en) * 2006-06-10 2014-02-11 Star Sailor Energy, Inc. Wind generator with energy enhancer element for providing energy at no wind and low wind conditions
US11644010B1 (en) 2006-06-10 2023-05-09 Star Sailor Energy, Inc. Energy storage system
CA2803758C (en) * 2010-07-16 2019-04-30 Corpower Ocean Ab Energy transforming unit and energy transforming system comprising such a unit
RU2570959C1 (ru) * 2014-09-02 2015-12-20 Виктор Владимирович Становской Устройство для преобразования энергии воды в механическую энергию вращательного движения
US10145354B2 (en) * 2016-08-11 2018-12-04 Oscilla Power Inc. Fluid power gearbox and drivetrain for a wave energy converter
EP3456956A1 (en) 2017-09-16 2019-03-20 Corpower Ocean AB Method of controlling a wave energy converter and such a wave energy converter
ES2734151A1 (es) * 2018-06-04 2019-12-04 Climent Castro Martin Alberto Bomba submarina auto recargable
JP2020142413A (ja) * 2019-03-05 2020-09-10 セイコーエプソン株式会社 ダンパーユニット、および、液体噴射装置
CN112937318A (zh) * 2021-01-29 2021-06-11 航天科工微电子系统研究院有限公司 一种动力节能装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176552A (en) * 1990-09-25 1993-01-05 Ohumi Tsusho Kabushiki Kaisha Luminous float
DE19633590A1 (de) * 1996-08-21 1999-03-11 Karl Dr Rer Nat Wisseroth Verfahren und Vorrichtung zur Gewinnung von Wellenenergie
WO2003087570A2 (en) * 2002-04-05 2003-10-23 Marcus Van Breems Apparatus and methods for energy conversion in an ocean environment
WO2009096796A2 (en) * 2008-01-31 2009-08-06 Tenko Wave energy device

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US332875A (en) * 1885-12-22 Tidal power
US1318469A (en) 1919-10-14 Marine power-station
US628657A (en) 1899-03-14 1899-07-11 Harry E Gifford Moisture-chamber for blotter-baths.
US1791239A (en) 1919-09-04 1931-02-03 Chester H Braselton Power-generating mechanism
GB163636A (en) * 1920-10-05 1921-05-26 Osborne Havelock Parsons Power generators operated by wave and tide motion
US1711103A (en) * 1926-05-10 1929-04-30 Wilfred C Howse Mechanical movement
DE1900544A1 (de) * 1969-01-07 1970-08-20 Fritz Pawlowski Wellenkraftmaschine
US3664125A (en) * 1970-03-30 1972-05-23 Edward A Strange Offshore power conversion apparatus
DE2406756A1 (de) * 1974-02-13 1975-05-15 Harald Dr Ing Kayser Hydroelektrischer wellengenerator
US3989951A (en) 1975-04-29 1976-11-02 Westinghouse Electric Corporation Wave energy power generating breakwater
US4001597A (en) 1975-06-20 1977-01-04 Graff Albert L Electric power generating system
GB1573428A (en) * 1976-05-25 1980-08-20 Lucas Industries Ltd Energy conversion system
US4081962A (en) 1976-10-26 1978-04-04 Liu Francis C Dynamic wave energy extraction system
US4355511A (en) 1977-07-22 1982-10-26 Dedger Jones Wave energy conversion
US4172689A (en) 1977-12-14 1979-10-30 Ivar Thorsheim Wave power generator
SE423431B (sv) * 1978-08-16 1982-05-03 Sven Anders Noren Aggregat for tillvaratagnade av rorelseenergi, som er bunden i vattnets vagrorelse
FR2479343A1 (fr) * 1980-03-27 1981-10-02 Chaput Guy Amenagement de divers appareils et materiels, en vue de la recuperation d'une partie de l'energie disponible dans la houle et les vagues des mers et des oceans
SE8401778L (sv) 1984-03-30 1985-10-01 Astra Tech Ab Pump, serskilt for blod och liknande
HU195867B (en) * 1984-04-02 1988-07-28 Tibor Kenderi Hydropneumatic hydraulic engine
US5186822A (en) * 1991-02-25 1993-02-16 Ocean Resources Engineering, Inc. Wave powered desalination apparatus with turbine-driven pressurization
JPH06171577A (ja) * 1992-12-08 1994-06-21 Kuroishi Tekko Kk 波動振動式発電発光フロート
NL1002765C1 (nl) * 1996-04-02 1996-07-16 Berg A P Van Den Beheer Bv Hydro-pneumatische golf- en deiningskrachtcentrale.
NL1005542C2 (nl) 1997-03-14 1998-09-15 Zakaria Khalil Doleh Inrichting voor de conversie van energie uit de verticale beweging van zeewater.
US6229225B1 (en) 1997-05-08 2001-05-08 Ocean Power Technologies, Inc. Surface wave energy capture system
US6392314B1 (en) 1997-12-03 2002-05-21 William Dick Wave energy converter
SE0001836D0 (sv) 2000-05-18 2000-05-18 Inovacor Ab Computer based system
FI20012086A0 (fi) 2001-10-26 2001-10-26 Top Shark Oy Menetelmä ja laitteisto aaltoenergian hyödyntämiseksi
TW499543B (en) * 2001-12-18 2002-08-21 Ming-Hung Lin Bellows type electric power generating equipment using sea wave
JP2005530952A (ja) * 2002-06-27 2005-10-13 シーパワー・パシフィック・プロプライエタリー・リミテッド 波エネルギ変換器
CA2408855A1 (en) 2002-10-30 2004-04-30 Frank Louis Stromotich Ocean wave energy converter
FI113685B (fi) 2003-04-25 2004-05-31 Aw Energy Oy Tuotantolaitteisto
US7199481B2 (en) 2003-11-07 2007-04-03 William Walter Hirsch Wave energy conversion system
US7042112B2 (en) 2004-02-03 2006-05-09 Seawood Designs Inc. Wave energy conversion system
US20060202483A1 (en) * 2005-03-14 2006-09-14 Gonzalez Enrique J Capturing energy from the rise and fall of the tides and waves of the ocean
US7339285B2 (en) 2006-01-12 2008-03-04 Negron Crespo Jorge Hydroelectric wave-energy conversion system
US7245041B1 (en) * 2006-05-05 2007-07-17 Olson Chris F Ocean wave energy converter
US7632041B2 (en) * 2007-04-25 2009-12-15 Single Buoy Moorings, Inc. Wave power generator systems
WO2008131786A1 (en) * 2007-04-29 2008-11-06 Alaaeldeen Hassan El-Fekky Sea wave energy converter
US8007252B2 (en) * 2007-09-26 2011-08-30 Windle Tom J Wave powered pumping apparatus
JP3138290U (ja) * 2007-10-15 2007-12-27 春平 渡辺 エネルギー貯蔵装置およびそれを用いた波力発電装置
US7938217B2 (en) 2008-03-11 2011-05-10 Physics Lab Of Lake Havasu, Llc Regenerative suspension with accumulator systems and methods
US20100308589A1 (en) * 2009-05-27 2010-12-09 Rohrer Technologies, Inc. Heaving ocean wave energy converter
CA2803758C (en) * 2010-07-16 2019-04-30 Corpower Ocean Ab Energy transforming unit and energy transforming system comprising such a unit
EP2921694B1 (en) * 2014-03-18 2019-06-05 Cascade Drives AB A gear arrangement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176552A (en) * 1990-09-25 1993-01-05 Ohumi Tsusho Kabushiki Kaisha Luminous float
DE19633590A1 (de) * 1996-08-21 1999-03-11 Karl Dr Rer Nat Wisseroth Verfahren und Vorrichtung zur Gewinnung von Wellenenergie
WO2003087570A2 (en) * 2002-04-05 2003-10-23 Marcus Van Breems Apparatus and methods for energy conversion in an ocean environment
WO2009096796A2 (en) * 2008-01-31 2009-08-06 Tenko Wave energy device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106415069A (zh) * 2014-03-18 2017-02-15 串联驱动器公司 齿轮装置
CN109915308A (zh) * 2017-12-01 2019-06-21 Z光谱创新设计有限责任公司 一种用于从海浪中产生能量的装置
CN109435701A (zh) * 2018-10-24 2019-03-08 大乘汽车有限公司 一种用于并联式混合动力系统的泄荷装置及其控制方法
CN109435701B (zh) * 2018-10-24 2022-02-11 大乘汽车有限公司 一种用于并联式混合动力系统的泄荷装置及其控制方法

Also Published As

Publication number Publication date
AU2016225804B2 (en) 2019-03-28
US9441484B2 (en) 2016-09-13
EP2593666B1 (en) 2020-05-27
AU2011277145A1 (en) 2013-01-10
US20160348640A1 (en) 2016-12-01
JP6486868B2 (ja) 2019-03-20
AU2016225797B2 (en) 2018-11-08
EP2593666A4 (en) 2015-11-25
EP2593666A1 (en) 2013-05-22
CA2803758C (en) 2019-04-30
JP2016196961A (ja) 2016-11-24
CN103109081B (zh) 2018-01-02
US9879648B2 (en) 2018-01-30
JP5952273B2 (ja) 2016-07-13
US20130236347A1 (en) 2013-09-12
CA2803758A1 (en) 2012-01-19
AU2016225804A1 (en) 2016-09-22
WO2012008896A1 (en) 2012-01-19
JP2013533425A (ja) 2013-08-22
AU2016225797A1 (en) 2016-09-22

Similar Documents

Publication Publication Date Title
CN103109081A (zh) 能量转换单元及包括该单元的能量转换系统
JP5153768B2 (ja) 空気圧縮を用いる波エネルギー変換装置(wecwac)
US9309860B2 (en) Wave energy conversion device
KR101133671B1 (ko) 가동물체형 파력발전장치
US9523346B2 (en) Modular array type energy converter
US20130152566A1 (en) Fluid flexible container pump
US20080260548A1 (en) Wave energy converter
US20100308589A1 (en) Heaving ocean wave energy converter
CN100402836C (zh) 用于储存势能的设备
AU2007311869A1 (en) Wave energy converter
NZ586890A (en) Hydrodynamic energy generation using buoyant device with different density fluids
ES2804514T3 (es) Unidad transformadora de energía y sistema de transformación de energía que comprende dicha unidad
WO2011094000A1 (en) Flexible fluid container pump
FR3081035A1 (fr) Dispositif immerge de collection et conversion de l'energie de la houle ou des vagues
ITFI960177A1 (it) Macchina per la captazione e l'utilizzo dell'energia prodotta dal moto ondoso marino e/0 lacustre

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant