CN103065955A - 一种利用ald制备栅介质结构的方法 - Google Patents

一种利用ald制备栅介质结构的方法 Download PDF

Info

Publication number
CN103065955A
CN103065955A CN2012104772308A CN201210477230A CN103065955A CN 103065955 A CN103065955 A CN 103065955A CN 2012104772308 A CN2012104772308 A CN 2012104772308A CN 201210477230 A CN201210477230 A CN 201210477230A CN 103065955 A CN103065955 A CN 103065955A
Authority
CN
China
Prior art keywords
ald
gate dielectric
chamber
individual layer
dielectric structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012104772308A
Other languages
English (en)
Other versions
CN103065955B (zh
Inventor
董亚斌
夏洋
李超波
张阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201210477230.8A priority Critical patent/CN103065955B/zh
Priority to PCT/CN2012/086956 priority patent/WO2014079121A1/zh
Publication of CN103065955A publication Critical patent/CN103065955A/zh
Application granted granted Critical
Publication of CN103065955B publication Critical patent/CN103065955B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明涉及制备集成电路器件的技术领域,具体涉及一种利用ALD制备栅介质结构的方法。所述方法,包括如下步骤:步骤(1),将衬底放入ALD设备的腔室中;步骤(2),在所述衬底表面生长单层HfO2;步骤(3),在所述单层HfO2表面生长单层Al2O3;步骤(4),重复步骤(2)和步骤(3),得到HfO2和Al2O3交叠生长的栅介质结构。本发明制备出的HfO2和Al2O3交叠生长的栅介质结构能够充分的实现Hf和Al的原子的结合,以及相互之间的作用,提高栅介质的电学性能。

Description

一种利用ALD制备栅介质结构的方法
技术领域
本发明涉及制备集成电路器件的技术领域,具体涉及一种利用ALD制备栅介质结构的方法。
背景技术
随着集成电路技术的高速发展,MOS场效应管的特征尺寸的不断缩小,SiO2作为栅介质材料已不能满足45nm以下集成电路技术发展的需求,利用高k栅介质取代SiO2栅介质可以在保持等效氧化层不变的条件下增加介质层的物理厚度,从而有效减小栅极漏电。
HfO2作为一种近期研究较多的栅介质材料,它具有较高的介电常数(相对介电常数约为25)、稳定的化学性质以及足够的能带差。有实验表明,当使用HfO2作为集成电路中器件的栅介质层的时候,由于其结晶温度低(约为400℃)等缺点,会有很大的迟滞电压,以及较大的漏电流,同时器件的击穿电压也比预期的要低。当使用Al2O3作为器件的栅介质时,其折射率和介电常数要比氧化铪的小的多。
通过往HfO2里面掺杂SiO2或者Al2O3的方法可以提高介质的结晶温度。有报道称Al2O3中掺入HfO2形成HfAlO可以明显改善介质薄膜的热稳定性以及电学性能。除此之外这种掺杂的复合Hf基高k栅介质还具有(1)较强的抗硼穿透能力;(2)更小的平带电压漂移;(3)低的电荷陷阱密度;(4)较高的迁移率等优点,因此复合Hf基高k栅介质逐渐成为近期研究的焦点。这种在HfO2中掺入Al2O3的结构,是首先生长一层HfO2,之后在前一层上生长一层新的Al2O3,这种新的栅极的结构,就是将原来的一层分为两层。在器件的性能上,有相当的文献研究了Al2O3/HfO2叠层做栅介质时其介电常数比较高,同时也没有电压的迟滞,器件的击穿电压也很高,但是它在低电压下的栅极漏电流很大,不能满足器件的要求。
发明内容
本发明的目的在于提供一种利用ALD制备栅介质结构的方法,实现HfO2和Al2O3的交叠生长,提高器件的电学性能。
为了达到上述目的,本发明采用的技术方案如下:
一种利用ALD制备栅介质结构的方法,包括如下步骤:
步骤(1),将衬底放入ALD设备的腔室中;
步骤(2),在所述衬底表面生长单层HfO2
步骤(3),在所述单层HfO2表面生长单层Al2O3
步骤(4),重复步骤(2)和步骤(3),得到HfO2和Al2O3交叠生长的栅介质结构。
上述方案中,在步骤(1)之前,包括如下步骤:对所述衬底进行标准的RCA清洗,使用H2SO4:H2O2=5:100煮沸5分钟;再用去离子水(DI water)冲洗;然后使用HF:H2O=5:95浸泡2分钟;最后使用N2吹干。
上述方案中,在步骤(1)和步骤(2)之间,包括如下步骤:对所述腔室进行抽真空,同时对所述ALD设备的外围需要加热的部件进行加热;待所述腔室的真空抽到1torr以下后,对所述衬底进行加热。
上述方案中,所述步骤(2)具体包括如下步骤:
通过载气向所述腔室通入四甲乙氨铪,所述四甲乙氨铪充分吸附在所述衬底上;
通过吹扫气体将所述腔室内未被吸附的四甲乙氨铪完全清除;
通过载气向所述腔室中通入H2O,与所述衬底表面吸附的四甲乙氨铪完全反应,反应产物被抽出所述腔室,所述衬底表面生长出单层HfO2
通过吹扫气体将所述腔室内未反应的H2O完全清除。
上述方案中,所述步骤(3)具体包括如下步骤:
通过载气向所述腔室通入三甲基铝,所述三甲基铝充分吸附在所述单层HfO2的表面;
通过吹扫气体将所述腔室内未被吸附的三甲基铝完全清除;
通过载气向所述腔室中通入H2O,与所述单层HfO2表面吸附的三甲基铝完全反应,反应产物被抽出所述腔室,所述单层HfO2表面生长出单层Al2O3
通过吹扫气体将所述腔室内为反应的H2O完全清除。
上述方案中,所述载气和吹扫气体均为N2
上述方案中,所述N2的压力为0.2MPa。
上述方案中,所述ALD设备中通入的压缩空气的压力为0.4MPa。
与现有技术相比,本发明的有益效果是:在整个ALD生长新的过程中,由于在每个循环中实现了Hf原子与AL原子的单层沉积,能够使Hf原子和铝原子在薄膜中的分布更加均匀。与传统的单纯的Al2O3/HfO2相比,这将会改变薄膜的介电系数,对薄膜的电学性能有很大的改善。
本发明制备出的HfO2和Al2O3交叠生长的栅介质结构与现有技术中的双层的Al2O3/HfO2的结构相比,能够充分的实现Hf和Al的原子的结合,同时会改变薄膜中的Hf-O键和Al-O键相对的比例,对薄膜的折射率n和介电常数有着重要的改性。
附图说明
图1为本发明实施例提供的在ALD一个循环过程中单层HfO2生长的示意图;
图2为本发明实施例提供的在新生长的HfO2表面上进行单层Al2O3生长的示意图;
图3为经过有限个ALD循环过程后所生长成的栅介质薄膜的结构示意图。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
本发明实施例提供一种利用ALD制备栅介质结构的方法,包括如下步骤:
步骤101,对衬底进行标准的RCA清洗,使用H2SO4:H2O2=5:100煮沸5分钟;再用去离子水(DI water)冲洗;然后使用HF:H2O=5:95浸泡2分钟;最后使用N2吹干;
步骤102,将衬底放入ALD设备的腔室中;对腔室进行抽真空,同时对ALD设备的外围需要加热的部件进行加热;待腔室的真空抽到1torr以下后,对衬底进行加热;
步骤103,通过载气N2向腔室通入四甲乙氨铪,四甲乙氨铪充分吸附在衬底上;
步骤104,通过吹扫气体N2将腔室内未被吸附的四甲乙氨铪完全清除;
步骤105,通过载气N2向腔室中通入H2O,与衬底表面吸附的四甲乙氨铪完全反应,反应产物被抽出腔室,衬底表面生长出单层HfO2
步骤106,通过吹扫气体N2将腔室内未反应的H2O完全清除;
步骤107,通过载气N2向腔室通入三甲基铝,三甲基铝充分吸附在单层HfO2的表面;
步骤108,通过吹扫气体N2将腔室内未被吸附的三甲基铝完全清除;
步骤109,通过载气N2向腔室中通入H2O,与单层HfO2表面吸附的三甲基铝完全反应,反应产物被抽出所述腔室,单层HfO2表面生长出单层Al2O3
步骤110,通过吹扫气体N2将腔室内为反应的H2O完全清除;
步骤111,重复步骤(3)至步骤(10)若干次,得到HfO2和Al2O3交叠生长的栅介质结构。
本实施例中,N2的压力为0.2MPa,压缩空气的压力为0.4MPa。
使用ALD设备实现本发明实施例的具体步骤为:
步骤1:选取8寸硅片,进行标准的RCA清洗,H2SO4:H2O2=5:100煮沸5分钟;DI water(去离子水)冲洗;HF:H2O=5:95浸泡2分钟;N2吹干。
步骤2:对PEALD设备进行开机,在试验中采用的载气以及吹扫气体都是N2,将N2的压力调至0.2MPa,将压缩空气的压力调制0.4MPa左右,打开设备;压缩空气主要是控制完成对每个循环中的气动阀的开启与关闭。
步骤3:将清洗好的硅片放入腔室,对腔室进行抽真空,同时对设备的外围需要加热的部件进行加热(衬底除外)。
步骤4:等到真空抽到1torr以下后,对衬底进行加热,同时开启载气。
下述步骤如图1和图2所示:
步骤5-1:编写工艺的配方,在一个周期中首先进行HfO2的生长;在经过标准的RCA清洗的硅片上含有大量的羟基,调节Hf源四甲乙氨铪(TEMAH)的通入时间,以便使TEMAH能够在衬底上充分的吸附。
步骤5-2:确定对TEMAH的吹扫时间,使多余的未被吸附的TEMAH被完全清除。
步骤5-3:确定H2O的通入时间,确保水的量能够与步骤5-1中衬底表面吸附的TEMAH完全反应,同时反应产物被抽走。
步骤5-4:确定H2O的吹扫时间,使步骤5-3反应多余的H2O完全被清除。
步骤5-5:确定三甲基铝(TMA)的通入时间,使TMA在步骤5-4之后形成的表面上完成充分吸附。
步骤5-6:确定TMA的吹扫时间,使多余的TMA被清除出腔室。
步骤5-7:确定H2O的通入时间,确保水的量能够与步骤5-5中衬底表面吸附的TMA完全反应,生长出Al2O3,同时反应产物被抽走。
步骤5-8:确定H2O的吹扫时间,使步骤5-7反应多余的H2O完全被清除。
步骤5-9:设置整个ALD的循环的周期总数(将步骤5-1至5-8重复执行)。
步骤6:等到所有的条件满足工艺进行的条件时,稳定设备半小时,开始工艺。
步骤7:待工艺完成后,对设备进行清洗。此时栅介质薄膜结构如图3所示。
步骤8:关闭设备。
本发明在整个ALD生长新的过程中,由于在每个循环中实现了Hf原子与AL原子的单层沉积,能够使Hf原子和铝原子在薄膜中的分布更加均匀。与传统的单纯的Al2O3/HfO2相比,这将会改变薄膜的介电系数,对薄膜的电学性能有很大的改善。
本发明制备出的HfO2和Al2O3交叠生长的栅介质结构与现有技术中的双层的Al2O3/HfO2的结构相比,能够充分的实现Hf和Al的原子的结合,同时会改变薄膜中的Hf-O键和Al-O键相对的比例,对薄膜的折射率n和介电常数有着重要的改性。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种利用ALD制备栅介质结构的方法,其特征在于,包括如下步骤:
步骤(1),将衬底放入ALD设备的腔室中;
步骤(2),在所述衬底表面生长单层HfO2
步骤(3),在所述单层HfO2表面生长单层Al2O3
步骤(4),重复步骤(2)和步骤(3),得到HfO2和Al2O3交叠生长的栅介质结构。
2.如权利要求1所述的利用ALD制备栅介质结构的方法,其特征在于,在步骤(1)之前,包括如下步骤:对所述衬底进行标准的RCA清洗,使用H2SO4:H2O2=5:100煮沸5分钟;再用去离子水冲洗;然后使用HF:H2O=5:95浸泡2分钟;最后使用N2吹干。
3.如权利要求1所述的利用ALD制备栅介质结构的方法,其特征在于,在步骤(1)和步骤(2)之间,包括如下步骤:对所述腔室进行抽真空,同时对所述ALD设备的外围需要加热的部件进行加热;待所述腔室的真空抽到1torr以下后,对所述衬底进行加热。
4.如权利要求1所述的利用ALD制备栅介质结构的方法,其特征在于,所述步骤(2)具体包括如下步骤:
通过载气向所述腔室通入四甲乙氨铪,所述四甲乙氨铪充分吸附在所述衬底上;
通过吹扫气体将所述腔室内未被吸附的四甲乙氨铪完全清除;
通过载气向所述腔室中通入H2O,与所述衬底表面吸附的四甲乙氨铪完全反应,反应产物被抽出所述腔室,所述衬底表面生长出单层HfO2
通过吹扫气体将所述腔室内未反应的H2O完全清除。
5.如权利要求1所述的利用ALD制备栅介质结构的方法,其特征在于,所述步骤(3)具体包括如下步骤:
通过载气向所述腔室通入三甲基铝,所述三甲基铝充分吸附在所述单层HfO2的表面;
通过吹扫气体将所述腔室内未被吸附的三甲基铝完全清除;
通过载气向所述腔室中通入H2O,与所述单层HfO2表面吸附的三甲基铝完全反应,反应产物被抽出所述腔室,所述单层HfO2表面生长出单层Al2O3
通过吹扫气体将所述腔室内为反应的H2O完全清除。
6.如权利要求4或5所述的利用ALD制备栅介质结构的方法,其特征在于,所述载气和吹扫气体均为N2
7.如权利要求6所述的利用ALD制备栅介质结构的方法,其特征在于,所述N2的压力为0.2MPa。
8.如权利要求1所述的利用ALD制备栅介质结构的方法,其特征在于,所述ALD设备中通入的压缩空气的压力为0.4MPa。
CN201210477230.8A 2012-11-21 2012-11-21 一种利用ald制备栅介质结构的方法 Active CN103065955B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201210477230.8A CN103065955B (zh) 2012-11-21 2012-11-21 一种利用ald制备栅介质结构的方法
PCT/CN2012/086956 WO2014079121A1 (zh) 2012-11-21 2012-12-19 一种利用ald制备栅介质结构的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210477230.8A CN103065955B (zh) 2012-11-21 2012-11-21 一种利用ald制备栅介质结构的方法

Publications (2)

Publication Number Publication Date
CN103065955A true CN103065955A (zh) 2013-04-24
CN103065955B CN103065955B (zh) 2015-11-18

Family

ID=48108526

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210477230.8A Active CN103065955B (zh) 2012-11-21 2012-11-21 一种利用ald制备栅介质结构的方法

Country Status (2)

Country Link
CN (1) CN103065955B (zh)
WO (1) WO2014079121A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367409A (zh) * 2013-07-04 2013-10-23 西安电子科技大学 基于锗衬底的La基高介电常数栅介质材料的制备方法
CN113921617A (zh) * 2021-10-09 2022-01-11 西安电子科技大学 一种Ga2O3金属氧化物半导体场效应管及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330014A (zh) * 2007-06-22 2008-12-24 中芯国际集成电路制造(上海)有限公司 原子层沉积方法以及形成的半导体器件
CN101752236A (zh) * 2009-10-26 2010-06-23 南京大学 一种调控GaAs半导体与栅介质间能带补偿的原子层沉积Al2O3/HfO2方法
CN102492932A (zh) * 2011-12-02 2012-06-13 南京大学 ALD制备GaAs基MOS器件中的原位表面钝化方法
CN102592974A (zh) * 2012-03-20 2012-07-18 中国科学院上海微系统与信息技术研究所 一种高k介质薄膜的制备方法
CN102779845A (zh) * 2012-06-25 2012-11-14 西安交通大学 一种叠层金属氧化物栅介质层及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7183604B2 (en) * 2002-06-10 2007-02-27 Interuniversitair Microelektronica Centrum (Imec Vzw) High dielectric constant device
US6930059B2 (en) * 2003-02-27 2005-08-16 Sharp Laboratories Of America, Inc. Method for depositing a nanolaminate film by atomic layer deposition
US7537804B2 (en) * 2006-04-28 2009-05-26 Micron Technology, Inc. ALD methods in which two or more different precursors are utilized with one or more reactants to form materials over substrates
KR100805018B1 (ko) * 2007-03-23 2008-02-20 주식회사 하이닉스반도체 반도체 소자의 제조 방법
US8592294B2 (en) * 2010-02-22 2013-11-26 Asm International N.V. High temperature atomic layer deposition of dielectric oxides

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330014A (zh) * 2007-06-22 2008-12-24 中芯国际集成电路制造(上海)有限公司 原子层沉积方法以及形成的半导体器件
CN101752236A (zh) * 2009-10-26 2010-06-23 南京大学 一种调控GaAs半导体与栅介质间能带补偿的原子层沉积Al2O3/HfO2方法
CN102492932A (zh) * 2011-12-02 2012-06-13 南京大学 ALD制备GaAs基MOS器件中的原位表面钝化方法
CN102592974A (zh) * 2012-03-20 2012-07-18 中国科学院上海微系统与信息技术研究所 一种高k介质薄膜的制备方法
CN102779845A (zh) * 2012-06-25 2012-11-14 西安交通大学 一种叠层金属氧化物栅介质层及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367409A (zh) * 2013-07-04 2013-10-23 西安电子科技大学 基于锗衬底的La基高介电常数栅介质材料的制备方法
CN103367409B (zh) * 2013-07-04 2015-10-28 西安电子科技大学 基于锗衬底的La基高介电常数栅介质材料的制备方法
CN113921617A (zh) * 2021-10-09 2022-01-11 西安电子科技大学 一种Ga2O3金属氧化物半导体场效应管及制备方法

Also Published As

Publication number Publication date
WO2014079121A1 (zh) 2014-05-30
CN103065955B (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
CN102332395B (zh) 一种选择性淀积栅氧和栅电极的方法
CN102959731B (zh) 用于制造具有隧道电介质层的太阳能电池的方法
Yang et al. High-performance 1-V ZnO thin-film transistors with ultrathin, ALD-processed ZrO 2 gate dielectric
KR20200063256A (ko) 페로브스카이트 광전 소자, 제조 방법 및 페로브스카이트 재료
CN104505426B (zh) 一种改善晶体硅太阳能电池组件光致衰减的方法及装置
CN109148643B (zh) 一种解决ald方式的perc电池在电注入或光注入后效率降低的方法
CN105551934B (zh) 一种含硅量子点碳硅基薄膜材料制备方法
CN102560419A (zh) 一种氧化铝超薄薄膜的制备方法
CN104362240B (zh) 一种LED芯片的Al2O3/SiON钝化层结构及其生长方法
CN104091838A (zh) 高转化效率抗pid晶体硅太阳能电池及其制造方法
CN104617165A (zh) 一种二硫化钼/缓冲层/硅n-i-p太阳能电池器件及其制备方法
CN110760818A (zh) 一种用原子层沉积技术生长氧化铝的工艺
CN102851733B (zh) 氮化镓基材料及器件的制备系统和制备方法
CN109004038A (zh) 太阳能电池及其制备方法和光伏组件
CN103065955A (zh) 一种利用ald制备栅介质结构的方法
CN102931068A (zh) 一种锗基mosfet栅介质的制备方法
CN104498908B (zh) 一种用于制备组件晶硅太阳能电池pecvd镀膜工艺
CN107527803B (zh) SiC器件栅介质层及SiC器件结构的制备方法
CN103641063A (zh) 一种制备图形化多孔硅结构的方法
CN106756878B (zh) 一种氧化物介质的原子层沉积方法
CN105185702A (zh) 高k金属栅极结构的制造方法
CN107425053A (zh) 一种用ald构建同心核壳三维纳米多铁异质结阵列的方法
CN103972079B (zh) 一种三维空间分布有序硅量子点的制备方法
CN103866277A (zh) 一种原子层沉积制备双受主共掺氧化锌薄膜的方法
CN103915348A (zh) 一种制备石墨烯纳米线器件的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant