CN103058697B - 一种陶瓷基复合材料氮化硼界面相的改性方法 - Google Patents

一种陶瓷基复合材料氮化硼界面相的改性方法 Download PDF

Info

Publication number
CN103058697B
CN103058697B CN201210540592.7A CN201210540592A CN103058697B CN 103058697 B CN103058697 B CN 103058697B CN 201210540592 A CN201210540592 A CN 201210540592A CN 103058697 B CN103058697 B CN 103058697B
Authority
CN
China
Prior art keywords
composite material
ceramic matrix
matrix composite
boron nitride
modifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210540592.7A
Other languages
English (en)
Other versions
CN103058697A (zh
Inventor
刘永胜
成来飞
李赞
张立同
叶昉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201210540592.7A priority Critical patent/CN103058697B/zh
Publication of CN103058697A publication Critical patent/CN103058697A/zh
Application granted granted Critical
Publication of CN103058697B publication Critical patent/CN103058697B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

本发明涉及一种陶瓷基复合材料氮化硼界面相的改性方法,该方法包括:制备纤维预制体,预制体浸渍含Ni(或Co、Fe)元素的有机溶液,化学气相沉积制备掺入Si(或Al、Ti、C)元素的BN界面层以及界面层热处理。该方法可设计性强、工艺简单、可重复性好、制备温度低、对纤维无损伤。本发明制备的界面耐高温、抗氧化能力强、中高温稳定性好、长寿命,并且具有优良的力学性能和热学性能,可满足高推重比航空发动机燃烧室火焰筒和叶片用陶瓷基复合材料。

Description

一种陶瓷基复合材料氮化硼界面相的改性方法
技术领域
本发明涉及一种陶瓷基复合材料氮化硼界面相的改性方法,特别是涉及掺杂和催化的方法。其主要应用于连续纤维增韧碳化硅陶瓷基复合材料(CMC-SiC)。
背景技术
连续纤维增韧碳化硅陶瓷基复合材料由于具有耐高温、低密度、高比强、高比模、抗氧化、抗疲劳蠕变,以及对裂纹不敏感,不发生灾难性损毁等一系列优点,在航空航天、核能、电力等许多领域都具有广泛的应用前景。界面相是CMC-SiC材料实现强韧化的关键微结构单元。对于高推重比航空发动机燃烧室等高温、受力、水氧腐蚀环境,CMC-SiC材料的界面相除应实现载荷传递和力学熔断功能外,还应具有优异的抗氧化性能,对纤维形成氧化保护和反应阻挡,构成纤维骨架的最后保护屏障,使复合材料达到长寿命要求。
目前,国内外工程应用的CMC-SiC材料使用的界面相包括热解炭(PyC)界面相和氮化硼(BN)界面相。热解炭(PyC)是CMC-SiC材料制备工艺最成熟、强韧化效果最优异,因而应用最广泛的界面相。但PyC的抗氧化性能太差,在低温下(≈450℃)就会迅速氧化成CO2和CO,导致材料失效,极大地限制了CMC-SiC材料的应用范围和使用寿命。针对PyC抗氧化性能太差的缺点,国外研究人员选用与PyC结构类似的六方氮化硼(h-BN)为界面相,提高了CMC-SiC材料的抗氧化性能。以BN为界面的CMC-SiC材料已应用到F110、F414等发动机的燃烧室火焰筒、火焰稳定器等构件。
BN界面还存在下述问题:(1)晶化程度低。(2)氧含量高。(3)抗水腐蚀能力差。(4)高温稳定性差。
M.Suzuki等在1580℃沉积获得晶态BN;R.Lourie等以Ni2B为催化剂对B3N3H6沉积合成了多壁碳纳米管。L.Guo等以Ni、Co为催化剂,采用PECVD方法对B2H6-NH3-H2体系催化沉积了BN纳米管;G.Morscher、M.Moore、S.Corman等对采用HSiCl3、SiCl4、H2SiCl2对BCl3-NH3体系进行了掺Si改性,有效提高了BN的抗氧化能力、抗水腐蚀能力和高温稳定性;日本大学Katsumitsu Nakamura等采用金属有机化学气相沉积法制备Si-B-N涂层;巴西Marco Antonio Schiavon、厦门大学余兆菊等采用裂解法制备Si-B-C-N陶瓷基体;韩国釜山国立大学Kwang Ho Kim等采用等离子体增强化学气相沉积法制备Ti-B-C-N涂层;莫斯科州立大学D.V.Shtansky等采用直流磁控溅射法制备Ti-B-N、Ti-Si-B-N、Ti-Al-Si-B-N等复合涂层;西安交通大学马胜利等采用射频等离子体辅助化学气相沉积制备Ti-B-N薄膜;北京航空材料研究院罗庆洪等采用反应磁控溅射方法制备Ti-B-C-N纳米复合薄膜;北京科技大学Y.H.Lu等采用射频溅射方法制备Ti-B-N复合薄膜。
在CVI法制备BN界面相的掺杂改性方面,国内外所做的工作还很少。提高BN界面相的抗氧化能力和中高温稳定性的关键在于提高沉积氮化硼的晶化程度,其核心是需要在低温下沉积出高晶化程度BN,并改善其高温稳定性和抗水氧腐蚀性能。本发明创新性提出下述解决方案:首先,针对BCl3-NH3体系,通过掺杂元素Ni(或Co、Fe)的催化作用,在低温下采用CVI方法制备高晶化程度的BN界面相;在此基础上,掺入其他高温稳定元素Si(或Al、Ti、C),提高BN界面相的高温稳定性和抗水氧腐蚀性能。国内外还未见这方面的研究报道。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种陶瓷基复合材料氮化硼界面相的改性方法,该方法制造的改性BN界面层不仅能稳定地与纤维、基体结合,而且均匀致密、工艺稳定性好。
技术方案
一种陶瓷基复合材料氮化硼界面相的改性方法,其特征在于步骤如下:
步骤1:将碳纤维布叠层,厚度为1.0~6.0mm,采用石墨模具进行定型得到预制体;
步骤2:以BCl3、NH3、稀释H2和稀释Ar混合后作为先驱体,同时以载气H2和SiCl4混合后作为另一先驱体掺入,采用化学气相沉积方法制备单组分掺杂BN界面层,其厚度为80~500nm,得到陶瓷基复合材料氮化硼界面相的改性;所述载气H2和SiCl4的比例为:100∶20~30。
所述步骤2采用下述方法替代:将碳纤维预制体在丙酮溶解的Fe(NO3)3·9H2O溶液中浸渍12小时,并在空气中自然风干;然后以BCl3、NH3、稀释H2和稀释Ar混合后作为先驱体,采用化学气相沉积方法制备BN界面层,其厚度为80~500nm,得到陶瓷基复合材料氮化硼界面相的改性。
在步骤2完成后进行高温处理,处理温度:1000~1800℃,处理气氛:N2气,处理时间0.5~5h。
所述BCl3、NH3、稀释H2和稀释Ar的比例为:1∶3∶5∶5。
所述步骤2中的SiCl4采用AlCl3或TiCl4替代。
步骤3中的载气H2和SiCl4由CH4替代。
所述的Fe(NO3)3·9H2O采用Co(NO3)3·6H2O或Ni(NO3)3·6H2O)替代。
所述碳纤维布为牌号为T300的2维平纹碳纤维布或3维碳纤维布。
将2D纤维布裁减为250mm×125mm的规格。
将3维纤维编织为长宽为250mm×125mm,厚度为1.0~6.0mm的规格。
有益效果
本发明提出的一种陶瓷基复合材料氮化硼界面相的改性方法,主要优点是:(1)界面的可设计性强,可根据需要对界面的成分和厚度进行纳米尺度设计和制备。(2)制备的复合材料抗氧化能力强,可大幅提高陶瓷基复合材料的热力氧化寿命。(3)制备的复合材料中高温稳定性好,可以在1200℃以上的温度条件下长时间服役。(4)制备温度低,对纤维无损伤,复合材料力学性能优良。(5)易于制备大尺寸、复杂构件。(6)工艺过程简单、可重复性好。
具体实施方式
现结合实施例对本发明作进一步描述:
实施例1:Si元素掺杂优化陶瓷基复合材料BN界面相
(1)采用牌号为T300的2维平纹碳布作为复合材料的增强体,将2D纤维布裁减为250mm×125mm的规格;
(2)将2维碳纤维布叠层,并采用石墨模具进行定型,纤维预制体的厚度为2.3mm;
(3)以BCl3、NH3、稀释H2和稀释Ar混合后作为先驱体,同时以载气H2和SiCl4混合后作为另一先驱体掺入,采用化学气相沉积方法制备掺Si的BN界面层,其厚度为300nm,得到陶瓷基复合材料氮化硼界面相的改性;所述载气H2和SiCl4的比例为:100∶20~30。
还可以将渗碳后的预制体进行高温处理,处理温度:1400℃,处理气氛:N2气,处理时间2.0小时。
实施例2:Al元素掺杂优化陶瓷基复合材料BN界面相
(1)采用牌号为T300的3维碳纤维作为复合材料的增强体,将3维纤维编织为长宽为250mm×125mm,厚度为4.5mm;
(2)将3维碳纤维编织体直接用石墨模具固定成型;
(3)以BCl3、NH3、稀释H2和稀释Ar混合后作为先驱体,同时以载气H2和AlCl3混合后作为另一先驱体掺入,采用化学气相沉积方法制备掺Al的BN界面层,其厚度为80~500nm,得到陶瓷基复合材料氮化硼界面相的改性;所述载气H2和AlCl3的比例为:100∶20~30。
还可以将渗碳后的预制体进行高温处理,处理温度:1200℃,处理气氛:N2气,处理时间1.0小时。
实施例3:Ni、Si元素催化掺杂优化陶瓷基复合材料BN界面相
(1)采用牌号为T300的2维平纹碳布作为复合材料的增强体,将2D纤维布裁减为250mm×125mm的规格;
(2)将裁减后的2D纤维布在丙酮溶解的Ni(NO3)2·6H2O溶液中浸渍12小时,并在空气中自然风干。
(3)将风干后的2维碳纤维布叠层,并采用石墨模具进行定型,纤维预制体的厚度为2.3mm;
(4)以BCl3、NH3、稀释H2和稀释Ar混合后作为先驱体,采用化学气相沉积方法在碳纤维预制体上制备掺Ni的BN界面层层,其厚度为200nm,得到陶瓷基复合材料氮化硼界面相的改性。
还可以将渗碳后的预制体进行高温处理,处理温度:1600℃,处理气氛:N2气,处理时间2.0小时。
实施例4:Co元素催化优化陶瓷基复合材料BN界面相
(1)采用牌号为T300的2维平纹碳布作为复合材料的增强体,将2D纤维布裁减为250mm×125mm的规格;
(2)将裁减后的2D纤维布在丙酮溶解的Co(NO3)3·6H2O溶液中浸渍12小时,并在空气中自然风干。
(3)将风干后的2维碳纤维布叠层,并采用石墨模具进行定型,纤维预制体的厚度为2.3mm;
(4)以BCl3、NH3、稀释H2和稀释Ar混合后作为先驱体,采用化学气相沉积方法在碳纤维预制体上制备掺Co的BN界面层层,其厚度为250nm,得到陶瓷基复合材料氮化硼界面相的改性。
还可以将渗碳后的预制体进行高温处理,处理温度:1600℃,处理气氛:N2气,处理时间2.0小时。

Claims (5)

1.一种陶瓷基复合材料氮化硼界面相的改性方法,其特征在于步骤如下: 
步骤1:将碳纤维布叠层,厚度为1.0~6.0mm,采用石墨模具进行定型得到预制体; 
步骤2:以BCl3、NH3、稀释H2和稀释Ar混合后作为先驱体,同时以载气H2和SiCl4混合后作为另一先驱体掺入,采用化学气相沉积方法制备单组分掺杂BN界面层,其厚度为80~500nm,得到陶瓷基复合材料氮化硼界面相的改性;所述载气H2和SiCl4的比例为:100﹕20~30。 
2.根据权利要求1所述陶瓷基复合材料氮化硼界面相的改性方法,其特征在于:所述步骤2采用下述方法替代:将碳纤维预制体在丙酮溶解的Fe(NO3)3·9H2O溶液中浸渍12小时,并在空气中自然风干;然后以BCl3、NH3、稀释H2和稀释Ar混合后作为先驱体,采用化学气相沉积方法制备BN界面层,其厚度为80~500nm,得到改性的陶瓷基复合材料氮化硼界面相。 
3.根据权利要求1所述陶瓷基复合材料氮化硼界面相的改性方法,其特征在于:所述步骤2中的BCl3、NH3、稀释H2和稀释Ar的比例为1:3:5:5。 
4.根据权利要求1所述陶瓷基复合材料氮化硼界面相的改性方法,其特征在于:所述步骤2中的SiCl4采用AlCl3或TiCl4替代。 
5.根据权利要求2所述陶瓷基复合材料氮化硼界面相的改性方法,其特征在于:所述的Fe(NO3)3·9H2O采用Co(NO3)3·6H2O或Ni(NO3)3·6H2O替代。 
CN201210540592.7A 2012-12-14 2012-12-14 一种陶瓷基复合材料氮化硼界面相的改性方法 Active CN103058697B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210540592.7A CN103058697B (zh) 2012-12-14 2012-12-14 一种陶瓷基复合材料氮化硼界面相的改性方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210540592.7A CN103058697B (zh) 2012-12-14 2012-12-14 一种陶瓷基复合材料氮化硼界面相的改性方法

Publications (2)

Publication Number Publication Date
CN103058697A CN103058697A (zh) 2013-04-24
CN103058697B true CN103058697B (zh) 2015-03-04

Family

ID=48101632

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210540592.7A Active CN103058697B (zh) 2012-12-14 2012-12-14 一种陶瓷基复合材料氮化硼界面相的改性方法

Country Status (1)

Country Link
CN (1) CN103058697B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103923601B (zh) * 2013-12-20 2016-04-27 西北工业大学 结构/吸波一体化复合材料的制备方法
CN105296960A (zh) * 2015-10-28 2016-02-03 上海大学 均匀化氮化硼涂层的制备方法
FR3059321B1 (fr) * 2016-11-28 2019-01-25 Safran Ceramics Piece en materiau composite
CN108863420A (zh) * 2018-07-27 2018-11-23 成都成维精密机械制造有限公司 一种含SiBNC-PyC复合界面的SiCf/SiC陶瓷基复合材料的制备方法
CN109265087B (zh) * 2018-09-29 2021-04-16 莆田学院 一种公路再生骨料透水混凝土及其制备方法
CN110078516A (zh) * 2019-05-14 2019-08-02 西北工业大学 高体积分数短纤维增强准各向同性SiCf/SiC复合材料的制备方法
CN111704468A (zh) * 2020-06-19 2020-09-25 宜兴市新立织造有限公司 一种三维机织航空火焰筒及其制备方法
CN113754455B (zh) * 2021-09-29 2022-04-08 湖北瑞宇空天高新技术有限公司 多尺度增韧铺层结构吸波陶瓷基复合材料及其制备方法
CN113943160B (zh) * 2021-10-15 2022-08-09 中国航发北京航空材料研究院 一种具有自修复功能的碳化硅陶瓷基复合材料制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4772304A (en) * 1985-10-04 1988-09-20 Research Development Corporation Of Japan Transparent BN-type ceramic material and method of producing the same
CN1424254A (zh) * 2003-01-03 2003-06-18 浙江大学 制备氮化硼纳米管的方法
CN101786897A (zh) * 2010-01-21 2010-07-28 西北工业大学 碳/碳-氮化硼复合材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4772304A (en) * 1985-10-04 1988-09-20 Research Development Corporation Of Japan Transparent BN-type ceramic material and method of producing the same
CN1424254A (zh) * 2003-01-03 2003-06-18 浙江大学 制备氮化硼纳米管的方法
CN101786897A (zh) * 2010-01-21 2010-07-28 西北工业大学 碳/碳-氮化硼复合材料的制备方法

Also Published As

Publication number Publication date
CN103058697A (zh) 2013-04-24

Similar Documents

Publication Publication Date Title
CN103058697B (zh) 一种陶瓷基复合材料氮化硼界面相的改性方法
CN102167612B (zh) 一种纤维表面氮化硼涂层的制备方法
CN103910532B (zh) 涂层无机纤维增韧max相陶瓷复合材料、其制备方法及用途
CN107540400A (zh) 一种具有复合界面的SiCf/SiC陶瓷基复合材料
CN103724035B (zh) 一种碳纤维增强氮化硅-碳化硅陶瓷复合材料的增密方法
CN101503305A (zh) 一种自愈合碳化硅陶瓷基复合材料的制备方法
CN109553430A (zh) 一种具有复合界面的SiCf/SiC陶瓷基复合材料及其制备方法
CN104788130B (zh) C/(SiC/BN)n复合界面相涂层、涂层纤维及其制备方法
Xin et al. Ablative property and mechanism of C/C-ZrB2-ZrC-SiC composites reinforced by SiC networks under plasma flame
CN101913894A (zh) 一种碳化硅陶瓷基复合材料的双重自愈合改性方法
US11780780B2 (en) Oxidation-resistant fiber coatings and related methods
CN102718539B (zh) 碳/碳/碳化硅复合材料保温筒及制备方法
CN102731119B (zh) 碳/碳/碳化硅复合材料坩埚及制备方法
CN101224988A (zh) C/SiC陶瓷基复合材料的低温制备方法
Lu et al. Oxidation behavior of C/C composites with the fibre/matrix interface modified by carbon nanotubes grown in situ at low temperature
CN106966703A (zh) 含界面相的氧化铝纤维增强氧化铝陶瓷及其制备方法
Hu et al. Mechanical and thermal properties of Cf/SiC composites reinforced with carbon nanotube grown in situ
Ding Processing, properties and applications of ceramic matrix composites, SiCf/SiC: an overview
CN103724043B (zh) 一种高导热c/c复合材料及制备方法
Luo et al. High-temperature mechanical properties of thermal barrier coated SiC/SiC composites by PIP process with a new precursor polymer
CN108752012B (zh) 一种纤维表面氮化硼/氮化硅复合界面层的制备方法
CN108383536A (zh) 一种新型碳基复合材料的制备方法
Dai et al. Influence of BCl3/NH3 flow ratio on growth and microstructure of CVI-processed boron nitride interfacial coatings
Vandenbulcke et al. Outstanding ceramic matrix composites for high temperature applications
CN102731133B (zh) 碳/碳/碳化硅复合材料紧固件及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant