CN103025688A - 包含异戊二烯衍生物的燃料组合物 - Google Patents
包含异戊二烯衍生物的燃料组合物 Download PDFInfo
- Publication number
- CN103025688A CN103025688A CN2011800360266A CN201180036026A CN103025688A CN 103025688 A CN103025688 A CN 103025688A CN 2011800360266 A CN2011800360266 A CN 2011800360266A CN 201180036026 A CN201180036026 A CN 201180036026A CN 103025688 A CN103025688 A CN 103025688A
- Authority
- CN
- China
- Prior art keywords
- isoprene
- composition
- biological
- alkene
- isopentene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
- C12P5/02—Preparation of hydrocarbons or halogenated hydrocarbons acyclic
- C12P5/026—Unsaturated compounds, i.e. alkenes, alkynes or allenes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/003—Catalysts comprising hydrides, coordination complexes or organic compounds containing enzymes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/06—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
- B01J31/08—Ion-exchange resins
- B01J31/10—Ion-exchange resins sulfonated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
- B01J31/2265—Carbenes or carbynes, i.e.(image)
- B01J31/2269—Heterocyclic carbenes
- B01J31/2273—Heterocyclic carbenes with only nitrogen as heteroatomic ring members, e.g. 1,3-diarylimidazoline-2-ylidenes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
- B01J31/2265—Carbenes or carbynes, i.e.(image)
- B01J31/2278—Complexes comprising two carbene ligands differing from each other, e.g. Grubbs second generation catalysts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G29/00—Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
- C10G29/20—Organic compounds not containing metal atoms
- C10G29/205—Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/32—Selective hydrogenation of the diolefin or acetylene compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/32—Selective hydrogenation of the diolefin or acetylene compounds
- C10G45/34—Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/58—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/58—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
- C10G45/60—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/04—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
- C10G65/043—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a change in the structural skeleton
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/04—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
- C10G65/06—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a selective hydrogenation of the diolefins
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G69/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
- C10G69/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
- C10G69/12—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one polymerisation or alkylation step
- C10G69/123—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one polymerisation or alkylation step alkylation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/04—Liquid carbonaceous fuels essentially based on blends of hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
- C12P5/02—Preparation of hydrocarbons or halogenated hydrocarbons acyclic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/50—Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
- B01J2231/54—Metathesis reactions, e.g. olefin metathesis
- B01J2231/543—Metathesis reactions, e.g. olefin metathesis alkene metathesis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/821—Ruthenium
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1011—Biomass
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1081—Alkanes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/80—Additives
- C10G2300/805—Water
- C10G2300/807—Steam
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/20—C2-C4 olefins
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/22—Higher olefins
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Zoology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Microbiology (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明提供使用来自可再生碳衍生的生物异戊二烯组合物的异戊二烯来生产多种烃燃料、燃料添加剂及精细化学用添加剂和其他用途的添加剂的方法、组合物和系统。
Description
相关申请的交叉引用
本申请要求2010年6月17日提交的第61/356,017号美国临时申请和2010年12月22日提交的第61/426,481号美国临时申请的优先权,这两个临时申请以引用方式整体并入本文。
发明背景
可再生运输燃料的开发是二十一世纪的重要挑战之一。目前的市场以酵母发酵蔗糖和淀粉得到的乙醇为主,其次是由甘油三酯得到的生物柴油(脂肪酸酯)。乙醇的能量密度比烃类低,作为液体燃料具有局限性。另外,乙醇由于具有亲水性和腐蚀性,不能在常规的基础设施中运输。将可再生碳源(生物质、糖类、油类)转化为烃类燃料的工艺可提供引人注目的生物乙醇替代品。
异戊二烯(2-甲基-1,3-丁二烯)是一种关键工业化工品,主要用于生产合成橡胶。目前,异戊二烯是从石化来源衍生,要么通过裂解石脑油和其他石油醚级分直接衍生,要么通过化学合成间接衍生(参见例如H.Pommer和A.Nurrenbach,“萜化合物的工业合成”(Industrial Synthesis ofTerpene Compounds),《纯粹与应用化学》(Pure Appl.Chem.),1975,43,527-551;H.M.Weitz和E.Loser,“异戊二烯”(Isoprene),载于《乌尔曼工业化学百科全书》(Ullmann′s Encyclopedia of Industrial Chemistry),第七版,电子版,Wiley-VCH Verlag GMBH出版社,魏因海姆(Weinheim),2005;以及H.M.Lybarger,“异戊二烯”(Isoprene),载于《柯克-奥斯莫化工大全》(Kirk-Othmer Encyclopedia ofChemical Technology)第4版,威利出版社(Wiley),纽约,(1995),14,934-952)。通常使所得的粗异戊二烯流(stream)经历充分的纯化过程,以除去众多的在化学上相似的杂质,其中许多杂质会干扰后续进行的异戊二烯向聚合物和其他化学品的转化。
相比之下,衍自生物来源的异戊二烯含有极少的烃类杂质,相反含有许多氧化的化合物如乙醇、乙醛和丙酮。这些化合物中有许多可容易地通过使其与水接触或者使其经过氧化铝或其他吸附剂而除去。
由于为获得高纯度异戊二烯需要进行充分的纯化和花费大量的成本,衍自石油工艺的异戊二烯未能成为可行的原料以供进一步加工生产燃料。期望有这样的成本效益好的方法:它借助于生物异戊二烯组合物的高纯度和/或独特杂质谱(profile),将生物法生产的异戊二烯转化为有价值的化工产品,特别是燃料。
本文引用的所有专利、专利申请、文献和文章都以引用方式整体并入本文。
发明内容
本发明主要提供用于从生物异戊二烯组合物生产燃料成分的组合物和方法。更具体而言,本发明提供用于应用原料与化学反应的独特组合将生物异戊二烯组合物中的异戊二烯转化为燃料成分的组合物和方法。
因此,在一个方面,本发明提供通过如下方式将生物异戊二烯组合物中的异戊二烯的大部分化学转化为一种或多种非异戊二烯化合物的方法:(a)使生物异戊二烯组合物接触烯烃复分解催化剂以产生一种或多种烯烃产物,然后对所述一种或多种烯烃产物进行催化氢化以形成一种或多种烷烃燃料成分;(b)对生物异戊二烯组合物进行部分氢化以产生异戊烯,然后用异链烷烃将异戊烯进行烷基化以形成高辛烷烷基化物燃料成分;或者(c)对生物异戊二烯组合物进行部分氢化以产生异戊烯,然后使异戊烯接触烯烃复分解催化剂以产生一种或多种烯烃产物,然后对所述一种或多种烯烃产物进行催化氢化以形成一种或多种烷烃燃料成分。在一个实施例中,生物异戊二烯组合物中至少约95%的异戊二烯被转化为非异戊二烯化合物。在另一个实施例中,生物异戊二烯组合物包含或含有大于约2mg的异戊二烯,并且以组合物中所有C5烃类的总重量计包含或含有大于或约99.94重量%的异戊二烯。在另一个实施例中,烯烃复分解催化剂包含或涉及至少一种金属配合物。在另一个实施例中,金属配合物为铼配合物、钌配合物、铑配合物、锇配合物、钨配合物、钼配合物或钛配合物。在另一个实施例中,烯烃产物包含高级(>C5)烯烃或低级(<C5)烯烃或这两者。在另一个实施例中,得自异戊二烯复分解的所述一种或多种烯烃产物包含一种或多种选自乙烯、异丁烯和含6、8和12个碳原子的烯烃(例如二甲基己三烯)的烯烃。在另一个实施例中,对生物异戊二烯组合物进行部分氢化的步骤包括使生物异戊二烯组合物接触氢气和用于催化异戊二烯的部分氢化的催化剂。在另一个实施例中,用于催化异戊二烯的部分氢化的催化剂包含钯催化剂。在其他实施例中,用异链烷烃将异戊烯进行烷基化的步骤包括使异戊烯在酸催化剂存在下接触异链烷烃。在另一个实施例中,酸催化剂为氢氟酸、硫酸、氟磺酸或全卤代烷基磺酸。在其他实施例中,异链烷烃为丙烷、异丁烷或异戊烷。在一些实施例中,用于异戊烯复分解的烯烃复分解催化剂与用于生物异戊二烯复分解的烯烃复分解催化剂不同。在一些实施例中,用于异戊烯复分解的烯烃复分解催化剂与用于生物异戊二烯复分解的烯烃复分解催化剂相同。在一些实施例中,得自异戊烯复分解的烯烃产物包含一种或多种选自乙烯和含6、8和12个碳原子的烯烃(例如二甲基己烯)的烯烃。
在另一个方面,本发明提供用于从生物异戊二烯组合物生产燃料成分的系统,所述系统包含生物异戊二烯组合物以及:(a)(i)一种或多种用于催化生物异戊二烯组合物中的异戊二烯的复分解以形成烯烃产物的催化剂,和(ii)一种能够将烯烃产物进行氢化以形成烷烃燃料成分的催化剂;或者(b)(i)一种能够将生物异戊二烯组合物中的异戊二烯进行部分氢化以产生异戊烯的化学品,和(ii)一种用于对衍自生物异戊二烯组合物的异戊烯进行烷基化以产生燃料成分的异链烷烃;或(c)(i)一种能够将生物异戊二烯组合物中的异戊二烯进行部分氢化以产生异戊烯的化学品,(ii)一种或多种用于催化由生物异戊二烯组合物部分氢化而产生的异戊烯的复分解以形成烯烃产物的催化剂,和(iii)一种能够将该烯烃产物进行氢化以形成烷烃燃料成分的催化剂;其中生物异戊二烯组合物中的异戊二烯的大部分被化学转化为一种或多种非异戊二烯化合物。在一个实施例中,生物异戊二烯组合物包含大于约2mg的异戊二烯,并且以组合物中所有C5烃类的总重量计包含大于或约99.94重量%的异戊二烯。在其他实施例中,用于催化异戊二烯的复分解的催化剂包含铼配合物、钌配合物、铑配合物、锇配合物、钨配合物、钼配合物或钛配合物。在其他实施例中,烯烃产物包含高级(>C5)烯烃或低级(<C5)烯烃或这两者。在其他实施例中,烯烃产物包含一种或多种选自乙烯、异丁烯、二甲基己三烯和含6、8和12个碳原子的环状烯烃的烯烃。在其他实施例中,用于催化所述一种或多种烯烃产物以形成一种或多种烷烃燃料成分的催化剂包含选自以下的催化剂:钯催化剂、镍催化剂、钴催化剂、钌催化剂和铑催化剂。在其他实施例中,能够对生物异戊二烯组合物中的异戊二烯进行部分氢化以产生异戊烯的化学品包含氢气和用于催化异戊烯的部分氢化的催化剂。在其他实施例中,用于催化异戊二烯的部分氢化的催化剂包含钯催化剂。在其他实施例中,用于将异戊烯进行烷基化的异链烷烃为丙烷、异丁烷或异戊烷。在其他实施例中,所述系统还包含用于将异戊烯进行烷基化的酸催化剂。在其他实施例中,用于将异戊烯进行烷基化的催化剂为氢氟酸、硫酸、氟磺酸或全卤代烷基磺酸。在一些实施例中,用于催化异戊烯的复分解的催化剂包含铼配合物、钌配合物、铑配合物、锇配合物、钨配合物、钼配合物或钛配合物。在一些实施例中,用于异戊烯复分解的烯烃复分解催化剂与用于生物异戊二烯复分解的烯烃复分解催化剂不同。在一些实施例中,用于异戊烯复分解的烯烃复分解催化剂与用于生物异戊二烯复分解的烯烃复分解催化剂相同。在其他实施例中,烯烃产物包含高级(>C5)烯烃或低级(<C5)烯烃或这两者。在一些实施例中,来自异戊烯复分解的烯烃产物包含一种或多种选自乙烯和含6、8和12个碳原子的烯烃(例如二甲基己烯)的烯烃。
在另一个方面,本发明提供由本文所述的任何方法生产的燃料成分。在其他实施例中,燃料成分的δ13C值大于-22‰或者在-32‰至-24‰的范围内。
在另一个方面,本发明提供包含由本文所述的任何方法生产的燃料成分的燃料组合物。在一个实施例中,燃料组合物基本上不含异戊二烯。在其他实施例中,燃料组合物的δ13C值大于-22‰或者在-32‰至-24‰的范围内。
在另一个方面,本发明提供用于从生物异戊二烯组合物生产燃料成分的方法,所述方法包括(i)使生物异戊二烯组合物接触酸催化剂以产生一种或多种包含较高分子量烯烃产物(例如C16-C50烯烃)和较低分子量烯烃产物(例如C5-C15烯烃)的混合烯烃产物(例如C5-C50烯烃);(ii)将较高分子量烯烃产物(例如C16-C50烯烃)转化为较低分子量烯烃产物(例如C5-C15烯烃);以及(iii)对较低分子量烯烃产物(例如C5-C15烯烃)进行氢化以产生饱和烃(例如C5-C15烷烃)燃料成分;其中生物异戊二烯组合物中的异戊二烯的大部分被化学转化为一种或多种非异戊二烯化合物。在一个实施例中,将较高分子量烯烃产物(例如C16-C50烯烃)转化为较低分子量烯烃产物(例如C5-C15烯烃)的步骤包括热裂解、蒸汽裂解或复分解。
在另一个方面,本发明提供用于生产燃料成分的系统,所述系统包括:(a)包含生物异戊二烯组合物的发酵系统;以及(b)(i)一种或多种用于催化生物异戊二烯组合物中的异戊二烯的复分解以形成烯烃产物的催化剂,和(ii)一种能够将烯烃产物进行氢化以形成烷烃燃料成分的催化剂,其中生物异戊二烯组合物中的异戊二烯的大部分被化学转化为一种或多种非异戊二烯化合物。
在另一个方面,本发明提供用于生产燃料成分的系统,所述系统包括:(a)包含生物异戊二烯组合物的发酵系统;以及(c)(i)一种能够将生物异戊二烯组合物中的异戊二烯进行部分氢化以产生异戊烯的化学品,和(ii)一种用于对衍自生物异戊二烯组合物的异戊烯进行烷基化以产生燃料成分的异链烷烃,其中生物异戊二烯组合物中的异戊二烯的大部分被化学转化为一种或多种非异戊二烯化合物。
在另一个方面,本发明提供用于生产燃料成分的系统,所述系统包括:(a)包含生物异戊二烯组合物的发酵系统;以及(d)(i)一种能够将生物异戊二烯组合物中的异戊二烯进行部分氢化以产生异戊烯的化学品,(ii)一种或多种用于催化由生物异戊二烯组合物部分氢化而产生的异戊烯的复分解以形成烯烃产物的催化剂,和(iii)一种能够将该烯烃产物进行氢化以形成烷烃燃料成分的催化剂,其中生物异戊二烯组合物中的异戊二烯的大部分被化学转化为一种或多种非异戊二烯化合物。
在另一个方面,对于任何上述系统,发酵系统是连续发酵系统。在另一个方面,发酵系统选自分批发酵、补料-分批发酵、连续发酵和带再循环过程的连续发酵。在又另一个方面,在本文所述的任何系统中,生物异戊二烯组合物的至少99%是在气相中。
附图说明
图1显示几种在结构上与异戊二烯相似且还可充当聚合催化剂毒物的杂质的结构。
图2显示使用复分解催化剂将异戊二烯转化为乙烯、二甲基己三烯和高级低聚体的反应方案。
图3显示使用连续复分解反应器将生物异戊二烯组合物流转化为C7-C15燃料产物流的工艺流程图。
图4显示由Amberlyst15酸性树脂催化生物异戊二烯组合物中的异戊二烯低聚化而衍生的产物的GC/MS总离子色谱图。
图5显示将异戊烯类物质转化为燃料和燃料中间体的反应方案。
图6显示生物异戊二烯组合物的GC/FID色谱图。测得材料的纯度为99.7%。
图7显示衍自生物异戊二烯组合物的异戊二烯的完全氢化产物的GC/FID色谱图。异戊烷(2-甲基丁烷)在12.502分钟洗脱出,2-甲基-1-丁烯在13.052分钟洗脱出,异戊二烯在13.354分钟洗脱出,2-甲基-2-丁烯在13.826分钟洗脱出。
图8显示部分氢化的生物异戊二烯组合物的GC/FID色谱图。化合物1(RT=12.30min)=3-甲基-1-丁烯,化合物2(RT=12.70min)=2-甲基丁烷,化合物3(RT=13.23min)=2-甲基-1-丁烯,化合物4(RT=13.53min)=异戊二烯,化合物5(RT=14.01min)=2-甲基-2-丁烯)。
图9显示衍自生物异戊二烯组合物的异戊二烯的选择性氢化产物的GC/MS色谱图。异戊烷(2-甲基丁烷)在1.601分钟洗脱出,2-甲基-1-丁烯在1.643分钟洗脱出,2-甲基-2-丁烯在1.698分钟洗脱出。
图10的总离子色谱图显示异戊二烯回流通过Amberlyst15酸性树脂床后发生低聚化而衍生得到的产物。异戊二烯二聚体(10碳)在大约5至7.5分钟之间洗脱出,异戊二烯三聚体(15碳)在9至10.5分钟之间洗脱出,异戊二烯四聚体(20碳)在11至13分钟之间洗脱出。高级异戊二烯低聚体(>25碳)在13分钟后洗脱出。
图11显示使用低聚化反应器将C5流转化为C10/C15产物流的工艺流程图。C5流含有来自生物异戊二烯组合物的异戊二烯和/或来自生物异戊二烯组合物的异戊二烯的C5衍生物。
图12显示异戊二烯(2-甲基-1,3-丁二烯)的烯烃复分解产物的GC/MS色谱图。各产物的质谱在表6中列出。
图13A显示2-甲基-1-丁烯的烯烃复分解产物的GC/MS色谱图。4.994分钟的峰为甲苯杂质。5.210分钟和5.258分钟的峰为复分解产物(参见图13B和13B)。
图13B显示图13A中所示的色谱图中在5.200分钟至5.215分钟之间洗脱的峰的质谱。使用NIST2.0GC/MS库鉴定出该峰为3,4-二甲基-3-己烯的异构体。
图13C显示图13A中所示的色谱图中在5.250分钟至5.265分钟之间洗脱的峰的质谱。使用NIST2.0GC/MS库鉴定出该峰为3,4-二甲基-3-己烯的异构体。
图14A显示3-甲基-1-丁烯的烯烃复分解产物的GC/MS色谱图。4.305分钟的峰为复分解产物(参见图14B)。
图14B显示图14A中所示的色谱图中在4.291分钟至4.318分钟之间洗脱的峰的质谱。使用NIST2.0GC/MS库鉴定出该峰为2,5-二甲基-3-己烯。
图15A显示由异戊二烯(0.2%v/v)和Amberlyst15酸性树脂的气相反应衍生的产物的GC/MS色谱图。3-甲基-2-丁酮在3.734分钟洗脱出,异丙基甲苯(伞花烃)在7.284分钟洗脱出。异戊二烯三聚体在9.5分钟至10.5分钟之间洗脱出。3.286分钟、4.035分钟、7.390分钟和7.720分钟的峰是DCM注射溶剂中的污染物。
图15B显示由异戊二烯(2%v/v)和Amberlyst15酸性树脂的气相反应衍生的产物的GC/MS色谱图。3-甲基-3-丁酮在3.734分钟洗脱出,异丙基甲苯(伞花烃)在7.284分钟洗脱出。异戊二烯三聚体在9.5分钟至10.5分钟之间洗脱出,异戊二烯四聚体在11.5分钟至13分钟之间洗脱出。3.286分钟、4.035分钟和7.720分钟的峰是DCM注射溶剂中的污染物。
图15C显示由异戊二烯(10%v/v)和Amberlyst15酸性树脂的气相反应衍生的产物的GC/MS色谱图。3-甲基-3-丁酮在3.732分钟洗脱出,异丙基甲苯(伞花烃)在7.283分钟洗脱出。异戊二烯三聚体在9分钟至11分钟之间洗脱出,异戊二烯四聚体在11分钟至13分钟之间洗脱出。3.286分钟和4.035分钟的峰是DCM注射溶剂中的污染物。
图16显示异戊二烯蒸气(10%v/v)和Amberlyst15酸性树脂在20mL顶空小瓶中反应a)12小时(由“10%v/v异戊二烯,12”表示)和b)20分钟(由“10%v/v异戊二烯,20”表示)所获得的产物的比较。
图17显示用硅胶载10%磷酸处理生物异戊二烯蒸气而衍生的产物的GC/MS色谱图。主要产物为2-甲基-3-丁烯-2-醇(保留时间(RT)3.174分钟)和C10一氧化物(RT6.8-8.5分钟)。存在一些三聚体衍生物(9.5-11.5分钟)。没有观察到可检测的四聚体。
图18显示用Amberlyst15酸性树脂处理含有生物异戊二烯的发酵尾气而衍生的产物的GC/MS离子提取色谱图(ion extracted chromatogram),与对照进行比较。2-甲基-3-丁烯-2-醇在3.18分钟洗脱出,异丙基甲苯在7.28分钟洗脱出。
图19A显示用硅胶载10%H3PO4处理含有生物异戊二烯的发酵尾气而衍生的产物的GC/MS离子选取色谱图,与对照进行比较。2-甲基-3-丁烯-2-醇在3.18分钟洗脱出。图19B显示2-甲基-3-丁烯-2-醇的结构和质谱。
具体实施方式
本发明主要提供用于从异戊二烯生产燃料成分的方法、组合物和系统。燃料成分可通过对包含商业上有利量的高纯异戊二烯(这可从生物异戊二烯组合物出发得到)的原料进行化学转化来生产。可通过本发明的方法和系统生产的燃料成分包括但不限于衍自异戊二烯复分解的烃类、异戊二烯低聚体以及衍自异戊二烯的异戊烯类物质的烷基化物。燃料成分可用于制备各种燃料组合物。另外,由生物异戊二烯组合物的化学转化制备的产物具有其他用途,本文中有进一步的描述。
定义
除非另外定义,否则本文所用的所有技术和科学术语均具有与本发明所属领域普通技术人员所一般理解的含义相同的含义。尽管任何与本文所述的那些方法和材料相似或等同的方法和材料都可用于实施本发明,但在本文中描述优选的方法和材料以及可以使用的方法和材料。相应地,接下来定义的术语通过整体参照本说明书来更完整地描述。所有引用的文献在相关部分中以引用方式并入本文。然而,不应当将对任何文献的引用理解为承认其相对于本发明是现有技术。
本文所用的术语“燃料成分”指可用作燃料组分或燃料添加剂的化合物。
本文所用的“异戊二烯起始组合物的至少一部分”可指进行化学转化的异戊二烯起始组合物的至少约1%、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%、99.6%、99.7%、99.8%、99.9%或100%。
本文所用的术语“高级烯烃”指在每个分子中含有比异戊二烯更多的碳原子的烯烃。例如,C6-C12烯烃和C7-C15烯烃是高级烯烃。
本文所用的术语“低级烯烃”指在每个分子中含有比异戊二烯更少数量或相同数量的碳原子的烯烃。例如C2-C4烯烃和C2-C5烯烃是低级烯烃。
术语“异戊二烯”是指2-甲基-1,3-丁二烯(CAS号78-79-5)。它可以是从3,3-二甲基烯丙基焦磷酸(DMAPP)消除焦磷酸得到的直接和最终挥发性C5烃产物,并不涉及异戊烯基二磷酸(IPP)分子与DMAPP分子的连接或聚合。除非本文中另外指明,否则术语“异戊二烯”通常不旨在受其产生方法的限制。
如本文所用,“生物法生产的异戊二烯”或“生物异戊二烯”是通过任何生物手段产生的异戊二烯,例如通过遗传工程细胞培养物、天然微生物、植物或动物产生的异戊二烯。
“生物异戊二烯组合物”指可通过任何生物手段产生的组合物,所述生物手段例如经工程构建用于生产异戊二烯的系统(例如细胞)。它含有异戊二烯和与异戊二烯一起共同产生的(包括杂质)和/或分离的化合物。生物异戊二烯组合物具有与石化产生的异戊二烯组合物不同的杂质谱。如本文中进一步详述,生物异戊二烯组合物与石化异戊二烯组合物的区别在于,生物异戊二烯组合物基本上不含任何通常存在于石化异戊二烯组合物中的污染性不饱和C5烃类,如但不限于1,3-环戊二烯、反式-1,3-戊二烯、顺式-1,3-戊二烯、1,4-戊二烯、1-戊炔、2-戊炔、3-甲基-1-丁炔、戊-4-烯-1-炔、反式-戊-3-烯-1-炔和顺式-戊-3-烯-1-炔。如果有任何污染性不饱和C5烃类存在于本文描述的生物异戊二烯原料中,则它们的存在水平低于此类污染性不饱和C5烃类在石化异戊二烯组合物中的存在水平。因此,任何衍自本文所述生物异戊二烯组合物的燃料产物基本上不含任何此类污染性不饱和C5烃类,或者所含的此类污染性不饱和C5烃类的水平低于此类污染性不饱和C5烃类在衍自石油或化石燃料的燃料产物中的水平。另外,生物异戊二烯组合物中的硫水平低于石化异戊二烯组合物中的硫水平。衍自生物异戊二烯组合物的燃料产物含有的硫水平低于衍自化石原油的燃料产物中的硫水平。
本文所用的“发酵系统”指任何能够生产生物异戊二烯的细胞培养系统。
本文所用的术语“低聚化”指将两个或多个单体单元进行组合的化学过程。异戊二烯的“低聚化”产生出衍自两个或多个异戊二烯分子的异戊二烯衍生物,如异戊二烯的线性二聚体、异戊二烯的环状二聚体、异戊二烯的线性三聚体、异戊二烯的环状三聚体等。
“完全氢化”(名词或动词)定义为通常在氢化催化剂存在下,向前体化合物内的所有不饱和官能团(如碳-碳双键)加入氢(H2)以得到完全饱和的产物化合物。例如,异戊二烯的完全氢化会形成异戊烷,从而每摩尔的异戊二烯消耗2摩尔的H2。
“部分氢化”(名词或动词)定义为通常在氢化催化剂存在下,向前体化合物内的至少一个但非所有不饱和官能团(如碳-碳双键)加入氢(H2)。部分氢化的产物可进一步进行完全氢化以得到完全饱和的产物化合物。二烯的部分氢化形成一种或多种单烯烃。例如,异戊二烯的部分氢化可得到3个异构的异戊烯(2-甲基-1-丁烯、2-甲基-2-丁烯和3-甲基-1-丁烯),从而每摩尔的异戊二烯消耗1摩尔的H2。
“选择性氢化”(名词或动词)定义为通常在氢化催化剂存在下,向前体化合物内的至少一个但非所有不饱和官能团(如碳-碳双键)加入氢(H2),由此在选定的条件下某些不饱和官能团比其他不饱和官能团优先被氢化。例如,异戊二烯的选择性氢化可优先形成2-甲基-2-丁烯、2-甲基-1-丁烯、3-甲基-1-丁烯或它们的混合物。
如本文所用,除非上下文另有明确说明,否则单数“一个”、“一种”和“该”包括复数指代。
在本说明书通篇中给出的每一个上限值旨在包括每一个下限值,就如同此类下限值在本文中明确地写出一样。在本说明书通篇中给出的每一个下限值将包括每一个上限值,就如同此类上限值在本文中明确地写出一样。在本说明书通篇中给出的每一个数值范围将包括落入此类较宽数值范围内的每一个较窄数值范围,就如同此类较窄数值范围在本文中全部明确地写出一样。
生物异戊二烯组合物和系统
本发明主要提供用于从异戊二烯生产燃料成分和其他产物的方法、组合物和系统。燃料成分可通过对包含商业上有利量的高纯异戊二烯(这可从生物异戊二烯组合物出发得到)的原料进行化学转化来生产。
衍自石化来源的异戊二烯通常是不纯的C5烃级分,这种材料需要充分的纯化才能适用于聚合或其他化学转化。有几种杂质尤其成问题,因为它们与异戊二烯具有结构相似性并且可以充当聚合催化剂毒物。这类化合物包括但不限于1,3-环戊二烯、顺式和反式-1,3-戊二烯、1,4-戊二烯、1-戊炔、2-戊炔、3-甲基-1-丁炔、戊-4-烯-1-炔、反式-戊-3-烯-1-炔及顺式-戊-3-烯-1-炔。参见例如图1。如下详述,生物法生产的异戊二烯不进行充分的纯化就可基本上不含任何污染性不饱和C5烃类。生产异戊二烯的生物系统会产生出含有异戊二烯并另外含有生物系统所特有的其他杂质的组合物。这个组合物在本文中称为“生物异戊二烯组合物”。一些生物异戊二烯组合物含有乙醇、丙酮和C5异戊烯醇。这些组分比存在于衍自石化来源的异戊二烯组合物中的异构C5烃级分更容易从异戊二烯流中去除。此外,这些杂质可在生物过程中加以控制,例如通过生产菌株的遗传修饰、碳给料、另选的发酵条件、回收工艺的改进以及附加的或另选的纯化方法来加以控制。
能够生产异戊二烯的细胞
可将微生物进行工程改造以生产异戊二烯。此外,其他联产物也可与异戊二烯一起制备。可将细胞进行工程改造使其含有编码异戊二烯合酶多肽的异源核酸。各种异戊二烯合酶多肽、DXP途径多肽或DXS途径多肽、IDI多肽、MVA途径多肽、氢化酶多肽、氢化酶成熟或转录因子多肽以及核酸可在用于生产起始生物异戊二烯组合物的组合物和方法中使用。示例性的可以使用的核酸、多肽和酶在WO2009/076676和WO2010/003007中有描述,这两个专利还会包括附录,附录中列举示例性异戊二烯合酶、DXP途径、MVA途径、乙酰-CoA-乙酰转移酶、HMG-CoA合酶、羟甲基戊二酰-CoA还原酶、甲羟戊酸激酶、磷酸甲羟戊酸激酶、二磷酸甲羟戊酸脱羧酶、异戊烯基磷酸激酶(IPK)、异戊烯基-二磷酸δ-异构酶(IDI)多肽和核酸,以及本领域技术人员可用来制备异戊二烯生产细胞的其他多肽和核酸。
异戊二烯合酶
示例性的异戊二烯合酶核酸包括编码具有异戊二烯合酶多肽的至少一种活性的多肽、多肽片段、肽或融合多肽的核酸。异戊二烯合酶多肽将二甲基烯丙基二磷酸(DMAPP)转化成异戊二烯。示例性的异戊二烯合酶多肽包括具有异戊二烯合酶多肽的至少一种活性的多肽、多肽片段、肽和融合多肽。示例性的异戊二烯合酶多肽和核酸包括来自本文所述任何来源生物的天然多肽和核酸。另外,也可使用具有另外的活性的异戊二烯合酶变体。还包括衍自本文所述任何来源生物、具有至少一种异戊二烯合酶活性的变体异戊二烯合酶多肽。
可使用标准的方法,通过测量多肽在体外、在细胞提取物中或在体内将DMAPP转化为异戊二烯的能力,来测定该多肽是否具有异戊二烯合酶多肽活性。细胞提取物中的异戊二烯合酶多肽活性可例如按以下文献所描述进行测量:Silver等人,《生物化学杂志》(J.Biol.Chem.),270:13010-13016,1995。在一个实施例中,可将DMAPP(西格玛奥德里奇公司,威斯康星州(Sigma-Aldrich,WI))在氮气流下蒸发至干,然后在100mM磷酸钾缓冲液(pH8.2)中再水化至100mM的浓度,于-20℃下保藏。为进行该测定,可将5μL的1M MgCl2、1mM(250μg/ml)DMAPP、65μL的植物提取物缓冲液(PEB)(50mM Tris-HCl,pH8.0,20mM MgCl2,5%甘油和2mMDTT)的溶液加到20mL顶空小瓶中的25μL的细胞提取物,并在振动下37℃培养15分钟,该小瓶具有金属旋盖和涂特氟龙的硅隔膜(安捷伦科技公司(Agilent Technologies))。反应可通过加入200μL的250mM EDTA进行猝灭并通过GC/MS进行定量。
在一些实施例中,异戊二烯合酶多肽或核酸来自豆科(Fabaceae),例如蝶形花亚科(Faboideae)。在一些实施例中,异戊二烯合酶多肽或核酸是来自以下植物的多肽或核酸:山葛(Pueraria montana)(葛(kudzu))(Sharkey等人,《植物生理学》(Plant Physiology),137:700-712,2005)、野葛(Puerarialobata)、白杨(如银白杨(Populus alba)、黑杨(Populus nigra)、毛果杨(Populus trichocarpa)或Populus alba xtremula(CAC35696)(Miller等人,《植物》(Planta),213:483-487,2001)、山杨(如美洲山杨(Populus tremuloides)(Silver等人,《生物化学杂志》(JBC),270(22):13010-1316,1995)或英国椽夏椽(Quercus robur)(Zimmer等人,WO98/02550)。合适的异戊二烯合酶包括但不限于Genbank登记号AY341431、AY316691、AY279379、AJ457070和AY182241所标示的那些异戊二烯合酶。在一些实施例中,异戊二烯合酶核酸或多肽是来自白杨的天然多肽或核酸。在一些实施例中,异戊二烯合酶核酸或多肽不是来自白杨的天然多肽或核酸。
可使用的异戊二烯合酶的类型以及构建编码异戊二烯合酶的微生物(例如兼性厌氧菌如大肠杆菌(E.coli))的方法还在国际专利申请公布WO2009/076676、WO2010/003007、WO2009/132220、WO2010/031062、WO2010/031068、WO2010/031076、WO2010/031077、WO2010/031079、WO2010/148150、WO2010/005525、WO2010/078457、WO2010/124146、WO2010/148144、WO2010/148256及美国专利申请第12/496,573号、第12/560,390号、第12/560,317号、第12/560,370号、第12/560,305号和第12/560,366号中公开。
示例性的DXP途径多肽和核酸
DXS和IDI多肽是异戊二烯的生物合成的DXP途径的一部分。1-脱氧-D-木酮糖-5-磷酸合酶(DXS)多肽将丙酮酸和D-甘油醛-3-磷酸转化为1-脱氧-D-木酮糖-5-磷酸。不想受任何具体理论的约束,不过还是认为增加DXS多肽的量能增加流向DXP途径的碳流量,从而导致更高的异戊二烯产量。
示例性的DXS多肽包括具有DXS多肽的至少一种活性的多肽、多肽片段、肽和融合多肽。可使用本领域的技术人员所知的和本文引用的参考文献中所教导的标准方法,通过测量多肽在体外、在细胞提取物中或在体内将丙酮酸和D-甘油醛-3-磷酸转化为1-脱氧-D-木酮糖-5-磷酸的能力,来测定该多肽是否具有DXS多肽活性。示例性的DXS核酸包括编码具有DXS多肽的至少一种活性的多肽、多肽片段、肽或融合多肽的核酸。示例性的DXS多肽和核酸包括来自本文所述的任何来源生物的天然多肽和核酸以及衍自本文所述的任何来源生物的突变多肽和核酸。
MVA途径
在本发明的一些方面,在本文所述的任何组合物或方法中描述到的细胞包含编码MVA途径多肽的核酸。在一些实施例中,MVA途径多肽是内源多肽。在一些实施例中,细胞包含编码MVA途径多肽的内源核酸的一个或多个额外拷贝。在一些实施例中,编码MVA途径多肽的内源核酸有效连接到组成型启动子。在一些实施例中,编码MVA途径多肽的内源核酸有效连接到组成型启动子。在一些实施例中,编码MVA途径多肽的内源核酸有效连接到强启动子。在一个具体的实施例中,将细胞进行工程改造以相对于野生型细胞过表达内源MVA途径多肽。
在一些实施例中,MVA途径多肽是异源多肽。在一些实施例中,细胞包含超过一个拷贝的编码MVA途径多肽的异源核酸。在一些实施例中,编码MVA途径多肽的异源核酸有效连接到组成型启动子。在一些实施例中,编码MVA途径多肽的异源核酸有效连接到强启动子。
示例性的MVA途径多肽包括乙酰辅酶A乙酰转移酶(AA-CoA硫解酶)多肽、3-羟基-3-甲基戊二酰辅酶A合酶(HMG-CoA合酶)多肽、3-羟基-3-甲基戊二酰辅酶A还原酶(HMG-CoA还原酶)多肽、甲羟戊酸激酶(MVK)多肽、磷酸甲羟戊酸激酶(PMK)多肽、二磷酸甲羟戊酸脱羧酶(MVD)多肽、磷酸甲羟戊酸脱羧酶(PMDC)多肽、异戊烯基磷酸激酶(IPK)多肽、IDI多肽,以及具有两种或更多种MVA途径多肽的活性的多肽(例如,融合多肽)。具体地讲,MVA途径多肽包括具有MVA途径多肽的至少一种活性的多肽、多肽片段、肽和融合多肽。示例性的MVA途径核酸包括编码具有MVA途径多肽的至少一种活性的多肽、多肽片段、肽或融合多肽的核酸。示例性的MVA途径多肽和核酸包括来自本文所述任何来源生物的天然多肽和核酸。另外,也可使用能提高异戊二烯产量的MVA途径多肽变体。
在一个实施例中,使用本领域技术人员知道的标准技术,将需氧菌工程改造成具有异戊二烯合酶。在另一个实施例中,使用本领域技术人员知道的标准技术,将厌氧菌工程改造成具有异戊二烯合酶和一种或多种MVA途径多肽。在又另一个实施例中,使用本领域技术人员知道的标准技术,将需氧菌或厌氧菌工程改造成具有异戊二烯合酶、一种或多种MVA途径多肽和/或一种或多种DXP途径多肽。
可使用的MVA途径多肽和/或DXP途径多肽的类型以及构建编码MVA途径多肽和/或DXP途径多肽的微生物(例如兼性厌氧菌如大肠杆菌(E.coli))的方法还在国际专利申请公布WO2009/076676、WO2010/003007、WO2009/132220、WO2010/031062、WO2010/031068、WO2010/031076、WO2010/031077、WO2010/031079、WO2010/148150、WO2010/005525、WO2010/078457、WO2010/124146、WO2010/148144、WO2010/148256及美国专利申请第12/496,573号、第12/560,390号、第12/560,317号、第12/560,370号、第12/560,305号和第12/560,366号中公开。
本领域技术人员可容易地选择和/或使用合适的启动子来优化异戊二烯合酶或和一种或多种MVA途径多肽和/或一种或多种DXP途径多肽在厌氧菌中的表达。类似地,本领域技术人员可容易地选择和/或使用合适的载体(或转移媒介)来优化异戊二烯合酶或和一种或多种MVA途径多肽和/或一种或多种DXP途径多肽在厌氧菌中的表达。在一些实施例中,载体含有选择性标记。选择性标记的例子包括但不限于抗生素抗性核酸(例如,卡那霉素、氨苄青霉素、羧苄青霉素、庆大霉素、潮霉素、腐草霉素、博菜霉素、新霉素或氯霉素)和/或赋予宿主细胞代谢优势(如营养优势)的核酸。在一些实施例中,异戊二烯合酶或MVA途径核酸在没有选择性标记的情况下整合到细胞的染色体中。
在一些实施例中,载体是穿梭载体,其能够在两种或多种不同的宿主物种中增殖。示例性的穿梭载体能够在大肠杆菌和/或枯草芽孢杆菌(Bacillus subtilis)中以及在专性厌氧菌如梭菌属(Clostridium)中复制。在使用本领域公知的技术将异戊二烯合酶或MVA途径核酸插入到穿梭载体中之后,可将穿梭载体引入到大肠杆菌宿主细胞中以进行该载体的扩增和选择。然后可分离该载体并引入到专性厌氧菌细胞中以进行异戊二烯合酶或MVA途径多肽的表达。
示例性的IDI多肽和核酸
异戊烯基二磷酸异构酶多肽(异戊烯基二磷酸-δ-异构酶或IDI)催化异戊烯基二磷酸(IPP)和二甲基烯丙基二磷酸(DMAPP)的互变(如,将IPP转化为DMAPP和/或将DMAPP转化为IPP)。不想受任何具体理论的约束,不过还是认为增加细胞中IDI多肽的量能增加被转化为DMAPP的IPP的量(和转化速率),DMAPP进而被转化为异戊二烯。示例性的IDI多肽包括具有IDI多肽的至少一种活性的多肽、多肽片段、肽和融合多肽。可使用标准的方法,通过测量多肽在体外、在细胞提取物中或在体内使IPP和DMAPP互变的能力,来测定该多肽是否具有IDI多肽活性。示例性的IDI核酸包括编码具有IDI多肽的至少一种活性的多肽、多肽片段、肽或融合多肽的核酸。示例性的IDI多肽和核酸包括来自本文所述的任何来源生物的天然多肽和核酸以及衍自本文所述的任何来源生物的突变多肽和核酸。
来源生物
异戊二烯合酶和/或MVA途径核酸(以及它们编码的多肽)和/或DXP途径核酸(以及它们编码的多肽)可从任何天然含有异戊二烯合酶和/或MVA途径核酸和/或DXP途径核酸的生物获得。如上所述,异戊二烯由多种生物(例如细菌、酵母、植物和动物)天然形成。一些生物含有产生异戊二烯的MVA途径。异戊二烯合酶核酸可例如从任何含有异戊二烯合酶的生物获得。MVA途径核酸可例如从任何含有MVA途径的生物获得。DXP途径核酸可例如从任何含有DXP途径的生物获得。
可使用的异戊二烯合酶、MVA途径多肽和/或DXP途径多肽以及其他多肽(包括编码本文所述的任何多肽的核酸)的示例性来源还在国际专利申请公布WO2009/076676、WO2010/003007、WO2009/132220、WO2010/031062、WO2010/031068、WO2010/031076、WO2010/031077、WO2010/031079、WO2010/148150、WO2010/005525、WO2010/078457、WO2010/124146、WO2010/148144、WO2010/148256及美国专利申请第12/496,573号、第12/560,390号、第12/560,317号、第12/560,370号、第12/560,305号和第12/560,366号中描述。
宿主细胞
可使用各种类型的宿主细胞来生产作为生物异戊二烯组合物的一部分的异戊二烯。在一些实施例中,宿主细胞是酵母,如酵母菌属(Saccharomyces sp.)、裂殖酵母属(Schizosaccharomyces sp.)、毕赤酵母属(Pichia sp.)或假丝酵母属(Candida sp.)。
在一些实施例中,宿主细胞是细菌,如茅孢杆菌属(Bacillus)的菌株如地衣茅孢杆菌(B.lichenformis)或枯草茅孢杆菌(B.subtilis)、泛菌属(Pantoea)的菌株如柠檬泛菌(P.citrea)、假单胞菌属(Pseudomonas)的菌株如产碱假单胞菌(P.alcaligenes)、链霉菌属(Streptomyces)的菌株如变铅青链霉菌(S.lividans)或锈赤链霉菌(S.rubiginosus)、埃希氏菌属(Escherichia)的菌株如大肠杆菌(E.coli)、肠杆菌属(Enterobacter)的菌株、链球菌属(Streptococcus)的菌株或古细菌(Archaea)的菌株如马氏甲烷八叠球菌(Methanosarcinamazei)。
本文所用的“芽孢杆菌属”包括本领域技术人员已知的“芽孢杆菌属”内的所有种,包括但不限于例如枯草芽孢杆菌、地衣芽孢杆菌(B.licheniformis)、迟缓茅孢杆菌、短芽孢杆菌(B.brevis)、嗜热脂肪茅孢杆菌(B.stearothermophilus)、嗜碱茅孢杆菌(B.alkalophilus)、解淀粉芽孢杆菌、克劳氏芽孢杆菌(B.clausii)、耐盐芽孢杆菌(B.halodurans)、巨大芽孢杆菌(B.megaterium)、凝结茅孢杆菌(B.coagulans)、环状芽孢杆菌(B.circulans)、灿烂茅孢杆菌(B.lautus)和苏云金茅孢杆菌(B.thuringiensis)。应该认识到,还在继续对芽孢杆菌属进行分类学整理。因此,意在使该属包括已经重新分类的种,包括但不限于诸如现在命名为“嗜热脂肪地茅孢杆菌(Geobacillus stearothermophilus)”的嗜热脂肪茅孢杆菌之类的生物体。在存在氧气的情况下抗性内生孢子的产生被视为芽孢杆菌属的定义性特征,但该特性还适用于最近命名的脂环酸芽孢杆菌属(Alicyclobacillus)、双芽孢杆菌属(Amphibacillus)、解硫胺素芽孢杆菌属(Aneurinibacillus)、厌氧茅孢杆菌属(Anoxybacillus)、短芽孢杆菌属(Brevibacillus)、线茅孢杆菌属(Filobacillus)、薄壁芽孢杆菌属(Gracilibacillus)、嗜盐茅孢杆菌属(Halobacillus)、类芽孢杆菌属(Paenibacillus)、盐芽孢杆菌属(Salibacillus)、热芽孢杆菌属(Thermobacillus)、脲芽孢杆菌属(Ureibacillus)和枝芽孢杆菌属(Virgibacillus)。
在一些实施例中,宿主细胞是革兰氏阳性细菌。非限制性例子包括链霉菌属的菌株(例如变铅青链霉菌(S.lividans)、天蓝色链霉菌(S.coelicolor)或灰色链霉菌(S.griseus)和芽孢杆菌(Bacillus)。在一些实施例中,来源生物是革兰氏阴性细菌如大肠杆菌或假单胞菌属(Pseudomonas sp.)。
在一些实施例中,宿主细胞是植物,例如豆科(Fabaceae)如蝶形花亚科(Faboideae)的植物。在一些实施例中,来源生物是葛、白杨(如Populusalba x tremula CAC35696)、山杨(如美洲山杨(Populus tremuloides))或夏椽(Quercus robur)。
在一些实施例中,宿主细胞是藻类,如绿藻、红藻、灰胞藻门(glaucophyte)、chlorarachniophyte、鞭毛虫、色藻界(chromista)或沟鞭藻类。
在一些实施例中,宿主细胞是蓝细菌,如根据形态学分类为以下任何一组的蓝细菌:色球藻目(Chroococcales)、宽球藻目(Pleurocapsales)、颤藻目(Oscillatoriales)、念珠藻目(Nostocales)或真枝藻目(Stigonematales)。
在一些实施例中,宿主细胞是厌氧生物。这些生物可包括但不限于专性厌氧菌、兼性厌氧菌和耐氧性厌氧菌。这种生物可以是以上所列生物中的任何一种、细菌、酵母等。在一个实施例中,专性厌氧菌可以是选自以下细菌的任一者或组合:扬氏梭菌(Clostridium ljungdahlii)、自产乙醇梭菌(Clostridium autoethanogenum)、Eurobacterium limosum、Clostridiumcarboxydivorans、产生消化链球菌(Peptostreptococcus productus)和食甲基丁酸杆菌(Butyribacterium methylotrophicum)。在其他方面,宿主细胞可以是醋酸梭菌(Clostridium aceticum)、丙酮丁醇梭菌(Clostridiumacetobutylicum)、热醋穆尔氏菌(Moorella thermoacetica)、深红红螺菌(Rhodospirillum rubrum)、Desulfitobacterium hafniense、Aecetoanaerobiumnotera、Thermoanaerobacter kivui或Acetobacterium woodi。
在一些实施例中,细胞是梭菌属细菌细胞。在一些实施例中,细胞选自扬氏梭菌、醋酸梭菌、丙酮丁醇梭菌、Clostridium carboxidivorans和自产乙醇梭菌。在一些实施例中,细胞是醋杆菌属细菌(Acetobacterium)细胞。在一些实施例中,细胞是Acetobacterium woodi。在一些实施例中,细胞是产乙酸菌细胞。在一些实施例中,产乙酸菌选自扬氏梭菌、醋酸梭菌、热醋穆尔氏菌、深红红螺菌、Desulfitobacterium hafniense、Clostridium carboxidivorans、Aecetoanaerobium notera、食甲基丁酸杆菌、Thermoanaerobacter kivui、粘液真杆菌(Eubacterium limosum)、产生消化链球菌、Desulfococcus oleovorans、Syntrophobacter fumaroxidans、deltaproteobacterium MLMS-1、Treponema primitia ZAS-1、Treponema primitiaZAS-2、Carboxydothermus hydrogenoformans、Sporomsa termitida、艰难梭菌(Clostridium difficile)、Alkaliphilus metalliredigens和Acetobacteriumwoodi。
在一些实施例中,宿主细胞是光合作用细胞。在其他实施例中,宿主细胞是非光合作用细胞。
转化方法
可使用标准技术将编码异戊二烯合酶和/或MVA途径多肽和/或DXP途径多肽的核酸插入到任何宿主细胞中,以进行所编码的异戊二烯合酶和/或MVA途径多肽的表达。通用的转化技术是本领域知道的(参见例如《分子生物学实验手册》(Current Protocols in Molecular Biology)(F.M.Ausubel等人(编辑),第9章,1987;Sambrook等人,《分子克隆实验手册》(Molecular Cloning:A Laboratory Manual),第2版,冷泉港出版社(Cold Spring Harbor),1989;以及Campbell等人,《当代遗传学》(Curr.Genet.),16:53-56,1989;或者《梭菌手册》(“Handbook on Clostridia”)(P.Durre编辑,2004)。对于专性厌氧宿主细胞如梭菌属,可使用电穿孔(如由Davis等人(2005)描述,以及在实例III和IV中描述)作为有效的技术。引入的核酸可整合到染色体DNA中或维持为染色体外复制型序列。
用于在能产生异戊二烯的细胞的培养物中生产异戊二烯的技术在以下专利申请中描述:WO2009/076676、WO2010/003007、WO2009/132220、WO2010/031062、WO2010/031068、WO2010/031076、WO2010/031077、WO2010/031079、WO2010/148150、WO2010/005525,WO2010/078457、WO2010/124146、WO2010/148144、WO2010/148256以及美国专利申请第12/496,573号、第12/560,390号、第12/560,317号、第12/560,370号、第12/560,305号和第12/560,366号,出于教导通过这种工艺生产和回收异戊二烯的技术的目的,将这些专利申请的教导内容以引用方式并入本文。无论如何,WO2009/076676、WO2010/003007、WO2010/031079、WO2010/031062、WO2010/031077、WO2010/031068、WO2010/031076、WO2010/078457、US2009/0203102A1和US2010/0003716A1教导了用于使细胞培养物中异戊二烯产量提高的组合物和方法。美国专利公开文本第2009/0203102号和美国专利公开文本第2010/0196977号还教导了用于从培养的细胞共同产生异戊二烯和氢气的组合物和方法。具体而言,这些组合物和方法能提高异戊二烯的生产速率和提高异戊二烯的总生产量。
如上讨论,可通过将编码异戊二烯合酶多肽(例如植物异戊二烯合酶多肽)的异源核酸引入到细胞中,来大大提高细胞的异戊二烯生产量。异戊二烯合酶多肽将二甲基烯丙基二磷酸(DMAPP)转化为异戊二烯。
另外,可通过提高由含有异源异戊二烯合酶核酸的细胞表达的1-脱氧-D-木酮糖-5-磷酸合酶(DXS)多肽和/或异戊烯基二磷酸异构酶(IDI)多肽的量,来提升所述细胞的异戊二烯产量。
还可使用铁硫簇相互作用氧化还原多肽(iron-sulfur cluster-interactingredox polypeptide)来提高DXP途径多肽(如HDS(GcpE或IspG)或HDR多肽(IspH或LytB)所显示的活性。不想受具体理论的约束,不过还是认为一种或多种内源或异源铁硫相互作用氧化还原核酸或多肽的表达的提高能改进含有铁硫簇的DXP途径多肽(如HDS或HDR)的形成速率和量,和/或使含有铁硫簇的DXP途径多肽(如HDS或HDR)稳定。这进而通过提高DXP途径中的HMBPP和/或DMAPP的合成和减少cMEPP和HMBPP库(pool)来增加细胞中流向异戊二烯合成的碳流。
生长条件
任何组合物或方法的细胞(例如需氧的或厌氧的)应在有助于异戊二烯的最优产量的条件下生长。优化的考虑因素包括细胞培养基、氧水平以及有利于去耦的条件(这种条件使得异戊二烯生产优先于细胞生长)(参见例如WO2010/003007,将其并入本文以教导优化,包括细胞培养基、氧水平以及有利于去耦的条件)。对于需氧细胞,应使用能提供最优充氧以便细胞能够生产异戊二烯的细胞培养条件。
应考虑针对易燃性的安全预防措施,如在能使系统的易燃性减至最低的氧气范围进行培养。根据异戊二烯的易燃性特征在安全操作水平内进行异戊二烯生产,能简化商业设施的设计和建造,极大改善安全操作的能力,限制火灾发生的潜在可能性。易燃性区域(flammability envelope)由易燃性下限(LFL)、易燃性上限(UFL)、极限氧浓度(LOC)和极限温度表征。要使系统易燃,必须有最低限度数量的燃料(如异戊二烯)存在于最低限度数量的氧化剂(通常为氧气)中。LFL是为了维持燃烧而必须存在的异戊二烯最低量,而UFL是可存在的异戊二烯最大量。超过这个极限,混合物富含燃料而氧气分数过低,从而得不到易燃的混合物。LOC表示为了得到易燃的混合物而同时必须存在的氧气的最低分数。极限温度基于异戊二烯的闪点,是异戊二烯的燃烧可蔓延的最低温度。这些极限具体取决于异戊二烯的浓度、氧化剂的类型和浓度、系统中存在的惰性物质、系统的温度和压力。处于易燃性区域的界限内的组合物会使燃烧蔓延,因此在工艺设备的设计和操作上都需要额外的安全预防措施。具体而言,进行异戊二烯生产的最佳范围是在安全区内,即异戊二烯浓度的不易燃范围。在一个这种方面,本发明涉及在异戊二烯浓度的不易燃范围内(在异戊二烯的易燃性区域之外)生产异戊二烯的方法。参见例如WO2010/003007,将其并入本文以教导易燃性范围。
在一个实施例中,对于在40℃和1大气压下的异戊二烯、O2、N2和CO2混合物,测出LOC为9.5体积%。加入最高达30%的CO2并没有显著影响异戊二烯、O2和N2混合物的易燃性特征。干燥的和水饱和的异戊二烯、O2和N2系统之间在易燃性特征上仅表现出微小的变化。极限温度为约-54℃。约-54℃以下的温度太低,以至于不能使异戊二烯的燃烧蔓延。
在一些实施例中,异戊二烯的LFL在约1.5体积%至约2.0体积%的范围内,异戊二烯的UFL在约2.0体积%至约12.0体积%的范围内,取决于系统中氧气的量。在一些实施例中,LOC为约9.5体积%氧气。在一些实施例中,当温度在约25℃至约55℃之间(如约40℃)并且压力在约1大气压至3大气压之间时,异戊二烯的LFL在约1.5体积%至约2.0体积%之间,异戊二烯的UFL在约2.0体积%至约12.0体积%之间,LOC为约9.5体积%氧气。
在一些实施例中,在小于约9.5体积%的氧气(也即,低于要使异戊二烯混合物易燃而需要的LOC)的存在下生产异戊二烯。在一些在大于或约9.5体积%氧气的存在下生产异戊二烯的实施例中,异戊二烯浓度低于LFL(如低于约1.5体积%)。例如,可通过用惰性气体稀释异戊二烯组合物来使异戊二烯的量保持低于LFL(例如通过连续地或定期地加入惰性气体如氮气以保持异戊二烯组合物低于LFL)。在一些在大于或约9.5体积%氧气的存在下生产异戊二烯的实施例中,异戊二烯浓度高于UFL(如高于约12体积%)。例如,可通过使用能以高于UFL的浓度生产异戊二烯的系统(如本文所述的任何细胞培养系统),使异戊二烯的量保持高于UFL。如果需要,可使用相对低水平的氧气,使得UFL也相对低。在这个情况中,需要较低的异戊二烯浓度来保持高于UFL。
在一些在大于或约9.5体积%氧气的存在下生产异戊二烯的实施例中,异戊二烯浓度在易燃性区域内(例如在LFL和UFL之间)。在一些实施例中,当异戊二烯浓度可能处于易燃性区域内时,进行一个或多个步骤以减少火灾或爆炸的可能性。例如,可避免一种或多种着火来源(如任何可能产生火花的材料)。在一些实施例中,进行一个或多个步骤以减少异戊二烯的浓度保持在易燃性区域内的时间长度。在一些实施例中,使用传感器来检测异戊二烯的浓度何时接近易燃性区域或处于易燃性区域内。如果需要,可在细胞培养过程中的一个或多个时间点测量异戊二烯的浓度,并且如果异戊二烯的浓度接近易燃性区域或处于易燃性区域内的话,可使用标准的方法调整细胞培养条件和/或惰性气体的量。在具体的实施例中,可调整细胞培养条件(如发酵条件)以使异戊二烯的浓度降低到低于LFL或使异戊二烯的浓度增加到高于UFL。在一些实施例中,可通过用惰性气体稀释异戊二烯组合物来使异戊二烯的量保持低于LFL(例如通过连续地或定期地加入惰性气体以保持异戊二烯组合物低于LFL)。
在一些实施例中,异戊二烯以外的易燃性挥发物(如一种或多种糖)的量比生产出的异戊二烯的量少至少约2、5、10、50、75或100倍。在一些实施例中,异戊二烯气体以外的气相部分包含约0%至约100%(体积)氧气,如约0%至约10%、约10%至约20%、约20%至约30%、约30%至约40%、约40%至约50%、约50%至约60%、约60%至约70%、约70%至约80%、约90%至约90%或约90%至约100%(体积)氧气。在一些实施例中,异戊二烯气体以外的气相部分包含约0%至约99%(体积)氮气,如约0%至约10%、约10%至约20%、约20%至约30%、约30%至约40%、约40%至约50%、约50%至约60%、约60%至约70%、约70%至约80%、约90%至约90%或约90%至约99%(体积)氮气。
在一些实施例中,异戊二烯气体以外的气相部分包含约1%至约50%(体积)CO2,如约1%至约10%、约10%至约20%、约20%至约30%、约30%至约40%或约40%至约50%(体积)CO2。
在一些实施例中,异戊二烯组合物还含有乙醇。例如,乙醇可用于异戊二烯的萃取蒸馏,从而得到同时包含乙醇和异戊二烯的组合物(如中间产物流)。理想地,乙醇的量在乙醇的易燃性区域之外。在标准条件如约1大气压和约60F下,乙醇的LOC为约8.7体积%,乙醇的LFL为约3.3体积%(“NFPA69爆炸预防系统标准”(NFPA69Standard on ExplosiomPrevention Systems),2008年版,以引用方式将其整体并入本文,尤其针对LOC值、LFL值和UFL值)。在一些实施例中,包含异戊二烯和乙醇的组合物是在小于要使乙醇混合物易燃而需要的LOC(如小于约8.7%体积%)的存在下生产的。在包含异戊二烯和乙醇的组合物是在大于或约为要使乙醇混合物易燃而需要的LOC的存在下生产的一些实施例中,乙醇浓度低于LFL(如小于约3.3体积%)。
在各个实施例中,氧化剂的量(如氧气)低于系统中的任何燃料(如异戊二烯或乙醇)的LOC。在各个实施例中,氧化剂的量(如氧气)小于异戊二烯或乙醇的LOC的约60、40、30、20、10或5%。在各个实施例中,氧化剂的量(如氧气)小于异戊二烯或乙醇的LOC达至少2、4、5个或更多个绝对百分点(体积%)。在具体的实施例中,氧气的量比异戊二烯或乙醇的LOC小至少2个绝对百分点(体积%)(例如当异戊二烯的LOC为9.5体积%时,氧气浓度小于7.5体积%)。在各个实施例中,燃料(如异戊二烯或乙醇)的量小于或约为该燃料的LFL的25、20、15、10或5%。
对于兼性厌氧菌细胞,这些细胞能够在基本上不含氧气的发酵系统中复制和/或生产异戊二烯。
使用可再生资源来生产异戊二烯。可再生资源指不是化石燃料的资源。通常,可再生资源衍自活着的生物,或者衍自随着其被消耗可得到补充的最近活着的生物。可再生资源可通过自然生态循环或健全的管理措施得到更替。非限制性例子包括生物质(例如柳枝稷、大麻、玉米、白杨、柳树、高粱、甘蔗)、树木和其他植物。可再生资源(或者可再生碳源)的非限制性例子包括干酪乳清透过液(permeate)、玉米浆、糖用甜菜糖蜜、大麦麦芽以及来自前述任一者的组分。示例性的可再生碳源还包括生物质(如玉米、柳枝稷、甘蔗)中存在的葡萄糖、己糖、戊糖和木糖,发酵过程的细胞废物以及研磨大豆、玉米或小麦产生的蛋白质副产物。在一些实例中,生物质碳源为木质纤维素、半纤维素或纤维素材料,例如但不限于草、小麦、小麦秸秆、蔗渣、软木浆、玉米、玉米芯或壳、玉米籽粒、玉米籽粒纤维、玉米秸秆、柳枝稷、稻壳产物或湿磨或干磨谷物(如,玉米、高粱、裸麦、黑小麦、大麦、小麦和/或酒糟)的副产物。示例性纤维质材料包括木材、纸材和纸浆废物、草本植物和果肉。在一些实例中,碳源包括任何植物部分,例如茎、谷粒、根或块茎。在一些实例中,以下任一植物的全部或部分用作碳源:玉米、小麦、裸麦、高粱、黑小麦、大米、小米、大麦、木薯、豆类(例如黄豆和豌豆)、马铃薯、红薯、香蕉、甘蔗和/或木薯。在一些实例中,碳源为生物质水解产物,例如包括木糖和葡萄糖或包括蔗糖和葡萄糖的生物质水解产物。
其他可使用的发酵系统和培养条件的例子在WO2009/076676、WO2010/003007、WO2009/132220、WO2010/031062、WO2010/031068、WO2010/031076、WO2010/031077、WO2010/031079、WO2010/148150、WO2010/005525,WO2010/078457、WO2010/124146、WO2010/148144、WO2010/148256以及美国专利申请第12/496,573号、第12/560,390号、第12/560,317号、第12/560,370号、第12/560,305号和第12/560,366号中有描述。
生物反应器
多种不同类型的反应器可用于从任何可再生资源生产异戊二烯。有众多不同类型的发酵工艺在商业上使用。可设计生物反应器以优化细胞的保留时间、液体的停留时间和任何气体(例如合成气)的喷射速率。
在各个实施例中,使用任何已知的发酵方式来培养细胞,如分批发酵、补料-分批发酵、连续发酵和带再循环过程的连续发酵。在一些实施例中,使用分批发酵方法。传统的分批发酵是封闭系统,其中培养基组成在发酵开始时设定,并且在发酵过程中不进行人为改变。因此,在发酵开始时,用所需的宿主细胞接种细胞培养基,并在不向系统添加任何物质的情况下进行发酵。然而,通常“分批”发酵是针对添加碳源而言的分批,而通常会尝试控制诸如pH和氧气浓度的因素。在分批系统中,直到发酵停止以前,系统的代谢物和生物质组成都不断改变。在分批培养中,细胞慢慢通过静息迟滞期进入高速对数生长期,并最终到达生长速率降低或停止的稳定期。在一些实例中,对数期中的细胞负责异戊二烯生产的大部分。在一些实例中,稳定期中的细胞生产异戊二烯。
在一些实施例中,使用标准分批系统的变型,如补料分批系统。补料分批发酵工艺包括典型的分批系统,例外的是随着发酵的进行以增量的形式添加碳源(例如合成气、葡萄糖)。在分解代谢物阻遏倾向于抑制细胞的代谢时和在需要在细胞培养基中具有有限量的碳源的情况下,补料分批系统是有用的。补料-分批发酵可以在碳源(例如合成气、葡萄糖、果糖)处于有限量或过量的情况下进行。补料分批系统中实际碳源浓度的测量是困难的,因此根据诸如pH、溶氧、尾气(如CO2)分压的可测量因素的变化进行估计。分批发酵和分批补料发酵是通用的并为本领域所熟知,其例子可在如下文献中找到:Brock,《生物技术:工业微生物学教材》(Biotechnology:A Textbook of Industrial Microbiology),第二版,1989,Sinauer Associates,Inc.出版社。
在一些实施例中,使用连续发酵方法。连续发酵是开放系统,其中限定的发酵培养基被连续地添加到生物反应器,并同时移取等量的经调理的培养基进行加工。连续发酵通常以恒定的高密度维持培养物,其中细胞主要处于对数生长期。
连续发酵使得可以调节影响细胞生长或异戊二烯生产的一个因素或多个因素。例如,一种方法以固定的速率维持限制性营养物如碳源或氮源水平,同时让所有其他参数调节。在其他系统中,可连续地改变多个影响生长的因素,同时保持细胞浓度(例如通过培养基浊度测量的浓度)恒定。连续系统旨在维持稳态生长条件。因此,使由于移取培养基导致的细胞损失与发酵中的细胞生长速率保持平衡。调节连续发酵工艺的营养物和生长因子的方法以及使产物形成速率最大化的技术是工业微生物学领域公知的,有多种方法在以下文献中详述:Brock,《生物技术:工业微生物学教材》(Biotechnology:A Textbook of Industrial Microbiology),第二版,1989,Sinauer Associates,Inc.出版社,将其以引用方式整体并入本文,特别是针对细胞培养和发酵条件。
连续发酵方法的一种变型是带再循环的连续方法(continuous withrecycle method)。这个系统与连续生物反应器相似,差别在于通过细胞量(cell mass)分离装置将随同液体内容物一起去除的细胞返回到生物反应器。使用错流过滤装置、离心机、沉降罐、木片、水凝胶和/或中空纤维来进行细胞量分离或保留。这个工艺通常用来提高连续生物反应器系统的生产率,并且对于厌氧菌可能特别有用-厌氧菌可能比需氧菌生长更慢且浓度更低。
在一个实施例中,可使用膜生物反应器进行本文所述的细胞的生长和/或发酵,特别是如果预期细胞生长缓慢的话。可将膜过滤器如错流过滤器或切向流过滤器与生产异戊二烯气体的液体发酵生物反应器一起共同操作。通过将发酵与本来会被弃去的选定发酵液组分的再循环相结合,这种膜生物反应器能增加异戊二烯气体的发酵产量。MBR过滤发酵液并将非透过性组分(过滤器“截留液”)返回至反应器,从而有效地增加细胞、细胞碎片和其他发酵液固形物的反应器浓度,同时维持细胞的比生产率。这能显著改善异戊二烯的滴度、总产量和体积生产率,从而使得投资和运行成本更低。参见例如PCT/US2010/0161913,将其以引用方式整体并入,特别是为了其关于各种用于通过再循环截留液来改进异戊二烯产量的参数的教导内容。
滤液(或“透过液”)不返回反应器,从而使反应器体积有利地减小,这类似于收集发酵液排出物(broth draw-off)。然而,与发酵液排出物不同的是,收集的透过液为澄清的液体,其在普通容器中保藏后可通过过滤容易地进行灭菌。因此,该透过液可以容易地作为营养物和/或水再循环来源进行再利用。可将含有可溶性废培养基的透过液添加至同一发酵或另一发酵以提高异戊二烯产量。
生物异戊二烯组合物的示例性生产
在一些实施例中,将细胞在培养基中在允许细胞生产异戊二烯的条件下进行培养。
所谓“最高绝对生产率”是指在培养细胞持续特定的一段时间(例如在特定的发酵运行中培养细胞)过程中,尾气中异戊二烯的最大绝对量。所谓“最高绝对生产率时间点”是指在发酵运行的过程中,尾气中异戊二烯的绝对量处于培养细胞持续特定的一段时间(例如在特定的发酵运行中培养细胞)过程中的最大值的时间点。在一些实施例中,在最高绝对生产率时间点测量异戊二烯量。在一些实施例中,细胞的最高绝对生产率为大约本文公开的任何异戊二烯量。
所谓“最高比生产率”是指在培养细胞持续特定的一段时间(例如在特定的发酵运行中培养细胞)过程中,每个细胞所生产的异戊二烯最大量。所谓“最高比生产率时间点”是指在培养细胞持续特定的一段时间(例如在特定的发酵运行中培养细胞)过程中,每个细胞所生产的异戊二烯量处于最大值的时间点。最高比生产率通过将总生产率除以细胞的量来确定,细胞的量通过600nm处的光密度(OD600)来测定。在一些实施例中,在最高比生产率时间点测量异戊二烯量。在一些实施例中,细胞的最高比生产率为大约本文公开的任何每细胞异戊二烯量。
所谓“最高体积生产率”是指在培养细胞持续特定的一段时间(例如在特定的发酵运行中培养细胞)过程中,每体积发酵液(包括细胞和细胞培养基的体积)所生产的异戊二烯最大量。所谓“最高比体积生产率时间点”是指在培养细胞持续特定的一段时间(例如在特定的发酵运行中培养细胞)过程中,每体积发酵液所生产的异戊二烯量处于最大值的时间点。最高比体积生产率通过将总生产率除以发酵液体积和时间量来确定。在一些实施例中,在最高比体积生产率时间点测量异戊二烯的量。在一些实施例中,细胞的最高比体积生产率为大约本文公开的任何每体积每时间异戊二烯量。
所谓“最高浓度”是指在培养细胞持续特定的一段时间(例如在特定的发酵运行中培养细胞)过程中,所生产的异戊二烯最大量。所谓“最高浓度时间点”是指在培养细胞持续特定的一段时间(例如在特定的发酵运行中培养细胞)过程中,每个细胞所生产的异戊二烯量处于最大值的时间点。在一些实施例中,在最高浓度时间点测量异戊二烯的量。在一些实施例中,细胞的最高浓度为大约本文公开的任何异戊二烯量。
所谓“平均体积生产率”是指在培养细胞持续特定的一段时间(例如在特定的发酵运行中培养细胞)过程中,每体积发酵液(包括细胞和细胞培养基的体积)所生产的异戊二烯平均量。平均体积生产率通过将总生产率除以发酵液体积和时间量来确定。在一些实施例中,细胞的平均比体积生产率为大约本文公开的任何每体积每时间异戊二烯量。
所谓“累积总生产率”是指在培养细胞持续特定的一段时间(例如在特定的发酵运行中培养细胞)过程中,所生产的异戊二烯的累积总量。在一些实施例中,测量异戊二烯的累积总量。在一些实施例中,细胞的累积总生产率为大约本文公开的任何异戊二烯量。
本文所用的“相对检测器响应”指检测器对一种化合物(如异戊二烯)的响应(如GC/MS色谱图中的峰面积)与检测器对一种或多种化合物(如所有C5烃类)的响应(如GC/MS色谱图中的峰面积)之比。检测器响应可如本文所述进行测量,如用配有Agilent HP-5MS GC柱(30m×250μm;0.25μm膜厚)的Agilent6890GC/MS系统进行的GC/MS分析。如果需要,可使用每种化合物的响应系数将相对检测器响应换算为重量百分比。这个响应系数是给定量的特定化合物产生多少信号的度量(也即,检测器对特定化合物有多灵敏)。当检测器对被比较的各化合物具有不同的灵敏度时,这个响应系数可用作校正系数来将相对检测器响应换算为重量百分比。作为另一种选择,可通过假定被比较的各化合物的响应系数是相同的,来估计重量百分比。因此,可将重量百分比假定为与相对检测器响应大约相同。
在一些实施例中,培养中的细胞所产生的异戊二烯大于或约为1、10、25、50、100、150、200、250、300、400、500、600、700、800、900、1,000、1,250、1,500、1,750、2,000、2,500、3,000、4,000、5,000、10,000、12,500、20,000、30,000、40,000、50,000、75,000、100,000、125,000、150,000、188,000纳摩尔或更高纳摩尔异戊二烯/克细胞湿重/小时(nmole/gwcm/hr)。在一些实施例中,异戊二烯的量在约2至约200,000nmole/gwcm/hr之间,如约2至约100nmole/gwcm/hr之间,约100至约500nmole/gwcm/hr之间,约150至约500nmole/gwcm/hr之间,约500至约1,000nmole/gwcm/hr之间,约1,000至约2,000nmole/gwcm/hr之间,或约2,000至约5,000nmole/gwcm/hr之间,约5,000至约10,000nmole/gwcm/hr之间,约10,000至约50,000nmole/gwcm/hr之间,约50,000至约100,000nmole/gwcm/hr之间,约100,000至约150,000nmole/gwcm/hr之间,或约150,000至约200,000nmole/gwcm/hr之间。在一些实施例中,异戊二烯的量在约20至约5,000nmole/gwcm/hr之间,约100至约5,000nmole/gwcm/hr之间,约200至约2,000nmole/gwcm/hr之间,约200至约1,000nmole/gwcm/hr之间,约300至约1,000nmole/gwcm/hr之间,或约400至约1,000nmole/gwcm/hr之间,约1,000至约5,000nmole/gwcm/hr之间,约2,000至约20,000nmole/gwcm/hr之间,约5,000至约50,000nmole/gwcm/hr之间,约10,000至约100,000nmole/gwcm/hr之间,约20,000至约150,000nmole/gwcm/hr之间,约20,000至约200,000nmole/gwcm/hr之间,约50,000至约500,000nmole/gwcm/hr之间,或约100,000至约1,000,000nmole/gwcm/hr之间。
以nmole/gwcm/hr为单位表示的异戊二烯的量可如美国专利第5,849,970号中所公开进行测量,该专利以引用方式整体本文,特别是针对异戊二烯产量的测量。例如,使用标准的气相色谱系统,如具有正辛烷/多孔硅胶珠C柱(Alltech Associates,Inc.公司,伊利诺伊州迪尔菲尔德(Deerfield,Ill.))并连接到RGD2氧化汞还原气体检测器(Trace Analytical公司,加州门洛帕克(Menlo Park,CA))的等温下(85℃)操作的系统,分析2mL的顶空(例如来自在密封小瓶中于32℃、200rpm下振动培养大约3小时的培养物(如2mL培养物)的顶空)中的异戊二烯(参见例如Greenberg等人,《大气环境》(Atmos.Environ.),27A:2689-2692,1993;Silver等人,《植物生理学》(Plant Physiol.),97:1588-1591,1991;将这两篇文献各自以引用方式整体并入本文,特别是针对异戊二烯产量的测量)。通过标准的异戊二烯浓度校准曲线将气相色谱面积单位换算为纳摩尔异戊二烯。在一些实施例中,通过获得细胞培养物样品的A600值,然后将该A600值根据具有已知A600值的细胞培养物的湿重的校准曲线换算为细胞克数,来计算细胞湿重克数值。在一些实施例中,通过假定A600值为1的一升发酵液(包括细胞培养基和细胞)具有1克的细胞湿重来估计细胞克数。还将该值除以该培养物已温育的小时数,如三小时。
作为用于化学转化为燃料成分的原料的示例性异戊二烯组合物
使用异戊二烯起始组合物作为制备燃料成分的起点。为了效率,重要的是使用商业上有利量的高纯异戊二烯作为起点。在一个方面,商业上有利量的高纯异戊二烯存在于生物异戊二烯组合物中。在一些实施例中,生物异戊二烯组合物具有大于或约2、5、10、20、30、40、50、60、70、80、90、100、200、300、400、500、600、700、800、900或1000mg的异戊二烯。在一些实施例中,生物异戊二烯组合物具有大于或约1、10、100、1000、10,000、100,000、1,000,000Kg或更多的异戊二烯。在一些实施例中,起始组合物的挥发性有机部分的大于或约20、25、30、40、50、60、70、80、90或95%(w/w)为异戊二烯。
在一些实施例中,以起始生物异戊二烯组合物中所有C5烃类的总重量计,该起始组合物具有大于或约98.0、98.5、99.0、99.5或100重量%的异戊二烯。在一些实施例中,以起始生物异戊二烯组合物中所有C5烃类的总重量计,该起始组合物具有大于或约99.90、99.92、99.94、99.96、99.98或100重量%的异戊二烯。在一些实施例中,以起始组合物中所有C5烃类的检测器响应计,该起始组合物的异戊二烯相对检测器响应大于或约为98.0、98.5、99.0、99.5或100%。在一些实施例中,以起始组合物中所有C5烃类的检测器响应计,该起始组合物的异戊二烯相对检测器响应大于或约为99.90、99.91、99.92、99.93、99.94、99.95、99.96、99.97、99.98、99.99或100%。在一些实施例中,以起始生物异戊二烯组合物中所有C5烃类的总重量计,该起始组合物包含约98.0至约98.5、约98.5至约99.0、约99.0至约99.5、约99.5至约99.8、约99.8至100重量%的异戊二烯。在一些实施例中,以起始生物异戊二烯组合物中所有C5烃类的总重量计,该起始组合物包含约99.90至约99.92、约99.92至约99.94、约99.94至约99.96、约99.96至约99.98、约99.98至100重量%的异戊二烯。
在一些实施例中,以起始生物异戊二烯组合物中所有C5烃类的总重量计,该起始组合物包含小于或约2.0、1.5、1.0、0.5、0.2、0.12、0.10、0.08、0.06、0.04、0.02、0.01、0.005、0.001、0.0005、0.0001、0.00005或0.00001重量%的异戊二烯以外的C5烃类(如1,3-环戊二烯、顺式-1,3-戊二烯、反式-1,3-戊二烯、1,4-戊二烯、1-戊炔、2-戊炔、1-戊烯、2-甲基-1-丁烯、3-甲基-1-丁炔、戊-4-烯-1-炔、反式-戊-3-烯-1-炔或顺式-戊-3-烯-1-炔)。在一些实施例中,以起始组合物中所有C5烃类的检测器响应计,该起始组合物的异戊二烯以外的C5烃类的相对检测器响应小于或约为2.0、1.5、1.0、0.5、0.2、0.12、0.10、0.08、0.06、0.04、0.02、0.01、0.005、0.001、0.0005、0.0001、0.00005或0.00001%。在一些实施例中,以起始组合物中所有C5烃类的检测器响应计,该起始组合物的1,3-环戊二烯、顺式-1,3-戊二烯、反式-1,3-戊二烯、1,4-戊二烯、1-戊炔、2-戊炔、1-戊烯、2-甲基-1-丁烯、3-甲基-1-丁炔、戊-4-烯-1-炔、反式-戊-3-烯-1-炔或顺式-戊-3-烯-1-炔的相对检测器响应小于或约为2.0、1.5、1.0、0.5、0.2、0.12、0.10、0.08、0.06、0.04、0.02、0.01、0.005、0.001、0.0005、0.0001、0.00005或0.00001%。在一些实施例中,以起始生物异戊二烯组合物中所有C5烃类的总重量计,该起始组合物包含约0.02至约0.04重量%、约0.04至约0.06重量%、约0.06至0.08重量%、约0.08至0.10重量%或约0.10至约0.12重量%的异戊二烯以外的C5烃类(如1,3-环戊二烯、顺式-1,3-戊二烯、反式-1,3-戊二烯、1,4-戊二烯、1-戊炔、2-戊炔、1-戊烯、2-甲基-1-丁烯、3-甲基-1-丁炔、戊-4-烯-1-炔、反式-戊-3-烯-1-炔或顺式-戊-3-烯-1-炔)。
在一些实施例中,起始生物异戊二烯组合物包含小于或约50、40、30、20、10、5、1、0.5、0.1、0.05、0.01或0.005μg/L的异戊二烯以外的烃(如1,3-环戊二烯、顺式-1,3-戊二烯、反式-1,3-戊二烯、1,4-戊二烯、1-戊炔、2-戊炔、1-戊烯、2-甲基-1-丁烯、3-甲基-1-丁炔、戊-4-烯-1-炔、反式-戊-3-烯-1-炔或顺式-戊-3-烯-1-炔)。在一些实施例中,起始生物异戊二烯组合物包含约0.005至约50,如约0.01至约10、约0.01至约5、约0.01至约1、约0.01至约0.5或约0.01至约0.005μg/L的异戊二烯以外的烃。在一些实施例中,起始生物异戊二烯组合物包含小于或约50、40、30、20、10、5、1、0.5、0.1、0.05、0.01或0.005μg/L的蛋白质或脂肪酸(如与天然橡胶天然相关的蛋白质或脂肪酸)。
在一些实施例中,起始生物异戊二烯组合物包含小于或约10、5、1、0.8、0.5、0.1、0.05、0.01或0.005ppm的α-乙炔、戊间二烯、乙腈或1,3-环戊二烯。在一些实施例中,起始生物异戊二烯组合物包含小于或约5、1、0.5、0.1、0.05、0.01或0.005ppm的硫或丙二烯。在一些实施例中,起始生物异戊二烯组合物包含小于或约30、20、15、10、5、1、0.5、0.1、0.05、0.01或0.005ppm的所有乙炔(如1-戊炔、2-戊炔、3-甲基-1-丁炔、戊-4-烯-1-炔、反式-戊-3-烯-1-炔和顺式-戊-3-烯-1-炔)。在一些实施例中,起始生物异戊二烯组合物包含小于或约2000,1000,500,200,100,50,40,30,20,10,5,1,0.5,0.1,0.05,0.01或0.005ppm的异戊二烯二聚体,如环状异戊二烯二聚体(例如由两个异戊二烯单元的二聚化衍生的环状C10化合物)。
在一些实施例中,起始生物异戊二烯组合物包含乙醇、丙酮、甲醇、乙醛、异丁烯醛、甲基乙烯基甲酮、3-甲基呋喃、2-甲基-2-乙烯基环氧乙烷、顺式-和反式-3-甲基-1,3-戊二烯、C5异戊烯醇(如3-甲基-3-丁烯-1-醇或3-甲基-2-丁烯-1-醇),或者前述物质中的任何两者或多者。在具体的实施例中,起始生物异戊二烯组合物包含大于或约0.005、0.01、0.05、0.1、0.5、1、5、10、20、30、40、60、80、100或120μg/L的乙醇、丙酮、甲醇、乙醛、异丁烯醛、甲基乙烯基酮、3-甲基呋喃、2-甲基-2-乙烯基环氧乙烷、顺式-和反式-3-甲基-1,3-戊二烯、C5异戊烯醇(如3-甲基-3-丁烯-1-醇或3-甲基-2-丁烯-1-醇),或者前述物质中的任何两者或多者。在一些实施例中,生物异戊二烯组合物包含约0.005至约120,如约0.01至约80、约0.01至约60、约0.01至约40、约0.01至约30、约0.01至约20、约0.01至约10、约0.1至约80、约0.1至约60、约0.1至约40、约5至约80、约5至约60或约5至约40μg/L的乙醇、丙酮、甲醇、乙醛、异丁烯醛、甲基乙烯基酮、3-甲基呋喃、2-甲基-2-乙烯基环氧乙烷、顺式-和反式-3-甲基-1,3-戊二烯、C5异戊烯醇,或者前述物质中的任何两者或多者。
在一些实施例中,起始生物异戊二烯组合物包含以下组分中的一者或多者:2-庚酮、6-甲基-5-庚烯-2-酮、2,4,5-三甲基吡啶、2,3,5-三甲基吡嗪、香茅醛、乙醛、甲硫醇、乙酸甲酯、1-丙醇、双乙酰、2-丁酮、2-甲基-3-丁烯-2-醇、乙酸乙酯、2-甲基-1-丙醇、3-甲基-1-丁醛、3-甲基-2-丁酮、1-丁醇、2-戊酮、3-甲基-1-丁醇、异丁酸乙酯、3-甲基-2-丁烯醛、乙酸丁酯、乙酸-3-甲基丁酯、乙酸-3-甲基-3-丁烯-1-醇酯、乙酸-3-甲基-2-丁烯-1-醇酯、3-己烯-1-醇、乙酸-3-己烯-1-醇酯、柠檬烯、香叶醇(反式-3,7-二甲基-2,6-辛二烯-1-醇)、香茅醇(3,7-二甲基-6-辛烯-1-醇)、(E)-3,7-二甲基-1,3,6-辛三烯、(Z)-3,7-二甲基-1,3,6-辛三烯、2,3-环庚烯醇吡啶或线性异戊二烯聚合物(如由多个异戊二烯单元的聚合衍生的线性异戊二烯二聚体或线性异戊二烯三聚体)。在各个实施例中,这些组分中的一者的量相对于异戊二烯的量按重量百分比单位计(即,该组分的重量除以异戊二烯的重量乘以100)大于或约为0.01、0.02、0.05、0.1、0.5、1、5、10、20、30、40、50、60、70、80、90、100或110%(w/w)。在一些实施例中,该第二化合物的相对检测器响应与异戊二烯的检测器响应相比大于或约为0.01、0.02、0.05、0.1、0.5、1、5、10、20、30、40、50、60、70、80、90、100或110%。在各个实施例中,这些组分中的一者的量相对于异戊二烯的量按重量百分比单位计(即,该组分的重量除以异戊二烯的重量乘以100)为约0.01至约105%(w/w),如约0.01至约90、约0.01至约80、约0.01至约50、约0.01至约20、约0.01至约10、约0.02至约50、约0.05至约50、约0.1至约50或0.1至约20%(w/w)。
在一些实施例中,起始生物异戊二烯组合物的至少一部分处于气相。在一些实施例中,起始生物异戊二烯组合物的至少一部分处于液相(如冷凝液)。在一些实施例中,起始生物异戊二烯组合物的至少一部分处于固相。在一些实施例中,起始生物异戊二烯组合物的至少一部分被吸收到固相载体,如包含二氧化硅和/或活性炭的载体。在一些实施例中,起始生物异戊二烯组合物与一种或多种溶剂混合。在一些实施例中,起始生物异戊二烯组合物与一种或多种气体混合。
在一些实施例中,起始生物异戊二烯组合物包含以下一者或多者:醇、醛、酮或酯(如本文所述的醇、醛、酮或酯中的任一者)。在一些实施例中,生物异戊二烯组合物包含(i)醇和醛,(ii)醇和酮,(iii)醛和酮,或(iv)醇、醛和酮。在一些实施例中,任何异戊二烯组合物还包含酯。
在一些实施例中,起始生物异戊二烯组合物包含以下一者或多者:甲醇、乙醛、乙醇、甲硫醇、1-丁醇、3-甲基-1-丙醇、丙酮、乙酸、2-丁酮、2-甲基-1-丁醇或吲哚。在一些实施例中,起始生物异戊二烯组合物包含1ppm或更多的以下一者或多者:甲醇、乙醛、乙醇、甲硫醇、1-丁醇、3-甲基-1-丙醇、丙酮、乙酸、2-丁酮、2-甲基-1-丁醇或吲哚。在一些实施例中,以下一者或多者:甲醇、乙醛、乙醇、甲硫醇、1-丁醇、3-甲基-1-丙醇、丙酮、乙酸、2-丁酮、2-甲基-1-丁醇或吲哚在起始生物异戊二烯组合物(如纯化前的尾气)中的浓度为约1至约10,000ppm。在一些实施例中,起始生物异戊二烯组合物(如进行了一个或多个纯化步骤后的尾气)包含以下一者或多者:甲醇、乙醛、乙醇、甲硫醇、1-丁醇、3-甲基-1-丙醇、丙酮、乙酸、2-丁酮、2-甲基-1-丁醇或吲哚,其浓度为约1至约100ppm,例如约1至约10ppm、约10至约20ppm、约20至约30ppm、约30至约40ppm、约40至约50ppm、约50至约60ppm、约60至约70ppm、约70至约80ppm、约80至约90ppm或约90至约100ppm。在一些实施例中,起始生物异戊二烯组合物含有小于1ppm的甲硫醇(为强力催化剂毒物,且为最终燃料产物中的硫的来源)。来自细胞培养物的挥发性有机化合物(如细胞培养物的顶空中的挥发性有机化合物)可用标准方法进行分析,所述标准方法例如本文描述的那些,或者其他的标准方法,如质子转移反应质谱(参见例如Bunge等人,《应用与环境微生物学》(Applied and Environmental Microbiology),74(7):2179-2186,2008;将其以引用方式整体并入本文,特别是针对挥发性有机化合物的分析)。
本发明还设想到使用衍自能共生产异戊二烯和氢气的生物来源(如细胞培养物)的起始生物异戊二烯组合物。在一些实施例中,起始生物异戊二烯组合物包含的异戊二烯和氢气的比例,在从至少一摩尔百分比的异戊二烯每三摩尔百分比的氢气到至少一摩尔百分比的异戊二烯每四摩尔百分比的氢气的范围内。在一些实施例中,起始生物异戊二烯组合物包含的异戊二烯和氢气的比例,在从至少一摩尔百分比的氢气每三摩尔百分比的异戊二烯到至少一摩尔百分比的氢气每四摩尔百分比的异戊二烯的范围内。在一些实施例中,起始生物异戊二烯组合物包含的异戊二烯和氢气的摩尔比为约1-9、2-8、3-7、4-6、5-5、6-4、7-3、8-2或9-1。在一些实施例中,组合物还包含1-11摩尔百分比的异戊二烯和4-44摩尔百分比的氢气。在一些实施例中,组合物还包含氧气、二氧化碳或氮气。在一些实施例中,组合物还包含0-21摩尔百分比的氧气、18-44摩尔百分比的二氧化碳和0-78摩尔百分比的氮气。在一些实施例中,组合物还包含1.0×10-4摩尔百分比或更少的非甲烷挥发性杂质。在一些实施例中,非甲烷挥发性杂质包含以下一者或多者:2-庚酮、6-甲基-5-庚烯-2-酮、2,4,5-三甲基吡啶、2,3,5-三甲基吡嗪、香茅醛、乙醛、甲硫醇、乙酸甲酯、1-丙醇、双乙酰、2-丁酮、2-甲基-3-丁烯-2-醇、乙酸乙酯、2-甲基-1-丙醇、3-甲基-1-丁醛、3-甲基-2-丁酮、1-丁醇、2-戊酮、3-甲基-1-丁醇、异丁酸乙酯、3-甲基-2-丁烯醛、乙酸丁酯、乙酸-3-甲基丁酯、乙酸-3-甲基-3-丁烯-1-醇酯、乙酸-3-甲基-2-丁烯-1-醇酯、3-己烯-1-醇、乙酸-3-己烯-1-醇酯、柠檬烯、香叶醇(反式-3,7-二甲基-2,6-辛二烯-1-醇)、香茅醇(3,7-二甲基-6-辛烯-1-醇)、(E)-3,7-二甲基-1,3,6-辛三烯、(Z)-3,7-二甲基-1,3,6-辛三烯、2,3-环庚烯醇吡啶或线性异戊二烯聚合物(如由多个异戊二烯单元的聚合衍生的线性异戊二烯二聚体或线性异戊二烯三聚体)。在一些实施例中,非甲烷挥发性杂质包含以下一者或多者:异戊二烯组合物包含以下一者或多者:醇、醛或酮(例如本文所述的醇、醛或酮中的任一者)。在一些实施例中,异戊二烯组合物包含(i)醇和醛,(ii)醇和酮,(iii)醛和酮,或(iv)醇、醛和酮。在一些实施例中,非甲烷挥发性杂质包含以下一者或多者:甲醇、乙醛、乙醇、甲硫醇、1-丁醇、3-甲基-1-丙醇、丙酮、乙酸、2-丁酮、2-甲基-1-丁醇或吲哚。
回收
用于纯化来自发酵罐尾气的生物异戊二烯组合物的可用方法和设备在PCT/US2010/060552中描述,将该专利以引用方式整体并入本文。
来自发酵罐尾气的生物异戊二烯组合物可含有生物异戊二烯及挥发性杂质和生物副产物杂质。在一些实施例中,用包括以下步骤的方法纯化来自发酵罐尾气的生物异戊二烯组合物:(a)使发酵罐尾气与第一塔柱中的溶剂接触,以形成:包含该溶剂、大部分异戊二烯和大部分生物副产物杂质的富含异戊二烯的溶液;以及包含大部分挥发性杂质的蒸气;(b)将富含异戊二烯的溶液从第一塔柱转移至第二塔柱;以及(c)从第二塔柱中的富含异戊二烯的溶液中抽提出异戊二烯,以形成:包含大部分生物副产物杂质的低含异戊二烯的溶液以及纯化的异戊二烯组合物。
异戊二烯的示例性化学转化
现有的用于将衍自石油的异戊二烯化学转化为燃料成分的方法,当用于将生物衍生的异戊二烯转化为燃料成分时,对于实现最高的收率和最理想的产物混合物而言可能不是最佳的。衍自本文所述的生物资源的异戊二烯与衍自石油的异戊二烯相比具有不同的组合物和杂质谱(profile),因此这种异戊二烯向燃料成分的转化的最佳收率、产物混合物和产物杂质谱可能与用于衍自石油的异戊二烯的那些最佳收率、产物混合物和产物杂质谱不同。此外,由于衍自石油的异戊二烯的杂质谱,如异戊二烯之外的C5化合物的大量存在,衍自石油的异戊二烯通常必须先进行纯化才能进行进一步的化学转化。异戊二烯的纯化要花费时间和额外的资源,粗混合物中的一些异戊二烯可能在该处理过程中失去,从而导致所需燃料成分的总收率较低。另外,异戊二烯是高度反应性化合物,并且在许多反应条件下往往会形成胶质物和聚合物。本文描述的化学转化中的大部分通常是在液相中进行,或者使用非均相催化来进行,其中催化剂固定在固相载体上,而其他原料在液相中。在一些实施例中,化学转化可在液相或气相中进行。
本发明提供借助于生物异戊二烯组合物的易得性和独特杂质谱从生物异戊二烯组合物生产燃料成分的方法和组合物。对石油基异戊二烯组合物中存在的烃杂质敏感的化学反应,可用生物异戊二烯组合物在不进行充分的纯化的情况下进行。生物异戊二烯组合物可用于能容忍不经纯化的生物异戊二烯组合物中存在的氧化化合物的反应中,以生产燃料成分或燃料成分中间体。在一些情况下,氧化化合物的存在能增强异戊二烯的反应性和/或提高从异戊二烯起始的反应的收率。
虽然目前异戊二烯在工业上主要用于生产合成橡胶,但异戊二烯是一种反应性共轭二烯,会发生各种化学转化而形成氧化物和更高分子量的烃类。例如,钯(0)配合物(Pd(acac)2-Ph3P和Pd(OAc)2-Ph3P)能催化异戊二烯在醇溶剂中发生二聚化和调聚反应,以产生线性异戊二烯二聚体(例如2,7-二甲基-1,3,7-辛三烯)和甲氧基二甲基辛二烯(Zakharkin,L.I.和Babich,S.A.,《俄罗斯化学公报》(Russ.Chem.Bull.),(1976),pp1967-1968)。Adams,J.M.和Clapp,T.V.(“粘土和粘土矿物”(Clay and ClayMinerals),(1986),34(3),287-294)报道了异戊二烯在二价和三价过渡金属交换的蒙脱土(例如Cr3+-蒙脱土)上反应产生异戊二烯二聚体和与甲醇的加合物。镍(0)-氨基氧膦(Ni(0)-aminophosphinite)系统催化的异戊二烯线性二聚化产生出区域选择性尾对尾线性二聚体,伴随有竞争性环二聚化反应(Denis,Philippe;Croizy,Jean Francois;Mortreux,Andre;Petit,Francis,《分子催化杂志》(Journal of Molecular Catalysis),(1991),68(2),159-75。Denis,Philippe;Jean,Andre;Croizy,Jean Francois;Mortreux,Andre;Petit,Francis,《美国化学学会志》(Journal of the American Chemical Society),(1990),112(3),1292-4)。对新的手性氨基氧膦配体(例如(+)-MeCH2CHMeCH(NH2)CH2OPPh2作为异戊二烯线性二聚化中的均相催化剂(导致50%以上的转化率)进行了研究(Masotti,Henriette;Peiffer,Gilbert;Siv,Chan;Courbis,Pierre;Sergent,Michelle;Phan Tan Luu,Roger,《比利时化学会通报》(Bulletin des Societes Chimiques Belges),(1991),100(1),63-77)。
异戊二烯在作为聚合抑制剂的二硝基甲酚存在下在110-250℃下的热二聚化产生出高收率的二聚体和极少的聚合物(美国专利第4,973,787号)。镍催化的异戊二烯二聚化产生出由80%1,5-二甲基-1,5-环辛二烯和20%1,6-二甲基-1,5-环辛二烯组成的二甲基-1,5-环辛二烯混合物(Doppelt,Pascal;Baum,Thomas H.;Ricard,Louis,《无机化学》(InorganicChemistry),(1996),35(5),1286-91)。用催化量的Cp*Ru(η4-异戊二烯)Cl和AgOTf将异戊二烯转化为二甲基环辛二烯(Itoh,Kenji;Masuda,Katsuyuki;Fukahori,Takahiko;Nakano,Katsumasa;Aoki,Katsuyuki;Nagashima,Hideo,《有机金属》(Organometallics),(1994),13(3),1020-9)。JP59065026A(1984)报道了通过异戊二烯在包含羧酸铁或β-二酮化合物、有机铝或镁化合物和具有给电子基团的2,2′-二吡啶基衍生物的催化剂存在下进行环状二聚化来制备1,6-二甲基-1,5-环辛二烯。二甲基环辛二烯通过异戊二烯在含有羧酸镍或β-二酮、有机铝或有机镁化合物和取代的亚磷酸三苯酯的3组分催化剂上进行环状二聚化来制备(JP58055434A,1983)。1,5-二甲基-1,5-环辛二烯是通过异戊二烯在含有三价铁盐、有机铝化合物和活化剂的均相催化剂存在下(SU615056A1,1978),在含有乙酰丙酮镍、亚磷酸三芳基酯和perhydroalumophenolene的均相催化剂存在下(SU493455A1,1975),在含有羧酸镍或镍与1-羟基-3-羰基化合物的羧酸盐或螯合物、三烷基铝、三烷基镁或活性有机镁化合物(从共轭二烯和镁获得)、亚磷酸三芳基酯和叔胺的混合物的催化剂存在下(JP48064049A,1973),或者在由环烷酸镍、Et3Al和磷酸邻三甲苯酯组成的催化剂存在下(Suga,K.;Watanabe,S.;Fujita,T.;Shimada,T.,《以色列化学杂志》(Israel Journal of Chemistry),(1972),10(1),15-18),在100-300°下进行环二聚化来制备。美国专利第3,954,665号公开了异戊二烯在[(η3-C6H5)NiBr]2或[M(NO)2X]2(M=铁、钴;X=氯、碘、溴)与羰基铁、羰基钴或羰基镍的反应产物存在下进行的二聚化。欧洲专利第2411号(1981)公开了异戊二烯在Fe(NO)2Cl-双(1,5-环辛二烯)镍催化剂上在-5°至+20°下进行环二聚化产生1-甲基-和2-甲基-4-异丙烯基-1-环己烯和1,4-和2,4-二甲基-4-乙烯基-1-环己烯。美国专利第4,189,403号公开了通过使异戊二烯与三(取代烃基)亚磷酸盐、亚砷酸盐或亚锑酸盐和VIII族金属(0)化合物(例如乙酰丙酮镍)的混合催化剂接触来制备1,5-二甲基-1,5-环辛二烯和1,4-二甲基-4-乙烯基-1-环己烯。Jackstell,R.;Grotevendt,A.;Michalik,D.;ElFirdoussi,L.;Beller,M.J.,《有机金属化学》(Organometallic Chem.),(2007)692(21),4737-4744引述了使用钯/碳烯催化剂进行异戊二烯二聚化。Bowen,L.;Charernsuk,M.;Wass,D.F.,《化学通讯》(Chem.Commun.),(2007)2835-2837描述了使用铬N,N-双(二芳基膦基)胺催化剂来生产异戊二烯的线性和环状三聚体。
报道了异戊二烯在镍催化剂存在下进行二聚化以产生顺式-2-异丙烯基-1-甲基乙烯基环丁烷(Billups,W.E.;Cross,J.H.;Smith,C.V.,《美国化学学会志》(Journal of the American Chemical Society),(1973),95(10),3438-9)。由环烷酸镍和异戊二烯镁在各种作为电子供体的亚磷酸盐存在下催化异戊二烯[78-79-5]低聚化产生出含有二甲基环辛二烯[39881-79-3]的环状二聚体;特别是1,1,1-三(羟甲基)丙烷亚磷酸盐[39865-19-5]选择性产生出三甲基环十二碳三烯[39881-80-6](Suga,Kyoichi;Watanabe,Shoji;Fujita,Tsutomu;Shimada,Takashi,《应用化学与生物技术杂志》(Journal ofApplied Chemistry&Biotechnology),(1973),23(2),131-8)。WO2006/051011公开了通过异戊二烯在包含Ni和/或Ti、一种或多种有机金属化合物和VA族化合物的催化剂系统存在下进行三聚化制备可用于香料香精的三甲基环十二碳三烯,并且该反应在含羟基的溶剂中进行。本文所述的化学转化的产物还可用于香料、香精和其他精细化工品(例如杀虫剂、表面活性剂、润滑剂等)。参见例如Monteiro等人,《催化主题》(Topics in Catalysis),第27卷,第1-4期,2004年2月。Ligabue,R.A.;Dupont,J.;de Souza,R.F.,Alegre,R.S.,《分子催化杂志A:化工》(J.Mol.Cat.A:Chem.),(2001),169(1-2),11-17描述了使用亚硝酰铁催化剂在离子液体中将异戊二烯选择性二聚化成为六元二聚体。Huchette,D.;Nicole,J.;Petit,F.,《四面体通讯》(Tetrahedron Letters),(1979),(12),1035-8描述了电化学法产生亚硝酰铁催化剂并随后用于使异戊二烯二聚化成为环己烯二聚体。Zakharkin,L. I.;Zhigareva,G.G.;Pryanishnikov,A.P.,《俄罗斯普通化学杂志》(Zhurnal Obshchei Khimii),(1987),57(11),2551-6描述了异戊二烯在镍铁复合催化剂上进行的环低聚化。
反应条件的优化
衍自本文所述的生物来源的异戊二烯作为生产燃料成分的原料可以比石油基异戊二烯有利。生物衍生的异戊二烯不含高水平的非异戊二烯C5杂质,因此可不先进行纯化就可进行化学转化。衍自石油的异戊二烯中的某些杂质(如乙炔)会使一些用于生产燃料产物的催化剂(如复分解催化剂)中毒。由于这类杂质在生物衍生的异戊二烯中少量存在或不存在,因此在进行化学转化之前不需要将它们分离出来。此外,生物衍生的异戊二烯中某些杂质(如醇类和其他氧化物)的存在可有利于本文描述的化学转化中的一些,如酸催化的二聚化。
在本发明的一个方面,可对本文描述的任何化学转化进行优化以用于衍自生物来源的异戊二烯。可对反应条件进行优化,以得到高收率的所需产物,以得到特定的产物混合物,以得到具有特定物理性质的燃料成分或者以在产物中得到特定的杂质谱。在一些实施例中,使用筛选过程对反应条件进行优化,其中使生物法生产的异戊二烯经历反应条件的矩阵,其中各个反应参数沿着该矩阵的不同轴改变。可改变的反应参数包括但不限于反应时间、温度、压力、催化剂特性、溶剂、共催化剂特性、各反应物相互间比例、蒸气压力、催化剂类型和各产物相互间比例。在一个具体的实施例中,动力学对热力学控制(kinetic vs.thermodynamic control)是可变的反应参数。在另一个具体的实施例中,气相对液相(gas vs.liquid phase)是可变的反应参数。可通过使用本文所述的任何分析方法,针对所作的具体优化筛选的目标,对矩阵中每组反应条件的产物进行分析,来确定最佳的反应条件。筛选可在迭代过程中进行,在该过程中,可通过连续几轮筛选缩小所需的反应条件。在一些实施例中,使用生物衍生的异戊二烯进行的特定化学转化的最佳条件,与对衍自石油的异戊二烯进行的同一化学转化的条件不同。可能合乎需要的或者可提供优化过程的起点的特定化学转化,在下文中作更详细的描述。
异戊二烯复分解
虽然异戊二烯可进行多种化学反应,并且烯烃复分解在有机化合物的合成中得到了广泛使用,但异戊二烯的烯烃复分解的例子却一直少见。Woerlee等人,《应用催化》(Applied Catalysis),10(1984)219-229报道了Re2O7/Al2O3-Sn(CH3)4复分解催化剂在室温下将共轭二烯转化为烯烃、三烯和四烯,但评论说具有异丙烯基的共轭二烯是惰性的。因此,本发明的一个方面提供使用烯烃复分解从生物异戊二烯组合物(例如气相)生产燃料成分的方法和组合物,通过烯烃复分解,异戊二烯经碳-碳双键的切割和再形成被转化为烯烃的混合物。可对反应条件、催化剂、共催化剂、促进剂和溶剂进行系统性优化,以得到烯烃产物混合物的所需组成或分子量分布。例如,为生产在来自异戊二烯复分解的烯烃混合物完全氢化后适合在柴油机燃料中使用的燃料成分,所需的烯烃混合物为C10-C20烯烃混合物。当复分解反应达到平衡或稳态混合物时,可将烯烃混合物中的不需要的级分与需要的级分分离,并进行进一步的复分解以使分子量重新分布。在连续工艺中,可将所分离的不需要的级分循环回到容器中进行异戊二烯复分解。例如,在生产适合在柴油燃料中使用的燃料成分的方法中,例如通过分馏将不需要的<C10和>C20烯烃级分与需要的C10-C20烯烃级分分离,并在连续工艺中进行另一复分解反应或者循环回到异戊二烯复分解混合物中。
在一些实施例中,本发明提供从生物异戊二烯组合物生产燃料成分的方法,所述方法包括通过使生物异戊二烯组合物与烯烃复分解催化剂接触来将生物异戊二烯组合物中的异戊二烯的大部分化学转化为非异戊二烯化合物,然后将烯烃产物进行催化氢化以形成烷烃燃料成分。在一些实施例中,异戊二烯发生复分解以形成一种或多种高级或低级烯烃,如乙烯、异丁烯、二甲基己烯以及其他带支链的和环状的烯烃化合物(图2)。在一些情况下,复分解混合物中的主要产物是环状烯烃。这种反应通常由金属复合物催化,所述金属复合物例如含有Mo、Ru、W、Re、Os、Ir、Ti、V、Cr、Co、Nb、Rh或Ta的氯化物、氧化物或其他化合物。典型的复分解共催化剂是EtAlCl2、R3AlCl2、R3Al和R4Sn(R=Ph、Me、Et或Bu)。典型的复分解促进剂是O2、EtOH和PhOH。在一个具体的实施例中,复分解催化剂是Schrock碳烯配合物或Grubbs类催化剂。其他复分解催化剂也得到描述,其中许多已被证实具有良好的产业适用性,如WO3/SiO2、含有集成复分解单元(integrated metathesis unit)的石脑油蒸汽裂化剂、Re2O7/Al2O3、以氧化铝为载体的钼酸盐复分解催化剂、高度活性钌配合物(例如[RuCl2(=CHPh)(H2IPr)(PCy3)]、Grubbs催化剂)、WCl6基催化剂、RuCl3/HCl、用Et2AlCl、丙醇和SiCl4的混合物活化的四[三(十二烷基)铵]八-钼酸盐、以及多相氧化铼催化剂。(参见例如J.C.Mol.,《分子催化杂志A:化工》(J.Mol.Catalysis A:Chemical),213(2004)39-45)。在一个具体的实施例中,复分解通过Shell高级烯烃工艺(SHOP)进行,该工艺在极性溶剂(优选1,4-丁二醇)中采用均相镍膦催化剂(优选在90-100℃和100-110巴下)。还描述了用亚苄基钌(Grubbs类)催化剂进行共轭二烯的复分解的例子。对共轭双键之一采取位阻保护或电子保护导致了一个双键或另一个双键的选择性反应。(参见T.W.Funk等人,《有机化学通讯》(Org.Lett.),7(2005)187-190)。对异戊二烯复分解的产物进行氢化可得到适合在燃料组合物中使用的化合物。
在一些实施例中,本发明提供通过烯烃复分解将生物异戊二烯组合物转化为燃料成分的连续工艺,该工艺包括(i)在复分解反应器中使生物异戊二烯组合物接触烯烃复分解催化剂以形成烯烃混合物;(ii)将烯烃混合物进行分级分离成第一轻级分和包含C7-C50烯烃的第一重级分;(iii)将第一轻级分返回到复分解反应器进行进一步复分解;(iv)将第一重级分进行分级分离成第二轻级分和第二重级分;(v)将第二重级分返回到复分解反应器进行进一步歧化反应;和(vi)将第二轻级分进行氢化以生产燃料成分。复分解反应器中形成的烯烃混合物可以是包含C2-C50烯烃的产物的统计学分布。第一次分级分离可在第一蒸馏柱中进行,其中柱顶级分为包含诸如C2-C6烯烃或<C7烯烃的轻组分的第一轻级分。这些轻组分包括乙烯、丙烯、异丁烯、异戊二烯和其他轻烯烃。来自第一蒸馏柱的第一重级分可进入第二分级分离柱,在该柱中,C7至C15范围内的所需的线性和环状组分在柱顶级分中移取。在一些实施例中,第二轻级分由C7-C15烯烃组成。在一些实施例中,第二重级分包含C16-C50烯烃。第二轻级分中的烯烃可进行后续的加氢处理或氢化以生产燃料成分。来自第二蒸馏柱的第二重级分可循环回到复分解反应器,在其中它们进行烯烃歧化反应,得到C2至C50范围的产物分布,这些产物然后如上所述通过蒸馏进行分级分离。该方法的一个实施例在图3中所示的流程图示出。
可通过由乙烯或乙烯和其他轻烯烃(<C5)的混合物组成的任选的轻烯烃共进料(co-feed),对复分解反应器中生产的产物的总体分布进行调节。轻烯烃共进料与生物异戊二烯进料之比可在1∶100至2∶1的范围内。较高的烯烃共进料与生物异戊二烯进料之比往往会降低产物的平均分子量,并减少从复分解反应器出现的不需要的重级分的量。轻烯烃共进料还可有助于防止复分解反应器中形成不挥发性胶质物和聚合物(>C50),这类物质会使复分解催化剂失活(参见Oziomek,美国专利申请5446102)。
酸催化的低聚化
异戊二烯在酸催化剂存在下容易发生低聚化,产生一批复杂的化合物,包括二聚体、三聚体、高级低聚体、芳族产物和高分子产物。图4及实例部分显示了当用Amberlyst15酸性树脂在甲苯中处理异戊二烯时复杂产物混合物的一个例子。对反应进行动力学控制可有利于某些产物,例如低级低聚体,尽管胶质物形成和粘结是已知导致催化剂失活的问题。异戊二烯的直接低聚化工艺需要对所需的产物具有合理的选择性。
因此,本发明提供通过对生物异戊二烯组合物进行酸催化的低聚化来生产燃料成分的方法,按这种方法,生物异戊二烯组合物中存在的氧化化合物(如醇类)能提高对所需产物的选择性。(参见例如Marchionna,《现代催化》(Catalysis Today),65(2001)397-403,399)。可对所用的反应条件、催化剂和溶剂进行优化以有效地生产所需分子量的燃料成分。例如,提供短的反应时间的条件往往有利于具有相对较低分子量的动力学产物,如适合于汽车中所使用的“汽油”或燃料的C7至C15烃类。可通过将最初例如通过热裂解、蒸气裂解或烯烃复分解生产的较高分子量烯烃低聚体再循环,来进一步改进转化生物异戊二烯成为较低分子量的烃类的效率。通过从反应器中连续移取所需的产物,平衡会被移向所需的产物。在一些实施例中,用适当的烯烃复分解催化剂(如铼催化剂或其他金属配合物,如含有Mo、Ru、W、Re、Os、Ir、Ti、V、Cr、Co、Nb、Rh或Ta的氯化物、氧化物或其他化合物)处理较高分子量烯烃以生产较低分子量烯烃,后者可与初始的较低分子量烯烃进行组合作进一步的加工(如完全氢化)以产生饱和的烷烃燃料成分,或者可被输送到酸催化的低聚化反应中。
在一个方面,本发明提供从生物异戊二烯组合物生产燃料成分的方法,所述方法包括:(i)使生物异戊二烯组合物接触酸催化剂以产生含有较高分子量烯烃产物(例如C16-C50烯烃)和较低分子量烯烃产物(例如C5-C15烯烃)的混合烯烃产物(例如C5-C50烯烃);(ii)将较高分子量烯烃产物转化为较低分子量烯烃;和(iii)将较低分子量烯烃产物(例如C5-C15烯烃)进行氢化以产生作为燃料成分的饱和烃类(例如C5-C15烷烃)。优选地,生物异戊二烯组合物中的异戊二烯的大部分被化学转化为非异戊二烯化合物。在一些实施例中,步骤(i)是使用合适的催化剂并在有利于低级低聚体的形成的动力学控制的条件下进行。在一些实施例中,步骤(ii)是通过能将高级低聚体转化为较低分子量烯烃的烯烃复分解反应来进行。氢化步骤(iii)可使用多种氢化催化剂来进行,所述氢化催化剂例如多相钯催化剂,包括碳载钯(Pd/C)、氧化铝载钯(Pd/Al2O3)或二氧化硅载钯(Pd/SiO2),钯含量相对于载体材料为0.1%钯至20%钯(w/w)。
用于异戊二烯的聚合的催化剂和条件已得到很好的研究,某些条件已证实能提高聚合(参见Sadahito A.和Shokyoku K.,《化学评论》(Chem.Rev.),2009,109,5245-5287)。因此,在一些实施例中,在生物异戊二烯组合物的酸催化低聚化中应避免往往会使碳阳离子稳定化从而促进活性碳阳离子聚合的条件。
异链烷烃对异戊烯类物质的烷基化
异戊二烯的部分氢化产生出异戊烯类物质的混合物,它们可被转化为其他有价值的产品如燃料。但是,从异戊二烯衍生的异戊烯类物质生产燃料在商业上尚未可行,部分由于衍自石油的异戊二烯组合物需要进行充分的纯化。因此,本发明的一个方面提供从生物异戊二烯组合物不经充分的纯化就生产燃料成分的方法,该方法的做法是,将生物异戊二烯组合物进行部分氢化以形成一种或多种异戊烯类物质,并将所产生的异戊烯类物质通过进一步的化学转化(如二聚化、与醇类反应和由异链烷烃进行烷基化)转化为燃料成分(图5)。
在一些实施例中,该从生物异戊二烯组合物生产燃料成分的方法包括通过将生物异戊二烯组合物进行部分氢化以产生异戊烯来将生物异戊二烯组合物中的异戊二烯的大部分化学转化为一种或多种非异戊二烯化合物,然后用异链烷烃将异戊烯进行烷基化以形成烷基化物燃料成分。在一些实施例中,异链烷烃和衍自生物法生产的异戊二烯的烯烃可进行烷基化以制备高辛烷的烷基化物。
烷基化的方法是现成的,已由炼油厂大规模采用。原料可包括烯烃如丙烯、2-丁烯、异丁烯和异戊烯类物质。异链烷烃可包括丙烷、异丁烷和异戊烷。在一些实施例中,异戊烯烷基化中使用的异戊烷是通过完全氢化从来自生物异戊二烯组合物的生物异戊二烯衍生。在一些实施例中,催化剂是氢氟酸。毒性较低的催化剂也已有描述,如与聚合物组分混合的酸组分(如硫酸、氟磺酸、全卤代烷基磺酸和离子液体,或者Bronsted和/或路易斯酸的混合物)。(参见例如US2010/0094072)。US6,429,349B1描述了由异丁烯和异戊烷与酸催化剂的混合物对C3-C5烯烃进行烷基化以形成具有相对较低Reid蒸气压(RVP)的高辛烷的烷基化物。适合于这个转化的酸催化剂包括氢氟酸、硫酸、卤化硫酸和卤化磺酸。K.Kranz描述了用异丁烯在强酸催化剂(如氢氟酸或硫酸)存在下对C3-C5烯烃进行烷基化(“烷基化化学:机理、操作变量和烯烃相互作用”(Alkylation Chemistry:Mechanisms,operating variables,and olefin interactions),STRATCO公司,堪萨斯州利伍德(Leawood KS),2003年5月)Kranz描述了多个影响烷基化的产物质量和操作成本的因素:1)维持高的异丁烯浓度能减少会导致辛烷减低的烯烃-烯烃聚合的可能性;2)保持温度在50℃附近以使聚合(这可由高温导致)减至最低并使酸从烷基化物的沉淀速率减慢(这可由低温导致)得到避免;和3)维持高硫酸浓度(如90%以上的硫酸)以使聚合和红油产生减至最低。(另参见J.R.Peterson等人,“改进的戊烯烷基化经济学”(Improved Amylene Alkylation Economics),STRATCO,Inc公司,1999)用异戊烷对C3-C5烯烃进行烷基化也已有描述并证实能得到高辛烷的产品。(参见D.C.Graves,“异丁烯和异戊烷的烷基化选择”(Alkylation Options for Isobutylene and Isopentane),STRATCO公司,堪萨斯州利伍德(Leawood KS),2001年11月)。Cruz等人,《活性和功能聚合物》(Reactive&Functional Polymers),65:149-160(2005)描述了醇类对异戊烯类物质的二聚化的作用并公开了二异戊烯类物质的燃料性质。US2010/0094072描述了用于烯烃烷基化的改进的催化剂。US2009/0099400描述了使用固体磷酸催化剂对烯烃进行二聚化。如同本文引用的任何参考文献一样,将所有这些参考文献为了其教导内容将其整体并入本文,特别是为了以上所述的各方面。
异戊烯复分解
可将由生物异戊二烯的部分氢化产生的异戊烯类物质通过复分解然后氢化来转化为燃料成分。
在一些实施例中,本发明提供从生物异戊二烯组合物生产燃料成分的方法,所述方法包括通过对生物异戊二烯组合物进行部分氢化以产生一种或多种异戊烯产物来将生物异戊二烯组合物中的异戊二烯的大部分化学转化为一种或多种非异戊二烯化合物,使所述一种或多种异戊烯产物接触烯烃复分解催化剂以产生一种或多种烯烃产物,然后将所述一种或多种烯烃产物进行催化氢化以形成一种或多种烷烃燃料成分。在一些实施例中,异戊烯发生复分解以形成一种或多种高级或低级烯烃,如乙烯和/或二甲基己烯(例如3,4-二甲基己烯)。这种反应通常由金属配合物催化,如含有Mo、Ru、W、Re、Os、Ir、Ti、V、Cr、Co、Nb、Rh或Ta的氯化物、氧化物或其他化合物。典型的复分解共催化剂是EtAlCl2、R3AlCl2、R3Al和R4Sn(R=Ph、Me、Et或Bu)。典型的复分解促进剂是O2、乙醇和苯酚。在一个具体的实施例中,复分解催化剂是Schrock碳烯配合物或Grubbs类催化剂。其他复分解催化剂也得到描述,其中许多已被证实具有良好的产业适用性,如WO3/SiO2、含有集成复分解单元(integratedmetathesis unit)的石脑油蒸汽裂化剂、Re2O7/Al2O3、以氧化铝为载体的钼酸盐复分解催化剂、高度活性钌配合物(例如[RuCl2(=CHPh)(H2IPr)(PCy3)]、Grubbs催化剂)、WCl6基催化剂、RuCl3/HCl、用Et2AlCl、丙醇和SiCl4的混合物活化的四[三(十二烷基)铵]八-钼酸盐、以及多相氧化铼催化剂。(参见例如J.C.Mol.,《分子催化杂志A:化工》(J.Mol.Catalysis A:Chemical),213(2004)39-45)。在一个具体的实施例中,复分解通过Shell高级烯烃工艺(SHOP)进行,该工艺在极性溶剂(优选1,4-丁二醇)中采用均相镍膦催化剂(优选在90-100℃和100-110巴下)。还描述了用亚苄基钌(Grubbs类)催化剂进行共轭二烯的复分解的例子。对共轭双键之一采取位阻保护或电子保护导致了一个双键或另一个双键的选择性反应。(参见T.W.Funk等人,《有机化学通讯》(Org.Lett.7(2005)187-190)。对异戊烯复分解的产物进行氢化可得到适合在燃料组合物中使用的化合物。
生物异戊二烯尾气的使用
在本发明的一个方面,从直接来自生物异戊二烯生产的尾气的异戊二烯生产燃料成分。因此,燃料成分从处于气相的生物异戊二烯组合物生产。直接从尾气中的生物异戊二烯生产燃料,可以不需要在将异戊二烯进行本文描述的任何化学转化之前对其进行回收和/或纯化,从而减少生产燃料成分所需的步骤的数目,并且防止在异戊二烯的化学转化之前对其进行回收和/或纯化时可能发生的异戊二烯原料的损失。因此,在一些实施例中,本文所述的任何对异戊二烯的化学转化可在气相中进行。此外,可对化学转化进行优化,以在尾气中可能存在的其他化合物或杂质(CO2或氧化物)的存在下,以工业上有用的收率将异戊二烯转化为所需的燃料成分。在许多情况下,针对尾气中的异戊二烯的化学转化的最佳条件,将与针对纯化的异戊二烯的化学转化的最佳条件不同。在一些实施例中,用于将尾气中的异戊二烯转化为燃料成分的催化剂和其他反应物处于固相、液相或气相。
在一些实施例中,气态异戊二烯起始组合物在接触催化剂时发生化学反应以产生异戊二烯衍生物。催化剂可选自阳离子催化剂、阴离子催化剂、络合催化剂、游离基催化剂或其他催化剂类别。在一些实施例中,气态异戊二烯起始组合物用传统的烃阳离子催化进行低聚化或反应,所述烃阳离子催化例如是用来将异丁烯转化为异辛烷的催化,如硫酸、磷酸和其他无机酸、磺酸、氟磺酸、沸石和酸性粘土。在其他实施例中,异戊二烯起始组合物用传统的烃阳离子催化与其他烯烃进行二聚化或反应。参见例如H.M.Lybarger,“异戊二烯”(Isoprene),载于《柯克-奥斯莫化工大全》(Kirk-Othmer Encyclopedia of Chemical Technology)第4版,威利出版社(Wiley),纽约,(1995),14,934-952。液体形式和固体形式的酸催化剂都可以使用。在一个实施例中,使用固体形式。固体酸性树脂的例子包括Amberlyst15、35、XE586、XN1010(Rohm和Haas)以及类似的酸性离子交换树脂。酸性分子筛是其他可以使用的催化剂,包括中孔酸性分子筛如ZSM-5、镁碱沸石、ZSM-22和ZSM-23。另外的酸催化剂包括吸附到无机载体上的无机酸,例如硅胶载磷酸。
在某些实施例中,可使用有机金属催化剂将气相异戊二烯组合物转化为燃料成分。例如,本文列举的催化剂中的许多可通过吸附到载体上而变成固体形式。在一个这种实施例中,使用固体钯催化剂来催化调聚反应,以在二氧化碳存在下从异戊二烯和水生产C10和C15醇类(Inoue(1993),《日本化学会誌》(Bull.Chem.Soc.Jpn.),56:637-638)。也可使用阴离子催化剂将异戊二烯化学转化为衍生物。合适的阴离子催化剂的例子包括烷基锂、碱金属、碱酰胺盐和其他具有pK的强碱。可以使用的阴离子催化剂包括但不限于正丁基锂、萘基锂(lithium naphthalenide)和萘基钠(sodium naphthalenide)。在大多数情况中,需要高纯的气相异戊二烯组合物以避免水或其他酸性物质猝灭阴离子催化剂。不含包括乙炔和1,3-环戊二烯在内的酸性烃类的气相异戊二烯组合物同样能够与阴离子催化剂反应以将异戊二烯转化为燃料成分。
在某些实施例中,高纯的异戊二烯原料是气相生物异戊二烯组合物。在其他实施例中,异戊二烯原料是包含生物异戊二烯的发酵尾气。在另外的实施例中,将包含生物异戊二烯的发酵尾气进行处理以降低水蒸气、氧气、二氧化碳或其他生物副产物杂质的含量。在一个实施例中,通过去除原始组合物中存在的一部分永久气体(N2、O2、CO2),使得发酵尾气的异戊二烯含量得到富集。
尾气的湿度含量对转化的程度和所得化合物的性质都有影响。在一些情况下,需要高温度,例如当试图得到氧化的衍生物时,或者为了限制从异戊二烯形成的高级低聚体的量。在其他情况下,可降低湿度以使转化程度最大化或者使氧化的(水合的)产物减至最低。如果需要,可使用干燥剂如二氧化硅或分子筛来降低尾气的湿度。或者,可在接触酸性树脂之前,通过用冷凝器将水蒸气冷凝,来降低含异戊二烯的尾气的湿度水平。在一些情况下,氧化的杂质(如醇类)在含异戊二烯的尾气中的存在,可通过调节酸催化剂的反应性从而使高级低聚体、芳族化合物等的形成减至最低来改进反应的结果[Cruz(2005),《活性和功能聚合物》(React.Func.Poly.),65:149-160]。在一个实施例中,使含有异戊二烯的发酵尾气经过减湿器以除去水蒸气,然后经过吸附剂床以除去氧化的杂质。合适的吸附剂包括二氧化硅、SelexsorbTM、沸石、粘土、活性炭和其他材料。
衍自生物异戊二烯组合物的异戊二烯需要纯化的程度取决于催化剂的性质和用来将异戊二烯转化为衍生物的工艺条件。在某些实施例中,包含生物异戊二烯的发酵尾气在进行化学催化之前经历最低限度的处理。
在一个实施例中,将衍自生物异戊二烯组合物的气相异戊二烯通过接触固体酸催化剂转化为低聚体(C10二聚体、C15三聚体、C20四聚体等)。在另一个实施例中,包含生物异戊二烯的发酵尾气在接触固体酸催化剂时被转化为含有异戊二烯的气相组合物。反应可在含有气相异戊二烯组合物和固体酸催化剂的小瓶或容器中进行。作为另一种选择,可使含有异戊二烯的发酵尾气经过含有固体酸催化剂的床或柱,从而导致一部分异戊二烯转化为可用作燃料成分的异戊二烯衍生物。可通过任何有效的手段,包括蒸馏、膜分离、吸收/汽提或其他分离方法,将产物与未反应的异戊二烯分离开来。
在另一个实施例中,可将气相异戊二烯组合物通过接触固体酸催化剂转化为芳族化合物。例如,可将气相异戊二烯组合物通过用Amberlyst15酸性树脂处理转化为间伞花烃和对伞花烃(3-异丙基甲苯和4-异丙基甲苯),以及其他异戊二烯衍生物,包括3-甲基-2-丁酮、异戊二烯二聚体、三聚体和四聚体(参见实例5,图15A-C)。这种方式产生的主要化合物在表1中列出。
气相组合物中的异戊二烯的量可在0.01%(100ppmv)至100%v/v或其中的任何数字的范围内。在某些实施例中,气相异戊二烯浓度可在0.2%至20%或0.2%至10%v/v或其中的任何数字的范围内。
从异戊二烯组合物的气相催化获得的各产物的比例,由异戊二烯的浓度、气相组合物中其他组分的存在、所使用的催化剂、与催化剂的接触时间以及其他工艺条件(例如温度、压力)决定。
可改变与催化剂的接触时间以控制所产生的最终产物。一般而言,与催化剂接触时间越短,燃料成分越短(例如C5-C10或<C5产物),而与催化剂接触时间越长,燃料成分越长(例如>C10产物)。较短的接触时间可用来生产较短的化合物,如C5化合物。在一个实施例中,较短的接触时间可为约20秒至约12小时以及其中的任何数字。在其他实施例中,可使用至少约25秒、30秒、35秒、40秒、45秒、50秒、55秒或1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、35、40、45、50、55分钟或1、2、3、4、5、6、7、8、9、10、11、12小时的接触时间。在其他实施例中,可使用比约12小时长的接触时间来制备较短的燃料成分。可使用较长的接触时间来生产较长的燃料成分。可以使用的较长接触时间的非限制性例子包括但不限于:至少约12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71或72小时。例如,图16显示气相异戊二烯组合物与Amberlyst15酸性树脂进行20分钟或12小时反应的结果。较长的接触时间导致了C10芳族化合物的量相对于C10二聚体增加。
表1.Amberlyst15催化剂处理气相异戊二烯而衍生的化合物。
*或者C10H16烃异构体。结构指定是用Chemstation软件(Agilent)根据质谱与NIST2.0GC/MS库的最佳匹配作出的。
在另一个实施例中,将气相异戊二烯组合物通过接触催化剂和氧来源而转化为氧化异戊二烯衍生物(例如醇类、脂类、羧酸类、酮类、醚类、醛类、环氧乙烷类、吡喃类等)。氧来源可以是氧气、过氧化氢、水、二氧化碳或其他含氧分子。气相异戊二烯组合物向氧化衍生物的转化可由酸性催化剂、有机金属催化剂或任何其他合适的催化剂催化。例如,可用硅胶载10%磷酸处理气相异戊二烯组合物,以产生分子式为C5H10O和C10H18O)的氧化化合物及另外的少量异戊二烯二聚体和三聚体的混合物(参见实例6,图17)。这个转化的主要产物在表2中列出。
表2:用硅胶载10%H 3 PO 4 处理气相异戊二烯而衍生的化合物。
用酸催化剂处理含有生物异戊二烯的发酵尾气可导致在低的异戊二烯浓度下(例如在0.02%v/v以下)一部分异戊二烯转化为异戊二烯衍生物。实例7描述了使用Amberlyst15酸性树脂或硅胶载10%H3PO4将发酵尾气流中的异戊二烯转化为异戊二烯衍生物。尾气流中的异戊二烯的浓度为大约0.02%v/v。结果在图18和19中显示。
蒸气压
另一个考虑因素是蒸气压。通常,蒸气压按Reid蒸气压(RVP)测量。本发明的燃料成分的Reid蒸气压(RVP)通常在1psi(6.9kPa)以下,因此可用来减少燃料组合物的调合物中的蒸气压。汽油的RVP是根据美国环保署(EPA)规定的“新配方汽油监管要求”(Reformulated Gasoline(RFG)Regulatory Requirements)来管制的。夏季汽油调合物最大RVP在大多数州中可为9psi,但在一些管辖区域中不能超过7psi。出于降低所得的燃料调合物的RVP值的目的,具有低RVP值的燃料成分作为调合组分是有价值的。参见例如美国环保署的“单独常规汽油的联邦和州夏季RVP标准指南”(“Guide on Federal and State Summer RVP Standards for ConventionalGasoline Only”,EPA420-B-05-012,2005年11月),以及Cruz等人,《活性和功能聚合物》(Reactive&Functional Polymers),67:210-224(2007)。
燃料成分也可用作纯粹的喷气机燃料或喷气机燃料的成分。在一个实施例中,C10范围内的饱和环状烃类用作喷气机燃料成分。C5至C20范围内的芳族和不饱和异戊二烯衍生物也可用作喷气机燃料成分。
其他催化剂
除了以上所述的酸催化剂和其他催化剂(例如阴离子催化剂),也可使用形状选择性催化剂。本领域技术人员可利用形状选择性催化剂领域可获得的一般教导来制备燃料成分产物,以最小化或者改变所得产物的范围。参见例如Csicsery等人,《纯粹与应用化学》(Pure&Appl.Chem.),第58卷第6期,第841-856页(1986)。具体而言,可使用形状选择性催化剂从异戊二烯产生所需类别的燃料成分,例如分支减少或线性含量增加的异戊二烯二聚体或三聚体。形状选择性催化剂通常是具有受限制的孔几何形状的微孔无机材料(例如沸石)。催化剂结构的受限制的性质往往有利于某些产物的形成而不是其他产物的形成。在本发明的一个方面,使用形状选择性催化剂来生产分支量减少的C15异戊二烯三聚体以用作柴油机燃料成分。
异戊二烯衍生物的氢化
本文描述的任何异戊二烯衍生物可进行氢化步骤,目的是使碳-碳双键饱和以及使酮类、醛类和其他可还原的官能团还原。异戊二烯衍生物的饱和可通过提高它们的化学稳定性和下限热值(LHV)以及减少它们形成胶质物和不需要的副产物的能力来改进它们的燃料性质。异戊二烯衍生物的氢化可使用多种氢化催化剂来进行,所述氢化催化剂例如多相钯催化剂,包括碳载钯(Pd/C)、氧化铝载钯(Pd/Al2O3)或二氧化硅载钯(Pd/SiO2),钯含量相对于载体材料为0.1%钯至20%钯(w/w)。氢来源可以是氢气或氢等同物,例如甲酸。异戊二烯衍生物可完全或部分氢化以用作燃料成分。一定的不饱和度可提高燃料成分的辛烷值。
系统和组合物
本发明的范围内还设想到用于生产燃料成分和/或燃料组合物的系统。
在一个方面,本发明提供用于从生物异戊二烯组合物生产燃料成分的系统,该系统包含生物异戊二烯组合物以及:(a)(i)一种或多种用于催化生物异戊二烯组合物中的异戊二烯的复分解以形成烯烃产物的催化剂;和(ii)一种能够将烯烃产物进行氢化以形成烷烃燃料成分的催化剂;(b)(i)一种能够将生物异戊二烯组合物中的异戊二烯进行部分氢化以产生异戊烯的化学品,和(ii)一种用于将衍自生物异戊二烯组合物的异戊烯进行烷基化以生产燃料成分的异链烷烃;或者(c)(i)一种能够将生物异戊二烯组合物中的异戊二烯进行部分氢化以产生异戊烯的化学品,(ii)一种或多种用于催化由生物异戊二烯组合物部分氢化而产生的异戊烯的复分解以形成烯烃产物的催化剂,和(iii)一种能够将烯烃产物进行氢化以形成烷烃燃料成分的催化剂;其中生物异戊二烯组合物中的异戊二烯的大部分被化学转化为非异戊二烯化合物。
在另一个实施例中,用于生产燃料成分的系统包括但不限于(a)包含生物异戊二烯组合物的发酵系统,以及(b)(i)一种或多种用于催化生物异戊二烯组合物中的异戊二烯的复分解以形成烯烃产物的催化剂,和(ii)能够将烯烃产物进行氢化以形成烷烃燃料成分的催化剂。在另一个实施例中,用于生产燃料成分的系统包括但不限于(a)包含生物异戊二烯组合物的发酵系统,以及(c)(i)一种能够将生物异戊二烯组合物中的异戊二烯进行部分氢化以产生异戊烯的化学品,和(ii)一种用于将衍自生物异戊二烯组合物的异戊烯进行烷基化以生产燃料成分的异链烷烃。在另一个实施例中,用于生产燃料成分的系统包括但不限于(a)包含生物异戊二烯组合物的发酵系统,以及(d)(i)一种能够将生物异戊二烯组合物中的异戊二烯进行部分氢化以产生异戊烯的化学品,(ii)一种或多种用于催化由生物异戊二烯组合物部分氢化而产生的异戊烯的复分解以形成烯烃产物的催化剂,和(iii)能够将烯烃产物进行氢化以形成烷烃燃料成分的催化剂。在任何上述实施例中,生物异戊二烯组合物中的异戊二烯的大部分被化学转化为一种或多种非异戊二烯化合物。
系统可包括连续发酵系统,由此生物异戊二烯组合物得以连续产生。可将含有生物异戊二烯组合物的尾气进行化学转化(例如尾气的催化、生物异戊二烯组合物中的异戊二烯的复分解等)以生产可用于调合或制备燃料组合物的燃料成分。有关该气相的生物异戊二烯组合物中的异戊二烯含量的描述在下文描述。
在其他实施例中,系统可包括其他类型的发酵系统,如分批发酵、补料-分批发酵和带再循环过程的连续发酵。在另一个实施例中,异戊二烯的化学转化可在生产、纯化、回收过程和/或后回收过程的任何部分中发生。例如,如PCT/US2010/060552中所描述,可将吸附和抽提之间的回收中存在的异戊二烯进行化学转化以生产可用于调合或制备燃料组合物的燃料成分。
在一些实施例中,该用于从生物异戊二烯组合物生产燃料成分的系统的复分解催化剂是本文描述的任何复分解催化剂,如含有Mo、Ru、W、Re、Os、Ir、Ti、V、Cr、Co、Nb、Rh或Ta的氯化物、氧化物或其他化合物,Schrock碳烯配合物、Grubbs类催化剂或高度活性钌配合物。在一些实施例中,使用SHOP方法来进行该系统中的复分解。在一些实施例中,用于异戊烯复分解的烯烃复分解催化剂与用于生物异戊二烯复分解的烯烃复分解催化剂不同。在一些实施例中,用于异戊烯复分解的烯烃复分解催化剂与用于生物异戊二烯复分解的烯烃复分解催化剂相同。在一些实施例中,该系统的氢化催化剂是任何本文所述的氢化催化剂,如多相钯催化剂,包括碳载钯(Pd/C)、氧化铝载钯(Pd/Al2O3)或二氧化硅载钯(Pd/SiO2),钯含量相对于载体材料为0.1%钯至20%钯(w/w)。在一些实施例中,能够对该系统中的异戊二烯进行部分氢化的化学品是本文所述的任何部分氢化催化剂,如Pd/CaCO3、Pd/BaSO4、Pd/C、钯黑、Pd/SiO3、Pd/Al2O3、Pd/SiO2、钯-金或钯-银催化剂、Mo/Al2O3或蛋壳Pd/δ-Al2O3催化剂。在一些实施例中,该系统的烷基化催化剂是本文描述的任何烷基化催化剂,如氢氟酸、硫酸、氟硫酸、全卤代烷基磺酸、离子液体、或者Bronsted和/或路易斯酸的混合物。在一些实施例中,用于烷基化的异链烷烃是异丁烷或异戊烷。
在一个方面,本发明提供适合用作燃料(如汽车燃料或航空燃料)的燃料成分。在本发明的另一个方面,将生物异戊二烯组合物用作原料,以产生可用作燃料或可用作用来生产燃料成分的中间体(“燃料中间体”)的产物或产物混合物。在一些实施例中,燃料中间体的分子量比异戊二烯高。在一些实施例中,燃料中间体包含分子量比异戊二烯高的单烯烃、二烯烃或三烯烃,如C6-C20、C7-C15、C10-C20、C6-C10、C11-C15或C16-C20烯烃。在一些实施例中,燃料包含完全饱和的烷基化物,如C6-C20、C7-C15、C10-C20、C6-C10、C11-C15或C16-C20烷基化物。燃料或燃料中间体也可以是饱和和不饱和烃类的混合物。燃料可包含带支链的或直链的烃类。在一些实施例中,燃料中至少20、40、60或80%的碳原子是带支链的。在另一个实施例中,燃料中没有一个碳原子是带支链的。在一个具体的实施例中,燃料中一些碳原子是带支链的,但没有一个碳原子是季碳。在一些实施例中,燃料包含氧化物,如1、2、5、10、20、30、40或50重量%的氧化物。在其他实施例中,燃料基本上不含氧化物。在一些实施例中,燃料包含至少50、60、70、80、90、95或99重量%的C7-C15烃类。在一个具体的实施例中,C7-C15烃类包含一些带支链的碳原子。在一些实施例中,燃料包含至少50、60、70、80、90、95或99重量%的C10-C20烃类。在一个具体的实施例中,C10-C20烃类包含不超过50、40、30、20、10、5、2或1%的带支链的碳原子。在一些实施例中,燃料具有高辛烷值,如辛烷值为80-100、80-90、91-95、95-100或至少80、85、90、95或100。在一些实施例中,燃料具有高十六烷值,如十六烷值为30-60、40-60或至少30、40、50、60、70或80。在一个具体的实施例中,燃料可用作汽车燃料,如用于通常使用柴油机燃料的汽车或者用于通常使用非柴油机汽油的汽车。在另一个具体的实施例中,燃料可用作航空燃料。在一些实施例中,燃料可具有某些使其特别可用作燃料的性质,如低挥发性、存在氧化物、不存在氧化物或者能抗低温冻结。
可使用本文引用的参考文献中公开的每种催化剂系统和反应条件将本文描述的起始生物异戊二烯组合物进行化学转化。本领域技术人员能将本领域知道的其他催化剂和反应条件(如应用于1,3-丁二烯的化学转化的催化剂和反应条件)适用于异戊二烯起始组合物。
从燃料产物去除二烯和聚合物
燃料组合物往往含有不饱和化合物(烯烃类、二烯烃类和聚烯烃类),这类化合物可随着时间推移形成胶质物、树脂、聚合物和其他不需要的副产物(例如参见Pereira和Pasa(2006),《燃料》(Fuel),85,1860-1865,以及其中的参考文献)。一般而言,随着给定化合物的不饱和度增加,该化合物越有可能形成这类副产物。异戊二烯是一种1,3-二烯,它当存在于燃料组合物中时容易形成不需要的高分子副产物。虽然存在可降低副产物形成程度的燃料添加剂(抗氧化剂、自由基猝灭剂等),但随着时间推移这类副产物仍会形成。烯烃当从燃料蒸发或由于含烯烃的燃料不完全燃烧而释放到大气中时,也会促成地面臭氧的形成。
因此,全部或部分衍自异戊二烯的燃料组合物应含极少乃至不含游离的异戊二烯。有多种方法可用来从燃料组合物除去异戊二烯,如蒸馏纯化、与醇类反应形成醚类、或者氢化以将异戊二烯转化为饱和衍生物。作为另一种选择,可用亲二烯体如苹果酸酐处理异戊二烯,从而产生不会促成不需要的副产物的形成的惰性加合物。
在一个实施例中,燃料组合物可以指也可被调合或组合成混合物以获得最终产品的燃料产物。例如,可以将燃料产物进行调合以形成各种等级的汽油、具有或不具有添加剂的汽油、各种重量和等级的润滑油、各种等级的煤油、喷气机燃料、柴油机燃料、加热用油和用于制造塑料和其他聚合物的化学品。可将本文所述的燃料产物的组合物与通过其他手段生产的燃料产物进行组合或调合。
还提供的是包含基本上不含异戊二烯的异戊二烯衍生物的燃料组合物。在一些实施例中,燃料组合物包含小于0.01%、0.1%、1%、2%、3%、4%、5%、10%或15%的异戊二烯。还提供的是用于将生物异戊二烯组合物化学转化为包含一种或多种基本上不含异戊二烯的异戊二烯衍生物的燃料组合物的方法。在一些实施例中,生物异戊二烯组合物中的异戊二烯的大部分被转化为一种或多种燃料成分。在一些实施例中,生物异戊二烯组合物中的异戊二烯的大部分被转化为一种或多种中间体,中间体可进一步被转化以生产一种或多种燃料成分。在一些实施例中,生物异戊二烯组合物中的异戊二烯的大部分被转化为一种或多种异戊二烯以外的化合物。
在一些情况下,异戊二烯和其他共轭二烯可形成一种或多种具有胶样稠度的高分子产物,这些产物会降低所需的产物的收率和/或使催化剂失活。(参见例如R.C.C.Pereira和V.M.D.Pasa.,《燃料》(Fuel),85(2006)1860-1865)。在一些实施例中,提供用于测定产物混合物中存在的共轭二烯的量的方法。D.F.Andrade等人描述了各种用于测定存在的共轭二烯的量的方法(《燃料》(Fuel),(2010),doi:10.106/i.fuel/2010.01.003),包括以下方法:1)UOP-326方法(马来酸酐方法),这是一种半定量方法,其中测量通过与该二烯发生Diels-Alder反应而消耗的马来酸酐的量;2)极谱法;3)气相色谱法,其中该二烯可与衍生化剂如4-甲基-1,2,4-三唑啉-3,5-二酮(MTAD)或4-苯基-1,2,4-三唑啉-3,5-二酮(PTAD)反应;4)HPLC;5)超临界流体色谱法;6)NMR;7)紫外和近红外光谱法;和8)其他光谱方法,它们可包括首先用对硝基苯四氟硼酸重氮盐将该二烯进行衍生化。
本文还提供用于使胶质物的形成减至最低和/或减少已产生的胶质物的量的方法。在一些实施例中,使用抗氧化剂来使胶质物的形成减至最低。在其他实施例中,可将高分子副产物再循环回到工艺流。在一些实施例中,通过烯烃复分解进行高分子副产物的解聚。烯烃复分解可使用钼或钨催化剂如2,6-二异丙基苯基亚氨基新亚苯基钼双(2-叔丁基苯酚)(2,6-diisopropylphenylimido neophylidene molybdenum bis(2-tertbutylphenoxide))来进行。(参见US5,446,102;“烯烃的复分解聚合和炔烃的聚合”(“Metathesis polymerization of olefins and polymerization of alkynes”),Y.Imamoglu编辑,《北约组织尖端科学研究丛书,C辑:数学和物理科学》(NATO ASI Series,Series C:Mathematical and Physical Sciences),第506卷,第133-134页)。
在一些实施例中,本文所述的任何方法还包括对这些反应的一种或多种产物进行表征并评估潜在燃料值。例如,可通过本领域知道的标准方法,例如GC/MS、NMR、UV-Vis光谱法和IR光谱法、沸腾温度、密度和其他物理性质,对产物进行表征。产物可进一步通过双碳同位素指纹识别(dual carbon-isotopic fingerprinting)进行表征(参见美国专利第7,169,588号)。产物的潜在燃料值可通过一种或多种测量燃料性质的参数进行评估,如能量密度、热值、水溶性、辛烷/十六烷值、密度、粘度、表面张力、蒸发焓、蒸气扩散率、闪点、自燃点、易燃性极限、浊点和化学稳定性。
和商业石油燃料一样,可对衍自来自生物异戊二烯组合物的异戊二烯的燃料产物测试其酸度、密度、痕量矿物含量、苯、总芳族物质含量、水含量和腐蚀性。为确保衍自来自生物异戊二烯组合物的异戊二烯的燃料产物中的少量杂质不会不利影响它们的材料性质,还可通过标准的ASTM测试法(如测试水的Karl Fischer法和测试腐蚀性的铜带法)对样品测试其腐蚀性和与燃料系统的相容性。
碳指纹识别
可根据双碳同位素指纹识别,将衍自来自生物异戊二烯组合物的异戊二烯的燃料与衍自石化碳的燃料相区别。另外,可通过双碳同位素指纹识别确定生物来源的碳的具体来源(例如是葡萄糖还是甘油)(参见美国专利第7,169,588号,将其以引用方式并入本文)。
这个方法能有用地辨别化学上相同的材料,并通过生物圈(植物)组分的生长来源(可能还有生长年份)来分配产物中的碳。14C和13C同位素能给这个问题提供互补性信息。核半衰期为5730年的放射性碳年代测定同位素(14C)显然能让人们将样本碳在化石(“死的”)原料和生物圈(“活的”)原料之间分配[Currie,L.A.,“‘大气颗粒的来源分配’,环境颗粒的表征”(“Source Apportionment of Atmospheric Particles,”Characterizationof Environmental Particles),J.Buffle和H.P.van Leeuwen编辑,《IUPAC环境分析化学系列》第I卷之1,Lewis Publishers,Inc出版公司,(1992)374]。放射性碳年代测定的基本假设是,大气中的14C浓度的恒定性导致活生物体中的14C的恒定性。当研究分离的样品时,可大体按t=(-5730/0.693)ln(A/AO)(方程14)这个关系推算样品的年龄,在该方程中,t=年龄,5730年为放射性碳的半衰期,A和AO分别为该样品与现代标准品的比14C活性[Hsieh,Y.,《美国土壤科学学会期刊》(Soil Sci.Soc.AmJ.),56,460,(1992)]。但是,由于自1950年以来的大气核试验和自1850年以来的化石燃料燃烧,14C已获得了第二地球化学时间特征。它在大气CO2中的浓度-从而在活生物圈中的浓度-在核试验的巅峰时期(二十世纪六十年代中期)大约翻了一倍。从那以后,它逐渐恢复到大约1.2×10-12的稳态宇生(大气)极限同位素率(14C/12C),减少半衰期大约为7-10年。(这后一个半衰期不可从字面上理解;相反,必须使用详细的大气核输入/衰变函数来追踪自核时代开始以来的大气和生物圈14C的变化)。正是这后一个生物圈14C时间特征给最近生物圈碳的年度测定带来希望。14C可通过加速器质谱法(AMS)进行测量,结果以“现代碳分数(fraction of modemcarbon)”(fM)单位给出。fM由美国国家标准与技术研究院(NIST)标准参考物质(SRM)4990B和4990C(分别称为草酸标准HOxI和HOxII)定义。该基本定义涉及0.95乘以14C/12C同位素比率HoxI(以公元1950年为参照)。这大约等同于经衰变校正的工业革命前木头。对于当前的活生物圈(植物材料),fM≈1.1。
稳定碳同位素比率(13C/12C)提供了与来源辨别和分配互补的一个路线。给定的生物来源材料中的13C/12C比率是二氧化碳被固定时大气二氧化碳中的13C/12C比率,并且也反映精确的代谢途径。也会出现区域差异。石油、C3植物(阔叶树)、C4植物(草类)和海洋碳酸盐都在13C/12C和相应的δ13C值上显示出显著的差异。此外,由于代谢途径的缘故,C3植物和C4植物的脂质物质的分析结果与衍自相同植物的碳水化合物组分的材料的分析结果不同。在测量精度内,13C由于同位素分馏效应而显示大的差异,对于本发明而言最显著的是光合作用机制。植物中碳同位素比率的差异的主要原因与植物中光合作用碳代谢的途径特别是初级羧化作用(即大气CO2的初始固定)过程中发生的反应的差异密切相关。两大类植物一是具有“C3”(或卡尔文·本森(Calvin-Benson))光合作用循环的植物,二是具有“C4”(或哈奇-斯莱克(Hatch-Slack))光合作用循环的植物。C3植物,如硬木和针叶树在温带气候区占优势。在C3植物中,初级CO2固定或羧化反应涉及核酮糖-1,5-二磷酸羧化酶,第一个稳定的产物是一种3碳化合物。另一方面,C4植物包括诸如热带草类、玉米和甘蔗这样的植物。在C4植物中,涉及另一酶即磷酸烯醇式丙酮酸羧化酶的另一羧化反应是初级羧化反应。第一个稳定的碳化合物是一种4碳的酸,该酸随后被脱羧。由此释放的CO2被C3循环再次固定。
C4植物和C3植物都具有13C/12C同位素比率范围,但典型的值为大约-10至-14‰(C4)和-21至-26‰(C3)[Weber等人,《农业与食品化学杂志》(J.Agric.Food Chem.),45,2942(1997)]。煤和石油通常落入后一范围。13C测量尺度最初是以皮迪河箭石(pee dee belemnite(PDB))石灰石设定为零定义的,其中数值以与这个材料的千分差为单位表示。“δ13C”值以千分比(每千)为单位,缩写为‰,并如下计算:
由于PDB参考物质(RM)已耗竭,已与国际原子能机构(IAEA)、美国地质调查局(USGS)、美国国家标准与技术研究院(NIST)和其他选定的国际同位素实验室合作开发了一系列另选的参考物质。表示与PDB的千分差的符号为δ13C。测量是通过高精度稳定比率质谱(IRMS)针对质量44、45和46的分子离子对CO2进行的。
对于对来自石油炼油厂的C5流进行萃取蒸馏而衍生的异戊二烯而言,δ13C为约-22‰至约-24‰。这个范围对于衍自石油的轻质不饱和烃是典型的,衍自石油基异戊二烯的产物通常包含具有相同δ13C的异戊二烯单元。来自通过发酵玉米衍生葡萄糖(δ13C-10.73‰)与极少量其他含碳营养物(例如酵母膏)而产生的生物异戊二烯组合物的异戊二烯产生出可被聚合成δ13C为-14.66‰至-14.85‰的聚异戊二烯。由这种来自生物异戊二烯组合物的异戊二烯生产的产物预期具有比衍自石油基异戊二烯的产物较不负的δ13C值。对于衍自异丁烯与甲醛的反应的异戊二烯,δ13C值可为约-34.4‰,因为甲醛往往衍自具有负得多的δ13C值的原料。
用来自利用生物可再生碳源的细胞培养物的异戊二烯制备的本发明燃料和燃料成分,可由其δ13C值和其他燃料特性得以鉴定为如此。在一些实施例中,衍自来自生物异戊二烯组合物的异戊二烯的燃料成分具有比-22‰大的(较不负的)δ13C值。在一些实施例中,衍自来自生物异戊二烯组合物的异戊二烯的燃料成分具有大于-20、-18、-16、-14、-12或-10‰的δ13C值。在一些实施例中,衍自来自生物异戊二烯组合物的异戊二烯的燃料成分具有22至-10、-21至-12或-20至-14‰范围内的δ13C值。在一些实施例中,衍自来自生物异戊二烯组合物的异戊二烯的燃料成分具有在-34至-24、-34至-25、-33至-25、-32至-24、-32至-25、-31至-25、-30至-29、-30.0至-29.5、-29.5至-28.5或-29.0至-28.5‰范围内的δ13C值。
在一些实施例中,衍自来自生物异戊二烯组合物的异戊二烯的燃料成分包含放射性碳-14。在一些实施例中,14C/12C比率大于或约为1.0×10- 12、1.05×10-12、1.1×10-12、1.15×10-12或1.2×10-12。在一些实施例中,衍自来自生物异戊二烯组合物的异戊二烯的燃料成分的fM值大于或约为0.9、0.95、1.0、1.05或1.1。在一些实施例中,衍自来自生物异戊二烯组合物的异戊二烯的燃料成分的fM值大于或约为0.9、0.95、1.0、1.05或1.1,δ13C值为比-22‰大(较不负)。在一些实施例中,衍自来自生物异戊二烯组合物的异戊二烯的燃料成分的fM值大于或约为0.9、0.95、1.0、1.05或1.1,δ13C值在-22至-10、-21至-12或-20至-14‰的范围内。在一些实施例中,衍自来自生物异戊二烯组合物的异戊二烯的燃料成分的fM值大于或约为0.9、0.95、1.0、1.05或1.1,δ13C值在-34至-24、-34至-25、-33至-25、-32至-24、-32至-25、-31至-25、-30至-29、-30.0至-29.5、-29.5至-28.5或-29.0至-28.5‰的范围内。在其他实施例中,燃料成分和/或燃料组合物不是US2009/0087890中所述的任何产物。
来自生物异戊二烯组合物的异戊二烯的衍生物及相关燃料、中间体和混合物,可根据14C(fM)和双碳同位素指纹识别(表示物质的新组合物)与它们的石化衍生的对等物完全区别开来。
在一些实施例中,本发明的燃料成分的能量密度比乙醇高。在一些实施例中,该燃料成分能提升燃料(例如石油基燃料)的十六烷值。在一些实施例中,该燃料成分能减少石油基燃料的排放。在一些实施例中,该燃料组合物的辛烷值在约80至约120的范围内。在一些实施例中,该燃料组合物的十六烷值在约30至约130的范围内。
本发明还提供用于制备燃料组合物的方法,所述方法包括获得石油蒸馏物并加入本发明的燃料成分。
通过参照以下实例能进一步理解本发明,这些实例以举例说明的方式提供而非旨在进行限制。
实例
实例1:从生物异戊二烯组合物回收异戊二烯
使用WO2009/076676和WO2010/003007中描述的组合物和方法制备异戊二烯。在两步骤操作中从一组四个14L规模的发酵回收异戊二烯,该两步骤操作涉及通过吸附到活性炭从发酵尾气流抽提异戊二烯,然后进行离线蒸汽解吸附和冷凝以得到液体异戊二烯。
通过GC/MS和气相色谱法/火焰离子化检测(GC/FID)来分析回收的异戊二烯液体,以确定杂质的性质和含量。测得产物的纯度>99.5%,并且除了多种微量组分之外,该产物包含几种主要杂质。GC/FID色谱图在图6中绘出,并且杂质的代表性含量在表3中示出。杂质谱与按这个规模生产的其他批次的生物异戊二烯组合物相似。
表3.几个批次的生物异戊二烯组合物中所见的杂质的性质和含量总结
通过用吸附剂处理从生物异戊二烯组合物纯化异戊二烯
业内广泛地使用吸附剂来从烃原料中去除痕量杂质。合适的吸附剂包括基于沸石、氧化铝和二氧化硅的材料。来自生物异戊二烯组合物的异戊二烯可通过使其经过硅胶而得到充分纯化,用氧化铝也可纯化,但程度较低。巴斯夫公司(BASF)的SelexsorbTM吸附剂产品是用于从生物异戊二烯组合物去除极性杂质的首选吸附剂之一。特别是,考虑到Selexsorb CD和CDX产品具有经证实的从异戊二烯和丁二烯原料中去除极性杂质的效用,因此它们是优选的。但是,要认识到本发明的范围内还设想到其他的吸附剂产品。
在GC小瓶中,用一珠粒(直径1/8″,约90mg)或处理衍自生物异戊二烯组合物的异戊二烯(1mL,并加入150ppmTBC),不时振摇。产品在10分钟内颜色从白色变为淡黄色。通过GC/MS分析各样品,将各谱图重叠以凸显杂质被去除的程度。测定了极性杂质的去除程度,结果在表4中列出。
实例2:来自生物异戊二烯组合物的异戊二烯的化学转化
化学品和溶剂按从美国威斯康星州西格玛奥德里奇公司(Sigma AldrichCorp,WI,USA)收到的原样使用。通过发酵大肠杆菌BL21菌株生产异戊二烯,该菌株表达异戊二烯合酶和异源甲羟戊酸(MVA)异戊二烯前体生物合成途径。如下从发酵尾气回收来自生物异戊二烯组合物的异戊二烯:将其吸附到活性炭,然后进行蒸汽解吸附和冷凝以获得粗液体异戊二烯。临用前通过分馏纯化异戊二烯。
1
H NMR分析
在Varian VNMRS500MHz NMR系统上记录质子(1H)核磁共振(NMR)谱。所有NMR谱均以四甲基硅烷(TMS,0ppm)或氯仿(CHCl3,7,26ppm)为参照,并且峰频率以ppm记录,除非另有说明。样品在氘化氯仿(CDCl3)或甲醇(CD3OD)中运行。
GC/MS分析
使用Agilent6890GC/MS系统进行分析,该系统连接着以顶空模式操作的CTC Analytics(瑞士)CombiPAL自动进样器。
方法A:使用Agilent HP-5MS GC/MS柱(30m×0.25mm;0.25μm膜厚)进行被分析物的分离。安装自动进样器以从10μL液体注射器注射1μL的液体样品。GC/MS方法利用氦气作为载气,流速为1mL/分钟。注射口保持在250℃,分流比为20∶1。炉程序在50℃下开始,保持2分钟,接着以25℃/min的速率增加到225℃,然后保持1分钟,总运行时间为10分钟。Agilent5793N质量选择检测器以扫描方式从m/z29至500运行。采用1.5分钟的溶剂延迟。在这些条件下,观察到异戊二烯(2-甲基-1,3-丁二烯)在1.675分钟洗脱出。
方法B:使用Agilent HP-5MS GC/MS柱(30m×0.25mm;1μm膜厚)进行被分析物的分离。安装自动进样器以从10μL液体注射器注射1μL的液体样品。GC/MS方法利用氦气作为载气,流速为1mL/分钟。注射口保持在250℃,分流比为20∶1。炉程序在50℃下开始,保持2分钟,接着以25℃/min的速率增加到225℃,然后保持6分钟,总运行时间为15分钟。Agilent5793N质量选择检测器以扫描方式从m/z29至300运行。采用1.35分钟的溶剂延迟。在这些条件下,观察到异戊二烯(2-甲基-1,3-丁二烯)在2.25分钟洗脱出。采用GC/MS方法A,除非另有规定。
方法C:使用Agilent HP-5MS GC/MS柱(30m×0.25mm;0.25μm膜厚)进行被分析物的分离。安装自动进样器以从10μL液体注射器注射1μL的液体样品。GC/MS方法利用氦气作为载气,流速为1mL/分钟。注射口保持在250℃,分流比为100∶1。炉程序在50℃下开始,保持2分钟,接着以25℃/min的速率增加到225℃,然后保持1分钟,总运行时间为10分钟。Agilent5793N质量选择检测器以扫描方式从m/z29至500运行。采用1.5分钟的溶剂延迟。在这些条件下,观察到异戊二烯(2-甲基-1,3-丁二烯)在0.675分钟洗脱出。
GC/FID分析
使用Agilent6890GC/MS系统进行分析,该系统连接着以液体方式操作的CTC Analytics(瑞士)CombiPAL自动进样器。使用Agilent DB-PetroGC柱(100m×0.25mm;0.50μm膜厚)进行被分析物的分离。安装自动进样器以从10μL液体注射器注射1μL的液体样品。GC/FID方法利用氦气作为载气,流速为1mL/分钟。注射口保持在200℃,分流比为50∶1。炉程序在50℃下开始,保持15分钟,接着以25℃/min的速率增加到250℃,然后保持10分钟,总运行时间为33分钟。FID以恒定组成(makeup)模式保持在280℃,氢气流速为35mL/min,空气流速为250mL/min。在这些条件下,观察到异戊二烯(2-甲基-1,3-丁二烯)在13.54分钟洗脱出。
I.不饱和化合物的一般氢化
将不饱和化合物的混合物放入装备有磁力搅拌器并含有适当的氢化催化剂的玻璃室中。所有玻璃器具在进行实验前都进行真空干燥。将氢气引入到系统中,压力保持在3atm。几个小时后,从反应混合物过滤掉催化剂,并用硅胶色谱法分离产物。用GC-MS和NMR进行最终分析。
II.异戊二烯的完全氢化
(A)使用H-cube氢化装置(ThalesNano公司,美国新泽西州普林斯顿),以连续方式将异戊二烯(10mL的10%无水乙醇溶液(v/v))氢化成2-甲基丁烷(异戊烷)。将异戊二烯溶液以0.5mL/min的速度泵送经过保持在70℃的10%Pd/C催化剂筒(cartridge)。使用1atm压力的“完全模式”引入氢气。收集产物,通过1H NMR和GC/FID进行分析,证实异戊二烯以超过90%的收率转化为2-甲基丁烷,另外有少量的部分氢化的单烯烃。1H NMR(500MHz,CDCl3):δ0.8(m,9H,CH3);1.12(m,2H,CH2);1.37(m,1H,CH)。GC/FID:2-甲基丁烷;保留时间=12.69分钟。
(B)使用H-Cube MidiTM氢化装置(ThalesNano公司,美国新泽西州普林斯顿),以连续方式将衍自生物异戊二烯组合物的异戊二烯(100mL)于无水乙醇(400mL)中的20%v/v溶液氢化成2-甲基丁烷(异戊烷)。将异戊二烯溶液以5mL/min的速率再循环经过保持在70℃温度和30巴压力的5%Pd/C MidiCartTM催化剂筒。氢气按“完全”模式以125mL/min的速率供应。继续实验,直到观察到过量的氢气,此时产物的大部分由2-甲基丁烷于乙醇中的溶液组成,这由GC/FID和1H NMR光谱法测出(图7)。
III.异戊二烯的部分氢化
将从生物异戊二烯组合物获得的异戊二烯(50mL,0.5mol)与甲苯(200mL)混合,并在Midi-Cube氢化装置(ThalesNano公司,匈牙利布达佩斯)上在40℃和5巴氢气压力下在5%Pd/C催化剂上进行部分氢化。底物流速为10mL/min,氢气以125mL/min(5mmol/min)递送。将产物流再循环经过该设备2小时时间,然后通过GC/MS和GC/FID分析产物等分试样,表明大部分原料已被转化为异戊烯类物质(2-甲基-1-丁烯、2-甲基-2-丁烯和3-甲基-1-丁烯)的混合物,另外还有异戊烷和一些未反应的异戊二烯(图8)。
IV.异戊二烯的选择性氢化
(A)使用蛋壳Pd/δ-Al2O3催化剂,在以上实例中说明的条件下将异戊二烯进行选择性氢化,得到异戊烯类物质的混合物,经GC/MS分析测定出,其中2-甲基-2-丁烯为主要产物,占总异戊烯类物质的>50%,3-甲基-1-丁烯为次要产物,占总异戊烯产物的<25%。异戊烷和残余异戊二烯的量占总产物流的<10%。当使用硫化钯碳催化剂进行该反应时,获得类似的结果。
(B)将衍自生物异戊二烯组合物的异戊二烯(100mL,68.1g,1mol)和水(50mL)的混合物以5mL/min的速率循环经过Thales-Nano H-连续流氢化反应器6小时,该反应器装有5%Pd/Al2O3MidiCartTM催化剂筒,保持在30℃和5巴压力下。氢气按“完全”模式以125mL/min的速率供应。GC/MS分析产物表明异戊二烯原料转化成2-甲基丁烷(异戊烷)(约15%)和2-甲基-2-丁烯(约85%)。GC/MS总离子色谱图在图9中示出。
(C)使异戊二烯(西格玛奥德里奇公司(Sigma-Aldrich))(320g)于甲苯(1300g)中的溶液经过活化的中性氧化铝柱以去除抑制剂。如下准备钴2724氢化催化剂(美国格雷斯-戴维逊公司(GraceDavison))(12.8g):用去离子水洗涤至中性pH,接着用异丙醇然后是甲苯洗涤该催化剂以置换掉水。氢化是在Parr氢化容器中在加入一摩尔当量的氢气后在4-7巴压力和80-85℃温度下进行。GC/MS分析反应产物表明是异戊烯类物质的混合物(表5)
表5.用Raney钴催化剂对异戊二烯进行选择性氢化所得的产物。
化合物 | 占总产物的百分比 |
3-甲基-1-丁烯 | 29.4% |
2-甲基丁烷 | 3.6% |
2-甲基-1-丁烯 | 44.3% |
异戊二烯 | 5.4% |
2-甲基-2-丁烯 | 17.3% |
V.来自处于气相的生物异戊二烯组合物的异戊二烯的部分氢化
将含有作为生物异戊二烯组合物的一部分的异戊二烯的干燥气流与稍微过量的氢气(mol/mol)混合,并使该气态混合物在多相氢化催化剂(例如具有高孔体积的IB族促进的(Group IB-promoted)钯催化剂,如在美国专利申请20090203520中描述)上方经过,以产生异戊烯类物质和一种或多种杂质的混合物,所述杂质衍自异戊二烯最初从中衍生的发酵过程。该转化是在0.5-200巴的压力和0℃-200℃的温度下进行。
VI.用固体酸催化剂对来自生物异戊二烯组合物的异戊二烯进行低聚
化
(A)将异戊二烯(来自生物异戊二烯组合物)单体(1.5mL)和甲苯(4mL)的混合物与Amberlyst15酸性树脂(186mg)在室温下搅拌12小时。从反应混合物移取等分试样(500uL)并转移到GC小瓶。通过GC/MS对混合物进行分析(图4),表明是由异戊二烯及线性、环状和芳族的C10、C15和高级低聚体组成的复杂产物混合物。
将衍自生物异戊二烯单体的异戊二烯(10mL,6.81g)放入配有带侧管的50mL滴液漏斗的25mL圆底烧瓶中。将乙二醇冷却的(-10℃)回流冷凝器设置在滴液漏斗的顶部,并将整个装置保持在氮气保护下。用原棉塞住滴液漏斗的颈部,加入Amberlyst15酸性树脂(2g),形成大约1cm厚的床。然后将圆底烧瓶放在保持在60℃下的油浴中以使异戊二烯回流,导致异戊二烯再循环经过Amberlyst树脂床。实验继续2小时,导致在烧瓶中形成黄色溶液。用GC/MS对溶液进行分析表明形成了C10二聚体、C15三聚体和高级低聚体的混合物(图10)。该混合物不如通过BioIsopreneTM单体的批式低聚化所获得的混合物(参见图4)那样复杂,所含C10二聚体相对于高级异戊二烯低聚体的比例较高,并具有较低水平的芳族化合物,如间伞花烃和对伞花烃。
VII.用固体酸催化剂对来自生物异戊二烯组合物的异戊二烯进行连续
低聚化
在含有Amberlyst15离子交换树脂或等同的催化剂的二聚化反应器中,将异戊二烯(来自生物异戊二烯组合物)单体连续转化为C10二聚体和C15三聚体。生物异戊二烯组合物的进料流包含异戊二烯单体和任选包含异戊二烯的C5衍生物及共溶剂。该过程在20-200℃的温度和0.5-200巴的压力下进行。将二聚化步骤的产物在第一分级分离柱中进行分级分离,以使未反应的异戊二烯与高级(>C5)低聚体分离开来。将C5级分返回二聚化反应器,将重的>C5级分引入到第二分级分离柱,在其中从柱顶流收集所需的C10/C15级分。将由>C15低聚体组成的柱底级分输送到含有复分解催化剂(如Grubbs第2代催化剂)的重级分再循环反应器中。复分解催化剂通过烯烃交叉复分解反应将一部分高级低聚体级分转化为较轻的组分,后者随后被输送到分级分离柱#1,如图11中所示。
总体上,该过程导致异戊二烯单体转化成C10二聚体和C15三聚体前体(作为衍自生物法生产的异戊二烯的燃料成分的前体),这些前体然后在实例2的I节中描述的条件下进行部分或完全氢化。所得的部分或完全饱和的化合物适合作为燃料组合物和作为燃料调合原料。
VIII.使用Grubbs第2代复分解催化剂将来自生物异戊二烯组合物的
异戊二烯复分解成高级和低级烯烃的混合物
(A)将生物异戊二烯组合物(10mL,100mmol)、二氯甲烷(40mL)和Grubbs第2代复分解催化剂(CAS号246047-72-3)(250mg)放在100mL玻璃压力容器中,然后将容器在氮气下密封并保持在50℃下12小时。从玻璃容器移取反应混合物的等分试样,通过GC/MS和GC/FID方法分析揭示出存在低级(<C5)和高级(>C5)烯烃的复杂混合物,另外还有未反应的异戊二烯。对该混合物进行分馏以分离高级烯烃,然后将其在实例2中描述的条件下进行部分或完全氢化。所得的部分或完全饱和的化合物适合作为燃料组合物和作为燃料调合原料。
以上实例还可用生物异戊二烯组合物和其他烯烃(如通过部分氢化衍自来自生物异戊二烯组合物的异戊二烯的异戊烯类物质)的混合物来进行。诸如乙烯、丙烯、1,3-丁二烯、异丁烯和高级烯烃的烯烃也适合作为共底物。反应可在20-200℃的温度下,在0.5-200巴的压力下,用共溶剂并使用多相和均相催化剂两者来进行。
在较大规模上,交叉复分解反应按类似于Shell高级烯烃工艺(SHOP)、Phillips三烯烃工艺及相似方法的连续方式来进行(参见Mol,J.C.(2004))。来自生物异戊二烯组合物的异戊二烯被转化为低级和高级烯烃的混合物,这些烯烃随后在一个或多个蒸馏塔中进行分级分离。移取所需的级分以随后氢化成燃料化合物,并将高级和低级级分以及未反应的异戊二烯再循环到复分解反应器,如图3中所示。
(B)使衍自生物异戊二烯组合物的异戊二烯(320g,4.7mol)于甲苯(1300g)中的溶液经过活化的中性氧化铝柱以去除抑制剂。如下准备钴2724氢化催化剂(美国格雷斯-戴维逊公司(Grace Davison))(12.8g):用去离子水洗涤至中性pH,接着用异丙醇然后是甲苯洗涤该催化剂以置换掉水。氢化是在Parr氢化容器中在加入一摩尔当量的氢气后在4-7巴压力和80-85℃温度下进行。
将所得的异戊烯类物质(3-甲基-1-丁烯、2-甲基-1-丁烯和2-甲基-2-丁烯)的混合物在用氮气吹扫的密封管中,用亚苄基[1,3-双(2,4,6-三甲基苯基)-2咪唑烷亚基]二氯(三环己基膦)钌(Grubbs第2代催化剂,43g,50mmol)进行烯烃复分解。将橙色悬浮液在45℃下加热大约24小时。用GC/MS分析产物揭示出主要由异戊烯类物质和二甲基己烯组成的混合物。
VIII-A.用烯烃复分解催化剂进行异戊二烯的二聚化
将异戊二烯(美国威斯康星州西格玛奥德里奇公司(Sigma-Aldrich,WI))(2g,29.4mmol,2.94mL)放入密封管中,用N2吹扫。一次性加入亚苄基[1,3-双(2,4,6-三甲基苯基)-2-咪唑烷亚基]二氯(三环己基膦)钌(Grubbs第2代催化剂)(248mg,0.30mmol),然后将所得的暗红色-棕色悬浮液在45℃下搅拌大约24小时。用GC/MS方法B(图12)发现所得的暗棕色悬浮液含有未反应的异戊二烯及几种较高分子量的产物,这些产物根据其质谱被鉴定为由C6至C10烯烃组成。产物的质谱在表6中列出。
表6.异戊二烯复分解的产物的质谱。
洗脱时间(min) | 观察到的离子(m/z) | 碳原子 |
4.087 | 96,81(BP),79,67 | 6 |
5.537 | 122,107(BP),91,79,67 | 8 |
5.842 | 108.93(BP),91,77,65 | 8 |
6.200 | 104(BP),78,63 | 8 |
7.301 | 136,121,107,93(BP),79,68 | 10 |
7.986 | 164,149,135,121,107,93,79(BP),67 | 12 |
8.523 | 161,148,134,119,108,93(BP),77 | 12 |
8.943 | 161,144,129(BP),115 | 12 |
BP=基峰
IX.用具有副产物再循环的复分解反应器将来自生物异戊二烯组合物 的异戊二烯转化为燃料产物。
来自生物异戊二烯组合物的异戊二烯向燃料产物的转化可用烯烃复分解来实现(参见例如Mol,J.C.(2004)),在烯烃复分解中异戊二烯通过碳-碳双键的切割和再形成被转化为高级烯烃的混合物。使用连续复分解反应器将来自生物异戊二烯组合物的异戊二烯流转化为C7-C15燃料产物流的工艺流程图在图3中示出。将如此获得的统计学分布的产物在第一蒸馏柱中进行分级分离,使得由轻组分(<C7)组成的柱顶级分返回复分解反应器。这些轻组分包括乙烯、丙烯、异丁烯、异戊二烯和其他轻烯烃。来自蒸馏柱的重级分进入第二分级分离柱,在其中所需的C7至C15范围内的线性和环状组分在柱顶级分中移取。这些低聚体可进行后续的加氢处理以生产衍自来自生物异戊二烯组合物的异戊二烯的燃料产物。
将来自第二蒸馏柱的由C15至C50线性和环状低聚体组成的重级分再循环到复分解反应器,在其中它们进行烯烃歧化反应得到C2至C50范围的产物分布,然后将产物如上所述通过蒸馏进行分级分离。可通过由乙烯或乙烯和其他轻烯烃(<C5)组成的任选的轻烯烃共进料来调节复分解反应器中产生的产物的总体分布。轻烯烃共进料与来自生物异戊二烯组合物的异戊二烯进料之比可在1∶100-2∶1的范围内。较高的轻烯烃共进料与来自生物异戊二烯组合物的异戊二烯进料之比往往会降低产物的平均分子量,并减少从复分解反应器出现的不需要的重级分的量。轻烯烃共进料还可有助于防止复分解反应器中形成不挥发性胶质物和聚合物(>C50),这类物质会使复分解催化剂失活(参见Oziomek,美国专利申请5,446,102)。
X.异戊烯复分解
(A)使用烯烃复分解催化剂进行2-甲基-1-丁烯的二聚化
将亚苄基[1,3-双(2,4,6-三甲基苯基)-2咪唑烷亚基]二氯(三环己基膦)钌(Grubbs第2代催化剂,121mg,0.14mmol)放在密封管中并用氮气吹扫。加入2-甲基-1-丁烯(1g,1.54mL,14.3mmol),然后将所得的棕色悬浮液在45℃下加热大约24小时。用GC/MS方法B对产物进行分析,表明存在未反应的2-甲基-1-丁烯并形成几种次要产物,包括3,4-二甲基己烯的异构体(m/z69,83,97,112)。
GC/MS总离子色谱图和主要产物峰的相应质谱图在图13A-C中示出。
(B)使用烯烃复分解催化剂进行3-甲基-1-丁烯的二聚化
将3-甲基-1-丁烯(1.59mL,1g,14.3mmol)放入密封管中并用N2吹扫。一次性加入亚苄基[1,3-双(2,4,6-三甲基苯基)-2-咪唑烷亚基]二氯(三环己基膦)钌(Grubbs第2代催化剂)(121mg,0.14mmol),然后将所得的暗红色-棕色悬浮液在25℃下搅拌大约24小时。用GC/MS方法B分析所得的暗棕色悬浮液,测出含有二甲基己烯作为主要组分(m/z69,97,112)。
GC/MS总离子色谱图和主峰的相应质谱图在图14A和14B中分别示出。
实例3:
13
C/
12
C同位素分析
可如下进行13C分析:将0.5-1.0mg样品加载到锡杯,使用CostechECS4010元素分析仪作为ThermoFinnigan Delta Plus XP同位素比率质谱仪的进口进行碳同位素分析。使样品下落到处于1020℃的氧化亚钴/氧化钴燃烧反应器中,燃烧气体在氦气流中以85mL/min的速度经过铜反应器(650℃)以将NOx转化为N2。用3-m分子筛柱将CO2和N2分离。然后,使用两个实验室标准品(乙酰苯胺B,-29.52±0.02‰m;玉米淀粉A,-11.01±0.02‰)将13C/12C比率校准到VPDB标度,所述两个实验室标准品已通过使用T.B.Coplen等人(“δ13C测量新指导方针”(NewGuidelines forδ13C Measurements),《分析化学》(Anal.Chem.),78,2439-2441(2006))的2-标准程序通过离线燃烧和双进口分析小心校准到VPDB标度。出于教导δ13C值的测定技术的目的,以引用方式将Coplen的教导内容并入本文。
2008年6月30日提交的第61/133,521号美国临时专利申请和WO2010/05525A1列举了衍自各种来源的异戊二烯的原料和聚合物的δ13C值,所述来源包括表7中列出的来源。
表7
样品 | δ13C |
棕榈油 | -30.00 |
酵母膏 | -25.70 |
来自萃取蒸馏的商业聚异戊二烯 | -23.83 |
来自软木浆的糖 | -23.00 |
来自异戊二烯样品B的聚异戊二烯(乳液聚合) | -19.67 |
转化糖 | -15.37 |
来自异戊二烯样品A的聚异戊二烯(钕催化剂) | -14.85 |
来自甘蔗渣的葡萄糖 | -13.00 |
来自玉米秸秆的葡萄糖 | -11.20 |
玉米淀粉 | -11.10 |
葡萄糖 | -10.73 |
实例4:示例性的燃料性质
表8中列出了以下化合物的燃料性质:某些参考化合物以及可用本文所述的方法从生物异戊二烯组合物制备的化合物或者其在表8中所列结构和/或燃料性质与可用本文所述的方法从生物异戊二烯组合物制备的化合物相似的化合物。
实例5:使用Amberlyst15,H
+
树脂进行异戊二烯的气相低聚化
(A)将Amberlyst15酸性树脂(100mg)加入到充满空气的20mL顶空小瓶(Agilent)。将异戊二烯单体(0.2μL)(来自生物异戊二烯组合物)注射到小瓶中并让其汽化。初始异戊二烯浓度为大约0.2%v/v。将小瓶在室温下保藏12小时,然后将二氯甲烷(DCM)等分试样(500μL)加到小瓶中,轻轻摇动1分钟。然后移取DCM相,加到GC小瓶,接着用方法B进行GC/MS分析。形成了几种化合物,包括3-甲基-2-丁酮(保留时间=3.734分钟)、异丙基甲苯(保留时间7.283分钟)和异戊二烯三聚体(保留时间9-11分钟)。结果在图15A中示出。
(B)开始使用2μL的异戊二烯(2%v/v)和10μL的异戊二烯(10%v/v),重复以上所述的实验。结果分别在图15B和15C中示出。在两种情况中,观察到一系列化合物,包括3-甲基-2-丁酮(保留时间=3.733分钟)、芳族C10化合物(保留时间7.283分钟)、C15三聚体(保留时间9-11分钟)和C20四聚体(11-13分钟)。
(C)使用10μL的异戊二烯(参见以上B))重复实验,例外的是在20分钟后通过加入500μL的DCM猝灭反应。使用GC/MS方法B进行DCM萃取物的分析。实验B和C的结果的比较在图16中示出。
实例6:异戊二烯向氧化衍生物的气相转化
(A)硅胶载10%磷酸催化剂的合成
(B)硅胶载10%磷酸催化剂处理异戊二烯蒸气
将磷酸处理的硅胶(100mg)连同衍自生物异戊二烯组合物的异戊二烯单体(10μL)放入20mL顶空小瓶,密封。让所得的非均匀混合物在25℃下静置大约12小时以产生浅黄色固体。用二氯甲烷(DCM)(3mL)萃取硅胶,用方法B进一步进行GC/MS分析。结果在图17中示出。
实例7:含有生物异戊二烯的发酵尾气的气相转化
(A)用Amberlyst15酸性树脂处理含有生物异戊二烯的发酵尾气
通过发酵经工程改造能从葡萄糖生产异戊二烯的大肠杆菌BL21菌株(参加例如WO2009/076676和WO2010/003007)来产生含有生物异戊二烯的发酵尾气流。在实验期间,发酵尾气中的生物异戊二烯浓度为大约0.02%v/v。使含有生物异戊二烯的发酵尾气流经过含有Amberlyst15酸性树脂(100mg)的20mL顶空小瓶30分钟。然后将二氯甲烷等分试样(500μL)加到小瓶以萃取硅胶催化剂。移取二氯甲烷层并用方法B进行GC/MS分析。结果图18中示出,表明一部分异戊二烯转化为2-甲基-3-丁烯-2-醇(保留时间-3.174分钟)。
(B)用硅胶载10%H 3 PO 4 处理含有生物异戊二烯的发酵尾气。
使如上所述的含有生物异戊二烯的发酵尾气流经过含有硅胶载10%磷酸(100mg)的20mL顶空小瓶30分钟。然后将二氯甲烷等分试样(500μL)加到小瓶以萃取硅胶催化剂。移取二氯甲烷层并用方法B进行GC/MS分析。结果图19中示出,表明一部分异戊二烯转化为C5和C10氧化衍生物。
本文提供的标题并不排除本发明的其它各个方面或实例,这些方面或实例都可以藉对说明书做整体参考而获致。
将本说明书中引述的所有出版物、专利申请和专利均以引用的方式并入本文,就如同具体且独立地表明将每篇独立的出版物、专利申请或专利以引用的方式并入本文一样。具体地讲,将本文引述的所有出版物明确地以引用的方式并入本文以描述和公开可结合本发明使用的组合物和方法。尽管为了清晰理解已经通过举例说明和实例的方式相当详细地描述了上述本发明,但对于本领域的普通技术人员将显而易见的是按照本发明的教导内容在不脱离所附权利要求的精神或范围的情况下可进行各种变化和修改。
Claims (42)
1.一种从生物异戊二烯组合物生产燃料成分的方法,所述方法包括通过以下方式将生物异戊二烯组合物中的异戊二烯的大部分化学转化为一种或多种非异戊二烯化合物:
(a)使所述生物异戊二烯组合物接触烯烃复分解催化剂以产生一种或多种烯烃产物,然后将所述一种或多种烯烃产物进行催化氢化以形成一种或多种烷烃燃料成分;
(b)将所述生物异戊二烯组合物进行部分氢化以产生异戊烯,然后用异链烷烃将所述异戊烯进行烷基化以形成高辛烷烷基化物燃料成分;或者
(c)将所述生物异戊二烯组合物进行部分氢化以产生一种或多种异戊烯类物质,然后使所述一种或多种异戊烯类物质接触烯烃复分解催化剂以形成一种或多种烯烃产物,再然后将所述一种或多种烯烃产物进行催化氢化以形成一种或多种烷烃燃料成分。
2.根据权利要求1所述的方法,其中所述生物异戊二烯组合物中至少约95%的异戊二烯被转化为非异戊二烯化合物。
3.根据权利要求1所述的方法,其中所述生物异戊二烯组合物包含或含有大于约2mg的异戊二烯,并且以所述组合物中所有C5烃类的总重量计包含或含有大于99.94重量%或约99.94重量%的异戊二烯。
4.根据权利要求1所述的方法,其中所述烯烃复分解催化剂包含或涉及至少金属配合物。
5.根据权利要求4所述的方法,其中所述金属配合物是铼配合物、钌配合物、铑配合物、锇配合物、钨配合物、钼配合物或钛配合物。
6.根据权利要求1所述的方法,其中所述烯烃产物包含高级(>C5)烯烃或低级(<C5)烯烃或这两者。
7.根据权利要求6所述的方法,其中所述一种或多种来自异戊二烯复分解的烯烃产物包含一种或多种选自以下的烯烃:乙烯、异丁烯和含6、8和12个碳原子的烯烃(例如二甲基己三烯)。
8.根据权利要求1所述的方法,其中所述将所述生物异戊二烯组合物进行部分氢化的步骤包括使所述生物异戊二烯组合物接触氢气和用于催化异戊二烯的部分氢化的催化剂。
9.根据权利要求8所述的方法,其中所述用于催化异戊二烯的部分氢化的催化剂包含钯催化剂。
10.根据权利要求1所述的方法,其中所述用异链烷烃将所述异戊烯进行烷基化的步骤包括使所述异戊烯在酸催化剂存在下接触所述异链烷烃。
11.根据权利要求10所述的方法,其中所述酸催化剂是氢氟酸、硫酸、氟磺酸或全卤代烷基磺酸。
12.根据权利要求10所述的方法,其中所述异链烷烃是丙烷、异丁烷或异戊烷。
13.根据权利要求1所述的方法,其中所述用于异戊烯复分解的烯烃复分解催化剂与所述用于生物异戊二烯复分解的烯烃复分解催化剂不同。
14.根据权利要求1所述的方法,其中所述用于异戊烯复分解的烯烃复分解催化剂与所述用于生物异戊二烯复分解的烯烃复分解催化剂相同。
15.根据权利要求1所述的方法,其中所述来自异戊烯复分解的烯烃产物包含一种或多种选自以下的烯烃:乙烯和含6、8和12个碳原子的烯烃(例如二甲基己烯)。
16.一种用于从生物异戊二烯组合物生产燃料成分的系统,所述系统包含生物异戊二烯组合物和:
(a)(i)一种或多种用于催化所述生物异戊二烯组合物中的异戊二烯的复分解以形成烯烃产物的催化剂,和(ii)一种能够将所述烯烃产物进行氢化以形成烷烃燃料成分的催化剂;或者
(b)(i)一种能够将所述生物异戊二烯组合物中的异戊二烯进行部分氢化以产生异戊烯的化学品,和(ii)一种用于将所述衍自所述生物异戊二烯组合物的异戊烯进行烷基化以生产燃料成分的异链烷烃;或者
(c)(i)一种能够将所述生物异戊二烯组合物中的异戊二烯进行部分氢化以产生异戊烯的化学品,(ii)一种或多种用于催化所述由所述生物异戊二烯组合物部分氢化而产生的异戊烯的复分解以形成烯烃产物的催化剂,和(iii)一种能够将所述烯烃产物进行氢化以形成烷烃燃料成分的催化剂;其中所述生物异戊二烯组合物中的所述异戊二烯的大部分被化学转化为一种或多种非异戊二烯化合物。
17.根据权利要求16所述的系统,其中所述生物异戊二烯组合物包含大于约2mg的异戊二烯,并且以所述组合物中所有C5烃类的总重量计包含大于99.94重量%或约99.94重量%的异戊二烯。
18.根据权利要求16所述的系统,其中所述用于催化异戊二烯的复分解的催化剂包含铼配合物、钌配合物、铑配合物、锇配合物、钨配合物、钼配合物或钛配合物。
19.根据权利要求16所述的系统,其中所述烯烃产物包含高级(>C5)烯烃或低级(<C5)烯烃或这两者。
20.根据权利要求19所述的系统,其中所述烯烃产物包含一种或多种选自以下的烯烃:乙烯、异丁烯、二甲基己三烯和含6、8和12个碳原子的环状烯烃。
21.根据权利要求19所述的系统,其中所述用于将所述一种或多种烯烃产物进行氢化以形成一种或多种烷烃燃料成分的催化剂包含选自以下的催化剂:钯催化剂、镍催化剂、钴催化剂、钌催化剂和铑催化剂。
22.根据权利要求19所述的系统,其中所述能够将所述生物异戊二烯组合物中的异戊二烯进行部分氢化以产生异戊烯的化学品包含氢气和用于催化异戊二烯的部分氢化的催化剂。
23.根据权利要求22所述的系统,其中所述用于催化异戊二烯的部分氢化的催化剂包含钯催化剂。
24.根据权利要求19所述的系统,其中所述用于将所述异戊烯进行烷基化的异链烷烃是丙烷、异丁烷或异戊烷。
25.根据权利要求19所述的系统,其中所述系统还包含用于将异戊烯进行烷基化的酸催化剂。
26.根据权利要求19所述的系统,其中所述用于将异戊烯进行烷基化的催化剂是氢氟酸、硫酸、氟磺酸或全卤代烷基磺酸。
27.根据权利要求19所述的系统,其中所述用于催化异戊烯的复分解的催化剂包含铼配合物、钌配合物、铑配合物、锇配合物、钨配合物、钼配合物或钛配合物。
28.根据权利要求19所述的系统,其中所述用于异戊烯复分解的烯烃复分解催化剂与所述用于生物异戊二烯复分解的烯烃复分解催化剂不同。
29.根据权利要求19所述的系统,其中所述用于异戊烯复分解的烯烃复分解催化剂与所述用于生物异戊二烯复分解的烯烃复分解催化剂相同。
30.根据权利要求19所述的系统,其中所述烯烃产物包含高级(>C5)烯烃或低级(<C5)烯烃或这两者。
31.根据权利要求19所述的系统,其中所述来自异戊烯复分解的烯烃产物包含一种或多种选自以下的烯烃:乙烯和含6、8和12个碳原子的烯烃(例如二甲基己烯)。
32.一种从生物异戊二烯组合物生产燃料成分的方法,所述方法包括:
(a)使生物异戊二烯组合物接触酸催化剂以产生C5-C50烯烃的一种或多种混合烯烃产物,其中所述混合烯烃产物包含C16-C50烯烃的较高分子量烯烃产物和C5-C15烯烃的较低分子量烯烃产物;
(b)将所述C16-C50烯烃的较高分子量烯烃产物转化为C5-C15烯烃的较低分子量烯烃产物;以及
(c)将所述C5-C15烯烃的较低分子量烯烃产物进行氢化以产生C5-C15烷烃燃料成分的饱和烃;其中所述生物异戊二烯组合物中的所述异戊二烯的大部分被化学转化为一种或多种非异戊二烯化合物。
33.根据权利要求32所述的方法,其中所述将所述C16-C50烯烃的较高分子量烯烃产物转化为C5-C15烯烃的较低分子量烯烃产物的步骤包括热裂解、蒸汽裂解或复分解。
34.一种用于生产燃料成分的系统,所述系统包含:
(a)包含生物异戊二烯组合物的发酵系统;以及
(b)(i)一种或多种用于催化所述生物异戊二烯组合物中的异戊二烯的复分解以形成烯烃产物的催化剂,和(ii)一种能够将所述烯烃产物进行氢化以形成烷烃燃料成分的催化剂;或者
(c)(i)一种能够将所述生物异戊二烯组合物中的异戊二烯进行部分氢化以产生异戊烯的化学品,和(ii)一种用于将所述衍自所述生物异戊二烯组合物的异戊烯进行烷基化以生产燃料成分的异链烷烃;或者
(d)(i)一种能够将所述生物异戊二烯组合物中的异戊二烯进行部分氢化以产生异戊烯的化学品,(ii)一种或多种用于催化所述由所述生物异戊二烯组合物部分氢化而产生的异戊烯的复分解以形成烯烃产物的催化剂,和(iii)一种能够将所述烯烃产物进行氢化以形成烷烃燃料成分的催化剂;
其中所述生物异戊二烯组合物中的所述异戊二烯的大部分被化学转化为一种或多种非异戊二烯化合物。
35.根据权利要求34所述的系统,其中所述发酵系统是连续发酵系统。
36.根据权利要求34所述的系统,其中所述发酵系统选自分批发酵、补料-分批发酵、连续发酵和带再循环过程的连续发酵。
37.根据权利要求34所述的系统,其中所述生物异戊二烯组合物的至少99%处于气相。
38.一种通过根据权利要求1-15或32-33所述的方法中的任一个方法生产的燃料成分。
39.一种燃料成分,其中所述燃料成分的δ13C值大于-22‰或者在-32‰至-24‰的范围内。
40.一种燃料组合物,所述燃料组合物包含根据权利要求38所述的燃料成分。
41.根据权利要求40所述的燃料组合物,其中所述燃料组合物基本上不含异戊二烯。
42.根据权利要求40所述的燃料组合物,其中所述燃料组合物的δ13C值大于-22‰或者在-32‰至-24‰的范围内。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US35601710P | 2010-06-17 | 2010-06-17 | |
US61/356,017 | 2010-06-17 | ||
US201061426481P | 2010-12-22 | 2010-12-22 | |
US61/426,481 | 2010-12-22 | ||
PCT/US2011/040977 WO2011160081A1 (en) | 2010-06-17 | 2011-06-17 | Fuel compositions comprising isoprene derivatives |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103025688A true CN103025688A (zh) | 2013-04-03 |
Family
ID=44454128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011800360266A Pending CN103025688A (zh) | 2010-06-17 | 2011-06-17 | 包含异戊二烯衍生物的燃料组合物 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8933282B2 (zh) |
EP (1) | EP2582649A1 (zh) |
CN (1) | CN103025688A (zh) |
BR (1) | BR112012032276A2 (zh) |
WO (1) | WO2011160081A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108503502A (zh) * | 2017-02-28 | 2018-09-07 | 中国石油化工股份有限公司 | 一种2-甲基-2-丁烯生产工艺 |
CN111909727A (zh) * | 2020-09-22 | 2020-11-10 | 中国海洋大学 | 一种异戊二烯制备饱和烃类燃料的绿色合成方法 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI434921B (zh) * | 2009-06-17 | 2014-04-21 | Danisco Us Inc | 從生物異戊二烯組合物製造燃料成分之方法及系統 |
US9187385B1 (en) * | 2011-10-07 | 2015-11-17 | InnoVerdant, LLC | Charcoal ignition fluid |
US20130323820A1 (en) * | 2012-06-01 | 2013-12-05 | Lanzatech New Zealand Limited | Recombinant microorganisms and uses therefor |
US20140134687A1 (en) * | 2012-10-02 | 2014-05-15 | Braskem S/A Ap 09 | Modified microorganisms and methods of using same for producing butadiene and succinate |
CN111621453A (zh) * | 2012-10-23 | 2020-09-04 | 积水化学工业株式会社 | 重组细胞以及异戊二烯的生产方法 |
US9850512B2 (en) | 2013-03-15 | 2017-12-26 | The Research Foundation For The State University Of New York | Hydrolysis of cellulosic fines in primary clarified sludge of paper mills and the addition of a surfactant to increase the yield |
US9371258B1 (en) * | 2013-06-27 | 2016-06-21 | The United States Of America As Represented By The Secretary Of The Navy | High density fuels from isoprene |
US9951363B2 (en) | 2014-03-14 | 2018-04-24 | The Research Foundation for the State University of New York College of Environmental Science and Forestry | Enzymatic hydrolysis of old corrugated cardboard (OCC) fines from recycled linerboard mill waste rejects |
EP3224368B1 (en) * | 2014-11-26 | 2023-10-25 | Visolis, Inc. | Processes for conversion of biologically derived mevalonic acid |
US9976097B2 (en) | 2015-03-04 | 2018-05-22 | InnoVerdant, LLC | Charcoal ignition fluid |
US10371689B2 (en) | 2016-09-09 | 2019-08-06 | Lawrence Livermore National Security, Llc | Ultra-compact system for characterization of physical, chemical and ignition properties of fuels |
SG11202002388PA (en) * | 2017-09-22 | 2020-04-29 | Univ Florida | Macrocyclic poly(alkane)s and poly(alkane-co-alkene)s |
EP3720935A1 (en) | 2017-12-04 | 2020-10-14 | The Lubrizol Corporation | Alkylphenol detergents |
EP3765536B1 (en) | 2018-03-16 | 2022-02-23 | Total Raffinage Chimie | Polymer composition and use for making adhesive and article containing it |
US11834384B2 (en) | 2018-03-16 | 2023-12-05 | Total Marketing Services | Preparation of olefin by alcohol dehydration, and uses thereof for making polymer, fuel or fuel additive |
US20220010234A1 (en) | 2018-11-16 | 2022-01-13 | The Lubrizol Corporation | Alkylbenzene sulfonate detergents |
US10981846B1 (en) * | 2019-08-16 | 2021-04-20 | The United States Of America, As Represented By The Secretary Of The Navy | Producing cyclic fuels from conjugated diene |
EP3792234A1 (en) | 2019-09-16 | 2021-03-17 | Total Raffinage Chimie | Method for the preparation of 2-methyl-but-2-ene |
BR112022011826A2 (pt) | 2019-12-18 | 2022-08-30 | Lubrizol Corp | Composto de tensoativo polimérico |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3418386A (en) * | 1966-07-05 | 1968-12-24 | Columbian Carbon | Hydrogenation of cyclooctadienes to cyclooctenes |
US3689585A (en) * | 1969-12-24 | 1972-09-05 | Mitsubishi Petrochemical Co | Production of isoprene oligomers |
GB1312987A (en) * | 1969-05-22 | 1973-04-11 | Rech Et Dactivites Petrolieres | Dismutation of olefins |
US4166076A (en) * | 1977-01-19 | 1979-08-28 | Shell Oil Company | Cyclodimerization of isoprene |
US6429349B1 (en) * | 1996-08-12 | 2002-08-06 | Bp Corporation North America Inc. | Co-alkylation for gasoline RVP reduction |
WO2008046106A2 (en) * | 2006-10-13 | 2008-04-17 | Elevance Renewable Sciences, Inc. | Synthesis of terminal alkenes from internal alkenes via olefin metathesis |
WO2009064910A2 (en) * | 2007-11-13 | 2009-05-22 | Synthetic Genomics, Inc. | Dimethyloctane as an advanced biofuel |
US20100099932A1 (en) * | 2008-10-21 | 2010-04-22 | Ecoprene Llc | Isoprene Compositions and Methods of Use |
Family Cites Families (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3185739A (en) | 1960-05-19 | 1965-05-25 | Phillips Petroleum Co | Conversion of cyclotriene compounds |
JPS5233110B2 (zh) | 1971-12-13 | 1977-08-26 | ||
FR2202062B1 (zh) | 1972-10-10 | 1975-03-14 | Elf Aquitaine Union Chimique | |
FR2225401B1 (zh) | 1973-04-12 | 1976-05-21 | Aquitaine Petrole | |
SU493455A1 (ru) | 1973-07-03 | 1975-11-28 | Институт Химии Башкирского Филиала Ан Ссср | Способ получени 1,5-диметилциклооктадиена 1,5 |
JPS535642B2 (zh) | 1973-09-08 | 1978-03-01 | ||
SU615056A1 (ru) | 1976-08-01 | 1978-07-15 | Институт Химии Башкирского Филиала Ан Ссср | Способ получени 1,5-диметилциклооктадиена-1,5 |
US4189403A (en) | 1977-01-19 | 1980-02-19 | Shell Oil Company | Catalyst for cyclodimerization of isoprene |
US4144278A (en) | 1977-07-20 | 1979-03-13 | Phillips Petroleum Company | Diolefin dimerization using nitrosyl halides of iron triad metals |
US4181707A (en) | 1977-07-20 | 1980-01-01 | Phillips Petroleum Company | Diolefin dimerization catalyst and method for producing nitrosyl halides of iron triad metals |
FR2409972A1 (fr) | 1977-11-29 | 1979-06-22 | Charbonnages Ste Chimique | Catalyseur constitue d'un melange de chlorure de dinitrosylfer et de bis (cyclooctadiene) nickel et son utilisation pour la dimerisation des diolefines conjuguees |
FR2443877A1 (fr) | 1978-12-11 | 1980-07-11 | Inst Francais Du Petrole | Nouvelle composition catalytique et sa mise en oeuvre pour l'oligomerisation des olefines |
JPS5855434A (ja) | 1981-09-28 | 1983-04-01 | Mitsubishi Petrochem Co Ltd | ジメチルシクロオクタジエンの製造方法 |
US4740222A (en) | 1982-05-03 | 1988-04-26 | Advanced Extraction Technologies, Inc. | Recovery and purification of hydrogen from refinery and petrochemical off-gas streams |
JPS5965026A (ja) | 1982-10-05 | 1984-04-13 | Mitsubishi Petrochem Co Ltd | 1,6−ジメチル−1,5−シクロオクタジエンの製造方法 |
JPS59170192A (ja) | 1983-03-18 | 1984-09-26 | Nippon Petrochem Co Ltd | 燃料組成物 |
CA1338400C (en) | 1983-08-31 | 1996-06-18 | David H. Gelfand | Recombinant fungal cellulases |
GB8407828D0 (en) | 1984-03-27 | 1984-05-02 | Ontario Research Foundation | In situ preparation |
DE3560049D1 (en) | 1984-05-10 | 1987-02-19 | Charbonnages Ste Chimique | Process for dimerizung a conjugated diene |
US4652527A (en) | 1984-10-09 | 1987-03-24 | Celanese Corporation | Process for culturing methylophilus methylotrophus |
US4570029A (en) | 1985-03-04 | 1986-02-11 | Uop Inc. | Process for separating isoprene |
US4683202A (en) | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
NZ217373A (en) | 1985-08-29 | 1990-10-26 | Genencor Inc | Production of heterologous peptide in filamentous fungi, vectors and dna |
DK122686D0 (da) | 1986-03-17 | 1986-03-17 | Novo Industri As | Fremstilling af proteiner |
GB8610600D0 (en) | 1986-04-30 | 1986-06-04 | Novo Industri As | Transformation of trichoderma |
US4818250A (en) | 1987-10-21 | 1989-04-04 | Lemco Energy, Inc. | Process for producing fuel from plant sources and fuel blends containing same |
US4973568A (en) | 1989-05-08 | 1990-11-27 | The Dow Chemical Company | Preparation of a catalyst useful in the dimerization of butadiene |
US4973787A (en) | 1989-09-05 | 1990-11-27 | The Goodyear Tire & Rubber Company | Process for the thermal dimerization of isoprene |
EP1225227B1 (en) | 1990-12-10 | 2009-02-18 | Genencor International, Inc. | Improved saccharification of cellulose by cloning and amplification of the beta-glucosidase gene of trichoderma reesei |
US5329057A (en) | 1991-04-19 | 1994-07-12 | The Dow Chemical Company | Process for the cyclodimerization of 1,3-butadienes to 4-vinylcyclohexenes |
NL9201931A (nl) | 1992-11-05 | 1994-06-01 | Dsm Nv | Werkwijze voor de dimerisatie van een geconjungeerd diëen. |
FR2704222B1 (fr) | 1993-04-23 | 1995-06-30 | Inst Francais Du Petrole | Procédé de codimérisation de diènes et d'oléfines. |
WO1995004134A1 (en) | 1993-08-02 | 1995-02-09 | Genencor International, Inc. | Method of reducing complex carbohydrates in fermentation products |
US5861271A (en) | 1993-12-17 | 1999-01-19 | Fowler; Timothy | Cellulase enzymes and systems for their expressions |
US5575822A (en) | 1994-05-04 | 1996-11-19 | Wilkins, Jr.; Joe S. | Engine fuels |
US5446102A (en) | 1994-08-10 | 1995-08-29 | Bridgeston, Corporation | Olefin metathesis catalysts for degelling polymerization reactors |
US6428767B1 (en) | 1995-05-12 | 2002-08-06 | E. I. Du Pont De Nemours And Company | Method for identifying the source of carbon in 1,3-propanediol |
US5686276A (en) | 1995-05-12 | 1997-11-11 | E. I. Du Pont De Nemours And Company | Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism |
US5849970A (en) | 1995-06-23 | 1998-12-15 | The Regents Of The University Of Colorado | Materials and methods for the bacterial production of isoprene |
DE19629568C1 (de) | 1996-07-15 | 1998-01-08 | Fraunhofer Ges Forschung | Verfahren zur Herstellung von Isopren |
MY119907A (en) | 1996-07-16 | 2005-08-30 | Shell Int Research | Liquid hydrocarbon fuel composition |
US6176176B1 (en) | 1998-04-30 | 2001-01-23 | Board Of Trustees Operating Michigan State University | Apparatus for treating cellulosic materials |
US6268328B1 (en) | 1998-12-18 | 2001-07-31 | Genencor International, Inc. | Variant EGIII-like cellulase compositions |
US6235954B1 (en) | 1999-09-29 | 2001-05-22 | Phillips Petroleum Company | Hydrocarbon hydrogenation catalyst and process |
AU775646B2 (en) | 2000-02-14 | 2004-08-12 | Procter & Gamble Company, The | Synthetic jet fuel and diesel fuel compositions and processes |
US6815509B2 (en) | 2000-06-30 | 2004-11-09 | Asahi Kasei Kabushiki Kaisha | Method for hydrogenation of polymer |
FR2814173B1 (fr) | 2000-09-15 | 2005-09-16 | Inst Francais Du Petrole | Compositions de carburants diesel contenant des composes oxygenes derives du tetrahydrofurfuryle |
US6660898B1 (en) | 2000-11-03 | 2003-12-09 | Fortum Oil & Gas Oy | Process for dimerizing light olefins to produce a fuel component |
EP2055773B1 (en) | 2001-04-04 | 2011-06-15 | Danisco US Inc. | Uncoupled productive and catabolic host cell pathways |
US7338541B2 (en) | 2001-11-20 | 2008-03-04 | The Procter & Gamble Company | Synthetic jet fuel and diesel fuel compositions and processes |
AU2003225123A1 (en) | 2002-04-22 | 2003-11-03 | E. I. Du Pont De Nemours And Company | Promoter and plasmid system for genetic engineering |
US6949686B2 (en) | 2002-05-30 | 2005-09-27 | Equistar Chemicals, Lp | Pyrolysis gasoline stabilization |
US20040004031A1 (en) | 2002-06-26 | 2004-01-08 | Boger Thorsten R. | System and process for pyrolysis gasoline hydrotreatment |
DE60335574D1 (de) | 2002-10-04 | 2011-02-10 | Du Pont | Verfahren zur biologischen herstellung von 1,3-propandiol mit hoher ausbeute |
CA2525333C (en) | 2003-05-29 | 2016-03-01 | Genencor International, Inc. | Trichoderma genes |
US8329603B2 (en) | 2003-09-16 | 2012-12-11 | Uop Llc | Isoparaffin-olefin alkylation |
AU2004293789B2 (en) | 2003-11-21 | 2009-07-23 | Genencor International, Inc. | Expression of granular starch hydrolyzing enzymes in trichoderma and process for producing glucose from granular starch substrates |
US7521393B2 (en) | 2004-07-27 | 2009-04-21 | Süd-Chemie Inc | Selective hydrogenation catalyst designed for raw gas feed streams |
DE102004054477A1 (de) | 2004-11-11 | 2006-05-24 | Degussa Ag | Verfahren zur Herstellung von Trimethylcyclododecatrien |
JP5102943B2 (ja) | 2005-05-25 | 2012-12-19 | Jx日鉱日石エネルギー株式会社 | 固体リン酸触媒およびそれを用いたオレフィンの二量化反応方法 |
US8299312B2 (en) | 2005-10-28 | 2012-10-30 | Neste Oil Oyj | Process for dimerizing olefins |
US20100041121A1 (en) | 2006-02-01 | 2010-02-18 | University Of Hawaii | Metabolically engineered organisms for the production of hydrogen and hydrogenase |
EP1860087A1 (en) * | 2006-05-22 | 2007-11-28 | Total Petrochemicals Research Feluy | Production of Propylene and Ethylene from Butane and Ethane |
AU2007267914C1 (en) | 2006-05-26 | 2012-06-07 | Amyris, Inc. | Fuel components, fuel compositions and methods of making and using same |
US20090099401A1 (en) | 2006-06-16 | 2009-04-16 | D Amore Michael B | Process for making isooctenes from aqueous isobutanol |
US20080009656A1 (en) | 2006-06-16 | 2008-01-10 | D Amore Michael B | Process for making isooctenes from dry isobutanol |
US7947478B2 (en) | 2006-06-29 | 2011-05-24 | The Regents Of The University Of California | Short chain volatile hydrocarbon production using genetically engineered microalgae, cyanobacteria or bacteria |
DE102007023515A1 (de) | 2006-07-05 | 2008-01-10 | Evonik Degussa Gmbh | Verfahren zur Herstellung von Dienen durch Hydrodimerisierung |
US8049048B2 (en) | 2006-07-27 | 2011-11-01 | Swift Enterprises, Ltd. | Renewable engine fuel |
US7846222B2 (en) | 2006-10-10 | 2010-12-07 | Amyris Biotechnologies, Inc. | Fuel compositions comprising farnesane and farnesane derivatives and method of making and using same |
US20080236029A1 (en) | 2007-03-27 | 2008-10-02 | Wilkins Joe S | Engine fuel compositions |
JP2010525816A (ja) | 2007-05-01 | 2010-07-29 | アシドフィル,エルエルシー | 代謝改変光合成微生物を用いて二酸化炭素を炭化水素に直接変換する方法 |
BRPI0814281A8 (pt) | 2007-07-20 | 2016-01-12 | Amyris Biotechnologies Inc | Composição de combustível, método para fabricar uma composição de combustível, veículo, método para fabricar um material de mistura reformulado para misturação de oxigenado, e, tanque de combustível. |
US8523959B2 (en) | 2007-07-26 | 2013-09-03 | Chevron U.S.A. Inc. | Paraffinic biologically-derived distillate fuels with bio-oxygenates for improved lubricity and methods of making same |
JP2010539294A (ja) | 2007-09-11 | 2010-12-16 | サファイア エナジー,インコーポレイティド | 光合成生物を用いた有機製品の製造方法ならびにその製品および組成物 |
CA2700349C (en) | 2007-09-27 | 2016-08-23 | Innospec Limited | Diesel fuel compositions comprising mannich product and quaternary ammonium salt |
US8211189B2 (en) | 2007-12-10 | 2012-07-03 | Wisys Technology Foundation, Inc. | Lignin-solvent fuel and method and apparatus for making same |
RU2545699C2 (ru) | 2007-12-13 | 2015-04-10 | ДАНИСКО ЮЭс ИНК. | Композиции и способы получения изопрена |
SG165884A1 (en) | 2008-04-23 | 2010-11-29 | Goodyear Tire & Rubber | Isoprene synthase variants for improved microbial production of isoprene |
CN102131935B (zh) | 2008-06-30 | 2013-11-13 | 固特异轮胎和橡胶公司 | 来自可再生资源的异戊二烯的聚合物 |
CA2729801A1 (en) | 2008-07-02 | 2010-01-07 | Danisco Us Inc. | Compositions and methods for producing isoprene free of c5 hydrocarbons under decoupling conditions and/or safe operating ranges |
JP5293025B2 (ja) | 2008-09-11 | 2013-09-18 | ブラザー工業株式会社 | ヘッドマウントディスプレイ |
SG169640A1 (en) | 2008-09-15 | 2011-04-29 | Danisco Us Inc | Increased isoprene production using mevalonate kinase and isoprene synthase |
WO2010031076A2 (en) | 2008-09-15 | 2010-03-18 | Danisco Us Inc. | Conversion of prenyl derivatives to isoprene |
US8470581B2 (en) | 2008-09-15 | 2013-06-25 | Danisco Us Inc. | Reduction of carbon dioxide emission during isoprene production by fermentation |
EP2334788A1 (en) | 2008-09-15 | 2011-06-22 | Danisco US Inc. | Increased isoprene production using the archaeal lower mevalonate pathway |
EP3323881A1 (en) | 2008-09-15 | 2018-05-23 | Danisco US Inc. | Systems using cell culture for production of isoprene |
JP5225054B2 (ja) | 2008-12-19 | 2013-07-03 | 株式会社東芝 | Icカード |
CN102333866B (zh) | 2008-12-30 | 2015-04-29 | 丹尼斯科美国公司 | 生产异戊二烯和共同产物的方法 |
CN102656265A (zh) | 2009-04-23 | 2012-09-05 | 丹尼斯科美国公司 | 异戊二烯合酶的三维结构及其用于产生变体的用途 |
TW201412988A (zh) | 2009-06-17 | 2014-04-01 | Danisco Us Inc | 使用dxp及mva途徑之改良之異戊二烯製造 |
TWI434921B (zh) * | 2009-06-17 | 2014-04-21 | Danisco Us Inc | 從生物異戊二烯組合物製造燃料成分之方法及系統 |
TW201120213A (en) | 2009-06-17 | 2011-06-16 | Danisco Us Inc | Polymerization of isoprene from renewable resources |
AU2010331946A1 (en) | 2009-12-18 | 2012-06-28 | Danisco Us Inc. | Purification of isoprene from renewable resources |
WO2011085223A1 (en) * | 2010-01-08 | 2011-07-14 | Gevo, Inc. | Integrated methods of preparing renewable chemicals |
-
2011
- 2011-06-17 US US13/163,601 patent/US8933282B2/en not_active Expired - Fee Related
- 2011-06-17 WO PCT/US2011/040977 patent/WO2011160081A1/en active Application Filing
- 2011-06-17 CN CN2011800360266A patent/CN103025688A/zh active Pending
- 2011-06-17 BR BR112012032276A patent/BR112012032276A2/pt not_active IP Right Cessation
- 2011-06-17 EP EP11729518.8A patent/EP2582649A1/en not_active Withdrawn
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3418386A (en) * | 1966-07-05 | 1968-12-24 | Columbian Carbon | Hydrogenation of cyclooctadienes to cyclooctenes |
GB1312987A (en) * | 1969-05-22 | 1973-04-11 | Rech Et Dactivites Petrolieres | Dismutation of olefins |
US3689585A (en) * | 1969-12-24 | 1972-09-05 | Mitsubishi Petrochemical Co | Production of isoprene oligomers |
US4166076A (en) * | 1977-01-19 | 1979-08-28 | Shell Oil Company | Cyclodimerization of isoprene |
US6429349B1 (en) * | 1996-08-12 | 2002-08-06 | Bp Corporation North America Inc. | Co-alkylation for gasoline RVP reduction |
WO2008046106A2 (en) * | 2006-10-13 | 2008-04-17 | Elevance Renewable Sciences, Inc. | Synthesis of terminal alkenes from internal alkenes via olefin metathesis |
WO2009064910A2 (en) * | 2007-11-13 | 2009-05-22 | Synthetic Genomics, Inc. | Dimethyloctane as an advanced biofuel |
US20100099932A1 (en) * | 2008-10-21 | 2010-04-22 | Ecoprene Llc | Isoprene Compositions and Methods of Use |
Non-Patent Citations (1)
Title |
---|
PIA LINDBERG ET AL.: "Engineering a platform for photosynthetic isoprene production in cyanobacteria,using Synechocystis as the model organism", 《METABOLIC ENGINEERING》, vol. 12, 31 January 2010 (2010-01-31), pages 70 - 79, XP026756973, DOI: doi:10.1016/j.ymben.2009.10.001 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108503502A (zh) * | 2017-02-28 | 2018-09-07 | 中国石油化工股份有限公司 | 一种2-甲基-2-丁烯生产工艺 |
CN108503502B (zh) * | 2017-02-28 | 2021-08-10 | 中国石油化工股份有限公司 | 一种2-甲基-2-丁烯生产工艺 |
CN111909727A (zh) * | 2020-09-22 | 2020-11-10 | 中国海洋大学 | 一种异戊二烯制备饱和烃类燃料的绿色合成方法 |
CN111909727B (zh) * | 2020-09-22 | 2022-02-01 | 中国海洋大学 | 一种异戊二烯制备饱和烃类燃料的绿色合成方法 |
Also Published As
Publication number | Publication date |
---|---|
US8933282B2 (en) | 2015-01-13 |
US20120157725A1 (en) | 2012-06-21 |
EP2582649A1 (en) | 2013-04-24 |
BR112012032276A2 (pt) | 2016-11-16 |
WO2011160081A1 (en) | 2011-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103025688A (zh) | 包含异戊二烯衍生物的燃料组合物 | |
JP5448220B2 (ja) | イソプレン誘導体を含む燃料組成物 | |
US11802100B2 (en) | Olefins and methods for making the same | |
US8686202B2 (en) | Renewable engine fuel and method of producing same | |
EP2566830B1 (en) | Renewable jet fuel blendstock from isobutanol | |
CN101952398B (zh) | 可再生组合物 | |
WO1996004224A1 (en) | Process for producing hydrocarbon fuels | |
US20220204663A1 (en) | Bio-based ethylene for the production of bio-based polymers, copolymers, and other bio-based chemical compounds | |
US20210371366A1 (en) | Process for producing a renewable isoparaffin compound, renewable isoparaffin compound and use of the renewable isopraffin compound | |
EP3334805A1 (en) | Fuel formulation | |
WO2017209778A2 (en) | Production of alternative gasoline fuels | |
US9145566B2 (en) | Renewable engine fuel and method of producing same | |
US9682897B1 (en) | High density fuels from oxygenated terpenoids | |
EP2766327B1 (en) | Process for preparing jet fuel from molecules derived from biomass | |
Schematic | Dehydration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130403 |