CN102973488A - 具有氧化还原/pH双重刺激响应性的纳米水凝胶及其制备方法和应用 - Google Patents

具有氧化还原/pH双重刺激响应性的纳米水凝胶及其制备方法和应用 Download PDF

Info

Publication number
CN102973488A
CN102973488A CN2012105038487A CN201210503848A CN102973488A CN 102973488 A CN102973488 A CN 102973488A CN 2012105038487 A CN2012105038487 A CN 2012105038487A CN 201210503848 A CN201210503848 A CN 201210503848A CN 102973488 A CN102973488 A CN 102973488A
Authority
CN
China
Prior art keywords
nano
hydrogel
solvent
weight
acetonitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012105038487A
Other languages
English (en)
Inventor
汪长春
潘元佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN2012105038487A priority Critical patent/CN102973488A/zh
Publication of CN102973488A publication Critical patent/CN102973488A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明属于生物医药技术领域,具体涉及一种具有氧化还原/pH双重刺激响应性的纳米水凝胶及其制备方法和应用。制备过程为:在溶剂中加入聚合单体和交联剂,进行聚合反应,蒸馏沉淀除去一半溶剂;除去溶剂和未反应单体,干燥,得到聚合物凝胶粒子;也可以进一步修饰带上氨基等不同官能团,通过1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)/N-羟基丁二酰亚胺(NHS)和氨基化的叶酸反应,得到叶酸靶向的纳米水凝胶粒子。该纳米水凝胶形态规整的球形,大小均匀,粒径可调控,具有氧化还原和pH双重刺激响应性,具有较好的胶体稳定性和良好的分散性,用作药物载体,在后续的体内代谢中通过肾脏很容易的排出体外。

Description

具有氧化还原/pH双重刺激响应性的纳米水凝胶及其制备方法和应用
技术领域
本发明属于生物医药技术领域,具体涉及一种纳米水凝胶及其制备方法和应用,进一步涉及具有氧化还原/pH双重刺激响应性的纳米水凝胶及其制备方法,以及该纳米水凝胶作为药物载体的应用。
背景技术
根据大量研究表明,阿霉素是一种有效的抗癌药物,但是直接注射后通过体液循环到达肿瘤组织的剂量很低,而且会给人体带来严重的副反应。世界上已经有很多研究来发展目标靶向药物传输体系(drug delivery systems, dds)来增强药效和降低副反应,这些药物载体包括各种形态的胶束、纳米粒子、微胶囊、纳米水凝胶等。
在各种药物载体中,聚合物纳米水凝胶是一种理想的药物载体。作为一种通过物理或者化学交联的三维高亲水性的聚合物网络,水凝胶是最接近于人体各种组织细胞的形态,从某种意义上说,人体各种组织都是不同水含量的凝胶。其中,化学交联的纳米水凝胶的高度亲水性和胶体稳定性使得它是一种理想的药物传输载体。
对于目标药物载体,智能型的纳米水凝胶尤其重要,因为它可以选择性的在目标区域释放药物,而在别的区域保持稳定,一般体现为对于pH值、温度、离子浓度、氧化还原价势或者它们之间的组合的刺激响应性。其中,最重要的是pH和氧化还原的刺激响应性,因为肿瘤组织(pH弱酸性)和正常细胞(pH 中性)间,以及细胞外液(pH 中性)和细胞内的内涵体和溶酶体(pH酸性)之间存在着明显的差异,而由不同比例的还原型/氧化型谷胱甘肽产生的细胞外液的氧化环境和细胞内液的还原环境氛围则使得氧化还原刺激响应性也非常重要。针对这些不同组织部位的不同氧化还原/pH设计多重刺激敏感性的药物载体,可以智能化的控制释药和对于肿瘤细胞具有靶向杀伤性。
对于肿瘤组织,一般为了增强药效,保持药物在目标组织增强渗透滞留效应 (EPR,Enhanced enhanced permeability and retention effect),需要药物载体为稳定的高分子量聚合物;但是同时为了在释药结束后可以顺利通过肾脏代谢排出体外,减小药物载体对人体的副作用,一般又要求聚合物分子量小于初次代谢阈值(45-50 kDa),为了同时满足这两个矛盾的需求,制备生物可降解的药物载体显得尤为重要。
据大量研究表明,叶酸受体是一种在多种癌细胞中广泛存在,并且和叶酸分子发生相互特殊作用的物质。利用叶酸和叶酸受体特有的相互作用,人们通常将叶酸作为特殊的靶向分子来修饰各种纳米抗癌药物载体,起到对于癌细胞的靶向识别作用,从而提高药物的传递效率,降低药物的副作用。
基于以上信息,设计制备一种具有化学交联的、良好的胶体稳定性的、具有氧化还原/pH双重刺激响应性的、可生物降解的叶酸靶向型的纳米水凝胶药物载体将会是对于药物传递领域的一次很好探索。
发明内容
本发明的目的在于提供一种具有化学交联的、良好的胶体稳定性的、具有氧化还原/pH双重刺激响应性的、可生物降解的叶酸靶向型的纳米水凝胶及其制备方法。
本发明另一目的在于提供所述的纳米水凝胶作为药物载体的应用。
本发明提供的具有氧化还原/pH双重刺激响应性的纳米水凝胶的制备方法,具体步骤为:
第一步:在溶剂中加入聚合单体和交联剂,反应温度为60-120oC,蒸馏沉淀除去一半溶剂,反应时间为0.5-2 h;离心除去溶剂和未反应单体,用乙醇和去离子水反复洗涤3-5次,真空烘箱内干燥(例如45oC干燥24 h),即得到聚合物凝胶粒子;
第二步:将第一步得到的凝胶粒子,加入一定量和一定比例的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)/ N-羟基丁二酰亚胺(NHS),先在溶剂中进行活化反应,再和氨基化的叶酸分子反应,即得到具有氧化还原/pH双重刺激响应性的纳米水凝胶。
本发明中,所述溶剂为单一溶剂或混合容剂,其中,单一溶剂为乙醇、乙腈、水、四氢呋喃、甲基异丁基酮或甲苯,混合溶剂为不同重量比例的乙腈与乙醇、乙腈与四氢呋喃、乙腈与水、乙醇与甲苯、或甲基异丁基酮与乙腈的混合物 ;所述聚合单体为甲基丙烯酸(MAA)、丙烯酸(AA)、聚乙二醇(Mn=300,475,526,600,800,900,1000,1500,2000), N-2-羟丙基一甲基丙烯酰胺(HPMA)等;所述交联剂为N,N'-双(丙烯酰)胱胺(BACy)。
降解的测试条件为:在25 mL的单口烧瓶里加入5 mg的纳米水凝胶粒子和10 mL的磷酸盐缓冲溶液(pH=7.4), 然后加入还原剂10 mM的二硫苏糖醇(DTT)或者还原型谷胱甘肽(GSH), 然后放入恒温摇床(200 rpm摇速,37.5oC)匀速振荡。
上述反应中所用的各物质之间的量比范围为:聚合单体重量:交联剂重量:溶剂重量:EDC重量:NHS重量:叶酸重量=1:0.1-0.4:40-100:0.02-0.2:0.02-0.2:0.02-0.2;其中,EDC的物质的量:NHS的物质的量=1:1-2.5(折算成重量比为EDC的重量:NHS的重量=1:0.6-1.5)。
本发明所制备的纳米水凝胶,大小为50-1650 nm,多分散度为0.09-0.35。
本发明提供的纳米水凝胶可作为药物载体应用。
载药的条件为:8--10 mg的纳米水凝胶和4-6 mg盐酸阿霉素,超声分散在15-20 mL的磷酸盐缓冲溶液(pH=7.4)中,磁力搅拌20-24h,然后离心移去上清液,用磷酸盐缓冲溶液(pH=7.4)洗涤3次除去表面吸附的阿霉素,即得物理负载阿霉素的纳米水凝胶。
释药的条件为:将8-10 mg载药纳米水凝胶粒子分散在8-10 mL的两种缓冲溶液中(磷酸盐缓冲溶液,pH=7.4;醋酸-醋酸钠缓冲溶液,pH=5.0,浓度为5-100 mM ,例如5,10,15,20,50,100 mM),超声分散均匀,然后分为4-5份,每份2 mL左右,将一份凝胶溶液移入透析袋中(透析分子量Mn=14000),再放入80 mL的含不同浓度的DTT或者GSH的缓冲溶液中,即刻开始计时释药。在预订时间,从瓶内取出3 mL 释药的缓冲溶液进行紫外测量,再补充3 mL纯的缓冲溶液保持体积恒定。
所制备的纳米水凝胶在还原剂降解后,分子量小于2000且分子量分布均匀(Mn=1200,PDI<1.1),远小于代谢阈值(45-50 kDa),预计可以很好的代谢排出体外。
针对上述的纳米水凝胶药物载体的用途,用于装载抗癌药物阿霉素。装载阿霉素药物分子,其包封率和载药率可以方便地用纳米凝胶和阿霉素的不同比例加以控制。在上述方案的基础上,所属抗癌药物阿霉素的载药率的重量百分比为16.0-42.3 %。
阿霉素的释放过程可以通过调节环境的氧化还原环境和pH值加以控制,在高谷胱甘肽浓度和较低pH值(pH=5.0)条件下(模拟细胞内环境)展现出较快的释放速度(5小时释药95%),而在低谷胱甘肽浓度和中性的pH值条件下(模拟细胞外环境)保持稳定,释放量小于20%。
通过将载有药物的上述纳米药物载体和神经胶质瘤细胞一起培养进行细胞实验,纳米水凝胶药物载体体现出了很好的释药行为。通过荧光显微镜进行观察,发现2 h后载药纳米水凝胶粒子已经进入细胞,随着时间延长到5 h,24 h,荧光逐渐增强,说明纳米水凝胶降解释放出更多的阿霉素;48 h后阿霉素药物对于细胞的杀伤作用已经非常明显,细胞存活率大幅降低,剩余的少量细胞也处于皱缩状态,说明所制备的纳米水凝胶是一种较好的药物载体。
本发明的有益效果是:
本发明制备工艺清晰简洁,得到的纳米水凝胶药物载体具有氧化还原/pH双重刺激响应性,氧化还原响应性可以使得纳米水凝胶在细胞外低GSH浓度的环境中保持稳定,长时间循环,很少泄露药物,而在细胞内高GSH浓度的环境中快速降解,变为小分子量的线性链,从而快速释放药物,达到在目标肿瘤细胞内控制释放抗癌药物的效果。pH响应性则使得纳米水凝胶在内涵体,溶酶体等亚细胞器官内更有效的释放出阿霉素,体现出与GSH的协同效应。而凝胶粒子的可生物降解性和降解后的小分子量又可以使得药物载体迅速代谢排出体外,进一步减少对人体的副作用。
以上设计思路基本覆盖了药物传递领域所关心的一些基本问题,因此产品具有良好的全面性。
附图说明
图1:制备的不同粒径的PMAA纳米水凝胶粒子的透射电镜照片。
图2:PMAA纳米水凝胶粒子在10 mM的DTT或者GSH作用下降解后的GPC测试分子量。
图3:用荧光显微镜拍摄的不同时间的载药凝胶粒子对于肿瘤细胞(Hela 细胞)作用的光学照片。载药凝胶粒子:(a, b)2 h,(c, d)5 h,(e, f)24 h,(i, j)48 h; 阿霉素药物:(g, h)24 h,(k, l)2h; 未载药的凝胶粒子:(m, n)2h,(o, p)2h。
具体实施方式
下面将通过实例对于本发明做进一步的详细说明。
实施例1:PMAA纳米水凝胶的制备
MAA单体500 mg,BACy交联剂55.6 mg,16.7 mg AIBN 引发剂,40 mL乙腈,加热到82oC,蒸馏除去20 mL溶剂,离心除去溶剂和未反应单体,用乙醇和去离子水洗涤3次,真空烘箱干燥24 h。
实施例2: PAA纳米水凝胶的制备
AA单体500 mg,BACy交联剂55.6 mg,16.7 mg AIBN 引发剂,40 mL乙腈-乙醇混合溶剂(V乙腈:V乙醇=1:1),加热到82oC,蒸馏除去20 mL溶剂,离心除去溶剂和未反应单体,用丙酮和去离子水洗涤3次,真空烘箱干燥24 h。
实施例3:PMAA-co-PHPMA纳米水凝胶的制备
MAA单体250 mg,HPMA 250mg, BACy交联剂55.6 mg,16.7 mg AIBN 引发剂,40 mL乙腈-甲苯混合溶剂(V乙腈:V甲苯=4:1),加热到82oC,蒸馏除去20 mL溶剂,离心除去溶剂和未反应单体,用丙酮和去离子水洗涤3次,真空烘箱干燥24 h。
实施例4: PMAA-co-PEG纳米水凝胶的制备
MAA单体200 mg,PEG (Mn=475)300 mg, BACy交联剂55.6 mg,16.7 mg AIBN 引发剂,40 mL乙腈,加热到82oC,蒸馏除去20 mL溶剂,离心除去溶剂和未反应单体,用乙醇和去离子水洗涤3次,真空烘箱干燥24 h。
实施例5: PMAA修饰叶酸的纳米水凝胶的制备
步骤1:氨基化叶酸的制备
叶酸441mg(1 mmol),二环己基碳二亚胺(DCC)247 mg (1.2 mmol),DMSO 30 mL,NHS 230 mg(2 mmol),加热到50 oC 反应6小时,再加入吡啶500 μg,乙二胺600 mg(10 mmol),室温反应12小时。加入240 mL乙腈沉淀,过滤,乙醚洗涤3次,真空干燥得到粗产物。进一步纯化:粗产物用2 mol/L的盐酸溶解,然后再加入过量的乙腈沉淀,然后过滤,再用乙醚洗涤3次,真空干燥过夜,得到暗黄色粉末。
步骤2:PMAA纳米水凝胶粒子修饰叶酸
PMAA凝胶粒子50 mg,加入20 mL PBS缓冲溶液(pH=5.5),超声10分钟均匀分散,加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)96 mg,室温下搅拌10分钟,然后加入N-羟基丁二酰亚胺(NHS)58 mg,反应2小时,再加入上一步制备的氨基化的叶酸 15 mg,反应12小时。离心,将粒子用乙醇和去离子水各洗涤3次,真空烘箱干燥24 h。即可得到修饰叶酸的PMAA纳米水凝胶粒子。
应用例:
取实施例中制得的纳米水凝胶 10 mg,加入6 mg的阿霉素,配成20 mL的溶液,磷酸盐缓冲溶液,常温下搅拌24 h,产物用离心分离,冷冻干燥,制成负载有抗癌阿霉素的纳米水凝胶药物载体,载药率的重量比为16.7-42.3 wt%。

Claims (4)

1. 一种纳米水凝胶的制备方法,其特征在于采用蒸馏沉淀法,具体步骤为:
第一步:在溶剂中 加入聚合单体和交联剂,反应温度为60-120oC,蒸馏沉淀除去一半溶剂,反应时间为0.5-2 h;离心除去溶剂和未反应单体,用乙醇和去离子水反复洗涤3-5次,真空烘箱内干燥,得到聚合物凝胶粒子;
第二步:将第一步得到的凝胶粒子,加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)/ N-羟基丁二酰亚胺(NHS),先在溶剂中进行活化反应,再和氨基化的叶酸分子反应,即得到具有氧化还原/pH双重刺激响应性的纳米水凝胶;
其中,所述溶剂为单一溶剂或混合容剂,单一溶剂为乙醇、乙腈、水、四氢呋喃、甲基异丁基酮或甲苯,混合溶剂为乙腈与乙醇、乙腈与四氢呋喃、乙腈与水、乙醇与甲苯、或甲基异丁基酮与乙腈的混合物 ;所述聚合单体为甲基丙烯酸、丙烯酸、聚乙二醇, 或N-2-羟丙基一甲基丙烯酰胺;所述交联剂为N,N'-双(丙烯酰)胱胺;
所用的各物质之间的量比范围为:聚合单体重量:交联剂重量:溶剂重量:EDC重量:NHS重量:叶酸重量=1:0.1-0.4:40-100:0.02-0.2:0.02-0.2:0.02-0.2。
2.由权利要求1所述方法制备得到的纳米水凝胶,其特征在于纳米水凝胶粒径大小为50-1650 nm,多分散度为0.09-0.35。
3. 由权利要求1所述的纳米水凝胶作为药物载体的应用。
4. 据权利要求3所述的应用,其特征在于:
载药的条件为:8--10 mg的纳米水凝胶和4-6 mg盐酸阿霉素,超声分散在15-20 mL的磷酸盐缓冲溶液中,磷酸盐缓冲溶液pH=7.4,磁力搅拌20-24h,然后离心移去上清液,用磷酸盐缓冲溶液洗涤3次除去表面吸附的阿霉素,即得物理负载阿霉素的纳米水凝胶。
CN2012105038487A 2012-12-02 2012-12-02 具有氧化还原/pH双重刺激响应性的纳米水凝胶及其制备方法和应用 Pending CN102973488A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012105038487A CN102973488A (zh) 2012-12-02 2012-12-02 具有氧化还原/pH双重刺激响应性的纳米水凝胶及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012105038487A CN102973488A (zh) 2012-12-02 2012-12-02 具有氧化还原/pH双重刺激响应性的纳米水凝胶及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN102973488A true CN102973488A (zh) 2013-03-20

Family

ID=47848025

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012105038487A Pending CN102973488A (zh) 2012-12-02 2012-12-02 具有氧化还原/pH双重刺激响应性的纳米水凝胶及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN102973488A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104231193A (zh) * 2014-07-29 2014-12-24 天津大学 一种pH与氧化还原双敏感的层交联纳米粒及其制备方法和应用
CN104892949A (zh) * 2015-05-14 2015-09-09 复旦大学 一种谷胱甘肽/pH双重刺激响应离子交联型聚合物纳米水凝胶及其制备方法和应用
CN105193706A (zh) * 2015-11-03 2015-12-30 江苏康呵健康科技有限公司 一种pH敏感型载盐酸阿霉素银纳米簇水凝胶及其用途
CN106084110A (zh) * 2016-06-13 2016-11-09 吉林大学 具有pH响应性和聚集诱导荧光增强性质的荧光纳米微球及其应用
CN106562925A (zh) * 2016-10-21 2017-04-19 天津工业大学 一种多重环境刺激响应型药物控释载体及其应用
CN109646420A (zh) * 2018-12-29 2019-04-19 南京高正农用化工有限公司 一种光度刺激响应性智能聚合物微囊及其制备方法
CN110064344A (zh) * 2018-09-07 2019-07-30 中北大学 具有高热稳定性的叶酸超分子有机凝胶
CN112472664A (zh) * 2020-11-17 2021-03-12 中国矿业大学 一种基因靶向治疗的纳米马达-水凝胶体系制备方法
CN115109275A (zh) * 2022-08-29 2022-09-27 杭州艾名医学科技有限公司 一种动态交联可降解水凝胶、制备方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040156880A1 (en) * 2002-11-13 2004-08-12 Nathan Ravi Reversible hydrogel systems and methods therefor
CN102250365A (zh) * 2011-05-09 2011-11-23 武汉理工大学 一种pH敏感的还原响应性纳米凝胶及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040156880A1 (en) * 2002-11-13 2004-08-12 Nathan Ravi Reversible hydrogel systems and methods therefor
CN102250365A (zh) * 2011-05-09 2011-11-23 武汉理工大学 一种pH敏感的还原响应性纳米凝胶及其制备方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104231193A (zh) * 2014-07-29 2014-12-24 天津大学 一种pH与氧化还原双敏感的层交联纳米粒及其制备方法和应用
CN104231193B (zh) * 2014-07-29 2016-10-05 天津大学 一种pH与氧化还原双敏感的层交联纳米粒及其制备方法和应用
CN104892949A (zh) * 2015-05-14 2015-09-09 复旦大学 一种谷胱甘肽/pH双重刺激响应离子交联型聚合物纳米水凝胶及其制备方法和应用
CN105193706A (zh) * 2015-11-03 2015-12-30 江苏康呵健康科技有限公司 一种pH敏感型载盐酸阿霉素银纳米簇水凝胶及其用途
CN105193706B (zh) * 2015-11-03 2018-08-28 江苏康呵健康科技有限公司 一种pH敏感型载盐酸阿霉素银纳米簇水凝胶及其用途
CN106084110B (zh) * 2016-06-13 2018-08-10 吉林大学 具有pH响应性和聚集诱导荧光增强性质的荧光纳米微球及其应用
CN106084110A (zh) * 2016-06-13 2016-11-09 吉林大学 具有pH响应性和聚集诱导荧光增强性质的荧光纳米微球及其应用
CN106562925A (zh) * 2016-10-21 2017-04-19 天津工业大学 一种多重环境刺激响应型药物控释载体及其应用
CN110064344A (zh) * 2018-09-07 2019-07-30 中北大学 具有高热稳定性的叶酸超分子有机凝胶
CN110064344B (zh) * 2018-09-07 2023-03-28 中北大学 具有高热稳定性的叶酸超分子有机凝胶
CN109646420A (zh) * 2018-12-29 2019-04-19 南京高正农用化工有限公司 一种光度刺激响应性智能聚合物微囊及其制备方法
CN112472664A (zh) * 2020-11-17 2021-03-12 中国矿业大学 一种基因靶向治疗的纳米马达-水凝胶体系制备方法
CN115109275A (zh) * 2022-08-29 2022-09-27 杭州艾名医学科技有限公司 一种动态交联可降解水凝胶、制备方法及应用
CN115109275B (zh) * 2022-08-29 2022-11-01 杭州艾名医学科技有限公司 一种动态交联可降解水凝胶、制备方法及应用

Similar Documents

Publication Publication Date Title
CN102973488A (zh) 具有氧化还原/pH双重刺激响应性的纳米水凝胶及其制备方法和应用
He et al. Advances of molecularly imprinted polymers (MIP) and the application in drug delivery
Soni et al. Nanogels as potential nanomedicine carrier for treatment of cancer: A mini review of the state of the art
Sung et al. Recent advances in polymeric drug delivery systems
Men et al. Biodegradable zwitterionic nanogels with long circulation for antitumor drug delivery
Lin et al. Advances in non-covalent crosslinked polymer micelles for biomedical applications
Zhang et al. Fabrication of reductive-responsive prodrug nanoparticles with superior structural stability by polymerization-induced self-assembly and functional nanoscopic platform for drug delivery
Lima et al. An updated review of macro, micro, and nanostructured hydrogels for biomedical and pharmaceutical applications
Zhou et al. Novel zwitterionic vectors: Multi-functional delivery systems for therapeutic genes and drugs
Bhuchar et al. Degradable thermoresponsive nanogels for protein encapsulation and controlled release
Duong et al. Acid degradable and biocompatible polymeric nanoparticles for the potential codelivery of therapeutic agents
Qiao et al. Multi-responsive nanogels containing motifs of ortho ester, oligo (ethylene glycol) and disulfide linkage as carriers of hydrophobic anti-cancer drugs
AU2005294311B2 (en) Method of formation of the shape-retentive aggregates of gel particles and their uses
Li et al. Folic acid-conjugated pH/temperature/redox multi-stimuli responsive polymer microspheres for delivery of anti-cancer drug
Deka et al. Acidic pH-responsive nanogels as smart cargo systems for the simultaneous loading and release of short oligonucleotides and magnetic nanoparticles
Dehghani et al. Simultaneous two drugs release form Janus particles prepared via polymerization-induced phase separation approach
US9149535B2 (en) Polymers and the preparation of nanogel drug cocktails
Huang et al. Zwitterionic nanoparticles constructed with well-defined reduction-responsive shell and pH-sensitive core for “spatiotemporally pinpointed” drug delivery
CN104892949B (zh) 一种谷胱甘肽/pH双重刺激响应离子交联型聚合物纳米水凝胶及其制备方法和应用
CN107550921A (zh) 一种纳米颗粒‑高分子可注射复合水凝胶双载药体系及其制备方法
Yao et al. Platinum-incorporating poly (N-vinylpyrrolidone)-poly (aspartic acid) pseudoblock copolymer nanoparticles for drug delivery
Wang et al. Synthesis of yolk–shell polymeric nanocapsules encapsulated with monodispersed upconversion nanoparticle for dual-responsive controlled drug release
Qin et al. Mixed-charged zwitterionic polymeric micelles for tumor acidic environment responsive intracellular drug delivery
CN101045033A (zh) 一种多糖基修饰的酸敏纳米凝胶
Pinkerton et al. Gelation chemistries for the encapsulation of nanoparticles in composite gel microparticles for lung imaging and drug delivery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130320