CN102934005B - 显微镜装置 - Google Patents

显微镜装置 Download PDF

Info

Publication number
CN102934005B
CN102934005B CN201180026894.6A CN201180026894A CN102934005B CN 102934005 B CN102934005 B CN 102934005B CN 201180026894 A CN201180026894 A CN 201180026894A CN 102934005 B CN102934005 B CN 102934005B
Authority
CN
China
Prior art keywords
lens
object lens
cylindrical lens
sample
microscopie unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180026894.6A
Other languages
English (en)
Other versions
CN102934005A (zh
Inventor
中山浩明
大内由美子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of CN102934005A publication Critical patent/CN102934005A/zh
Application granted granted Critical
Publication of CN102934005B publication Critical patent/CN102934005B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/58Optics for apodization or superresolution; Optical synthetic aperture systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • Multimedia (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

一种显微镜装置,具有:倍率彼此不同的多个物镜(12);成像系统(7),接收通过对含有荧光物质的试样照射激发光(L2)而从试样(8)发出且从物镜(12)射出的光,并以对试样(8)的像付与了像散差的状态成像,所述荧光物质若被照射规定波长的活性光(L1)则活性化,若在活性化状态下被照射与活性光(L1)的波长不同的激发光(L2)则发出荧光且成为非活性化状态;和摄像装置(100),拍摄经成像系统(7)形成的试样(8)的像。成像系统(7)包括根据物镜(12)的焦点深度来改变像散差的像散差改变装置(50)。

Description

显微镜装置
技术领域
本发明涉及显微镜装置。
本申请基于2010年6月3日提出的日本专利申请2010-127906号要求优先权,并将其内容援引至此。
背景技术
目前,作为超分辨率显微镜,已知有STORM(StochasticOpticalReconstructionMicroscopy;随机光学重建显微镜)(例如参照专利文献1、2)。在该显微镜中,作为观察试样,使用荧光物质或者附着有荧光物质的物质。该荧光物质具有这样的特性:若被照射规定波长的活性光则成为活性化状态,若此后被照射与活性光的波长不同的激发光则发出荧光并成为非活性化状态。通过对观察试样照射微弱的活性光,荧光物质在低密度下成为活性化状态。然后,通过照射激发光而仅使活性化状态的荧光物质发光,从而取得荧光图像。在这样取得的荧光图像中,由于在低密度下发光的荧光物质的像是各自分离的,所以能够求出各个像的重心位置。使这种获取荧光物质的位置的步骤重复多次、例如数百次~数万次以上,从而制作出将荧光物质的所有像配置在各个位置上而成的一张图像,由此,能够得到高分辨率的观察图像。
另外,作为超分辨率显微镜装置,已知有三维方式的STORM,其不仅能够提高在试样面(XY平面)内的分辨率,还能够提高试样的厚度方向(Z方向)上的分辨率(例如参照非专利文献)。在这种三维方式的STORM中,通过在成像光学系统中插入柱面透镜而对试样的像付与规定的像散差,由此能够使荧光物质的像成为椭圆形状,并根据其椭圆率求出Z方向的坐标。
现有技术文献
专利文献1:美国专利申请公开第2008/0032414号
专利文献2:美国专利申请公开第2008/0182336号
非专利文献1:BoHuang,et.al.Science319,810-813(2008)
但是,在上述三维方式的STORM中,若根据试样的图像获取条件来改变物镜的倍率和开口数,则有可能无法良好地测定出Z位置的坐标。
发明内容
本发明的目的是提供一种能够得到高分辨率的观察图像的显微镜装置。
根据本发明的方式,提供一种显微镜装置,其具有:倍率彼此不同的多个物镜;成像系统,经由所述物镜接收从包含有荧光物质的试样发出的光,并提供被付与了像散差的所述试样的像;和摄像装置,拍摄来自所述成像系统的所述试样的像,所述成像系统包含根据所述物镜的焦点深度来改变所述像散差的像散差改变装置。
发明的效果
根据本发明的形式,能够根据样本的图像获取条件来使像散差最恰当。
附图说明
图1是表示第一实施方式的显微镜装置的概略构成的图。
图2是表示本实施方式的柱面透镜单元的构成的图。
图3是表示显微镜装置的成像光学系统的概略构成的图。
图4是表示一个荧光物质在摄像装置上所形成的像的形状的图。
图5是表示荧光物质的Z坐标与像在X、Y方向上各自的宽度的关系的图表。
图6A是表示物镜的倍率以及柱面透镜的焦距与像散差的关系的图。
图6B是表示物镜的倍率以及柱面透镜的焦距与像散差的关系的图。
图7是表示第二实施方式的显微镜装置的概略构成的图。
图8是表示第二实施方式的柱面透镜单元的构成的图。
图9是表示第三实施方式的显微镜装置的概略构成的图。
图10是表示本实施方式的柱面透镜单元的构成的图。
图11是表示从旋转轴方向观察柱面透镜单元所看到的构成的图。
图12A是表示各柱面透镜的位置关系的图。
图12B是表示各柱面透镜的位置关系的图。
图13是表示第四实施方式的柱面透镜单元的概略构成的图。
具体实施方式
以下,参照附图说明本发明的显微镜装置的一个实施方式的构成。此外,本实施方式是为了更好地理解发明的要旨来具体地进行说明的,在没有特别指定的情况下,并不对本发明进行限定。另外,以下说明中所用的附图,有时为了使特征易于理解,出于方便,会将重要部分放大表示,各申请要素的尺寸比例等不一定与实际相同。
(第一实施方式)
图1是表示本实施方式的显微镜装置的概略构成的图。如图1所示,显微镜装置100具有:照明系统10;载置试样8的载物台123;与载物台123上的试样8相对配置的物镜单元12A;成像光学系统(成像系统)7;对通过成像光学系统7所成像的试样8的像进行拍摄的摄像装置14;中继光学系统15;和综合性地控制显微镜装置100的控制部25。
本实施方式的显微镜装置100是与二维方式或者三维方式对应的STORM(StochasticOpticalReconstructionMicroscopy)。在显微镜装置100中,采用被付与了荧光物质来作为标识的试样。该荧光物质若被照射规定波长的活性光则成为活性化状态。而且,该荧光物质若在活性化状态下被照射与活性光的波长不同的激发光,则发出荧光并成为非活性化状态。而且,反复进行这样的动作:通过使用激发光和活性光仅使作为试样中一部分的荧光物质发光,由此来观察离散分布的荧光。利用这样获取的大量的荧光图像能够形成试样图像。此外,荧光物质可以包括Cy5或Alexa647等有机化合物。而且,荧光物质可以包括PA-GFP等荧光蛋白质。
照明系统10包括激光台40、光纤9、透镜2、3、激发滤色镜(exciterfilter)4。激光台40具有第一激光光源41a和第二激光光源41b。第一激光光源41a是照射用于使付与至试样中的荧光物质活性化的活性光L1的光源。第一激光光源41a射出波长适合于包含在试样中的荧光物质的活性光L1。作为第一激光光源41a,例如能够根据荧光物质的种类而使用绿色激光(波长532nm)、红色激光(波长633nm、657nm)、紫色激光(波长405nm)、蓝色激光(波长457nm)等。
第二激光光源41b是照射用于使付与至试样中的荧光物质发光的激发光L2的光源。第二激光光源41b射出波长适合于包含在试样中的荧光物质的激发光L2。作为第二激光光源41b,例如能够根据荧光物质的种类而使用绿色激光(波长532nm)、红色激光(波长633nm、657nm)、紫色激光(波长405nm)、蓝色激光(波长457nm)等。激光台40具有:配置在各个激光光源41a、41b前的快门42a、42b;使来自激光光源41b的光L2反射的反射镜43;使来自激光光源41a的光L1透过,且使来自激光光源41b的光L2反射的分色镜44;对入射的激光的强度进行调整的声光器件45;和用于使激光会聚至光纤9的入射端的耦合器46。此外,在激光台40上连接有控制部25。控制部25控制快门42a以及快门42b的开闭,从而能够切换活性光L1、激发光L2的照射。而且,同时,控制部25还控制声光器件45以调整向光纤入射的激光的强度。
在照明系统10与物镜单元12A的光路之间配置有分色镜5。物镜单元12A包含焦点深度浅的低倍率物镜12a和焦点深度深的高倍率物镜12b。以下,为了便于说明,将低倍率物镜12a和高倍率物镜12b统称为物镜12。来自照明系统10的照明光通过被分色镜5反射而会聚于物镜12的光瞳面。由此,从物镜12射出的照明光将试样8照亮。
上述那样,控制部25使活性光L1以及激发光L2从激光光源41a、41b向试样8照射。从试样8发出的光入射至物镜12,并成为平行光而射出。该光在透过了分色镜5、屏障滤光片(barrierfilter)6后,入射至成像光学系统7中。成像光学系统7包含:成像透镜20;棱镜21:构成远焦光学系统的透镜22、23;和设置在这些透镜22、23之间的柱面透镜单元(像散差改变装置)50。
在棱镜21上连接有控制部25。另外,在棱镜21上设置有未图示的进退机构,从而棱镜21能够相对于光路移出或插入。即,在棱镜21插入至光路中的情况下,能够使来自物镜12的光反射而将其导向摄像装置14。
中继光学系统15通过在成像透镜20的后方配置反射镜11、透镜13、反射镜16、透镜17、18、反射镜19而构成。通过使上述棱镜21从光路中退避,来自试样8的光由中继光学系统15中继,并作为试样8的像经由目镜37而被观察者(观察眼)38观察到。
具体地,来自成像透镜20的光在被反射镜11反射之后,形成一次像24a。而且,来自一次像24a的光在透过透镜13之后被反射镜16反射而通过透镜17、18,并由反射镜19反射而形成二次像24b。观察者38能够通过目镜37目视观察到二次像24b。此外,中继光学系统15是例如在观察者38对试样8中的图像获取区域进行设定的初始设定时使用的。
本实施方式的显微镜装置100向通过成像光学系统7而得到的试样8的像付与后述的像散差,并通过摄影装置14拍摄该像,由此能够取得试样8的三维信息。摄影装置14例如由CCD照相机等摄像元件构成。在摄像装置14上连接有控制部25。
在本实施方式中,为了向通过成像光学系统7而得的试样8的像付与像散差,成像光学系统7在透镜22、23之间具有图2所示的柱面透镜单元50。在柱面透镜单元50上连接有控制部25。如图2所示,柱面透镜单元50具有柱面透镜101、102、和使这些柱面透镜101、102在透镜22、23之间进退的滑动部(进退部)105。滑动部105包含:以能够使柱面透镜101、102在透镜22、23之间滑动的方式保持柱面透镜101、102的滑动板105a;和使该滑动板105a滑动的驱动部105b。在驱动部105b上连接有控制部25。
在滑动板105b上设置有柱面透镜101、102的保持部101a、102a、和开口部106。这些保持部101a、102a以及开口部106沿着滑动板105a的滑动方向(水平方向)而配置。开口部106被设定为,具有使透过透镜22的光无遮拦地通过的大小。柱面透镜101、102通过嵌合在保持部101a、102a上而被保持在滑动板105a上。此外,柱面透镜101、102具有彼此不同的焦距。具体地,柱面透镜102的焦距被设定得比柱面透镜101的焦距短。
柱面透镜101、102的各箭头A、B表示各透镜的母线方向,在本实施例中,例如均被设定为与滑动板105a的滑动方向正交的铅垂方向。由此,在使用柱面透镜101、102的任意一个的情况下,都能够防止形成在摄像装置14上的试样8的像的椭圆方向发生变化。也可以取而代之,配置成柱面透镜101、102的母线方向均为水平方向(滑动板105的滑动方向)。
在柱面透镜单元50的这种结构中,控制部25对驱动部105b进行驱动而使滑动板105a滑动。伴随与此,柱面透镜单元50能够对插入到成像光学系统7的光路中的柱面透镜101、102进行切换。由此,显微镜装置100能够如后所述通过以三维方式取得试样8的图像。另外,显微镜装置100能够通过驱动滑动板105a而将开口部106插入到成像光学系统7内的光路中,从而也能够以二维方式取得试样8的图像。
图3是显微镜装置100的成像光学系统的概略构成图,具体地,示出了通过滑动板105a使柱面透镜101插入到光路中的状态。此外,为了使说明容易理解,省略了照明装置9、成像透镜20、棱镜21以及透镜22、23等的图示。另外,为了便于说明,在图3中设定XYZ坐标系,并适当地使用该XYZ坐标系来进行说明。关于XYZ坐标系,例如沿着水平面设定X轴以及Y轴,沿着垂直方向朝上设定Z轴。此外,该XYZ坐标系仅在图3内有效。
来自试样8的光入射至物镜12而成为平行光束,并入射至成像透镜20。在图3所示的状态下,对在成像透镜20与摄像装置14之间配置有柱面透镜101的情况进行说明。柱面透镜101以使母线方向成为Y方向的方式配置。柱面透镜101的状态为在X方向上具有折射力,但在Y方向(母线方向)上不具有折射力。
图4是表示存在于试样8的表面上的一个荧光物质在摄像装置14上所形成的像的形状的图。通常,比成像光学系统的分辨率小的荧光物质在摄像装置14上形成圆形的像。在本实施方式中,由于使用包含柱面透镜101的成像光学系统7,所以像根据该Z坐标的不同而X方向的宽度(Wx)、Y方向的宽度(Wy)分别变化。若将像为圆形(Wx=Wy)的荧光物质的Z坐标设为Z=0,则在Z>0时,像成为在X方向上具有长轴的椭圆(Wx>Wy),另外,在Z<0时,像成为在Y方向上具有长轴的椭圆(Wx<Wy)。即,向试样8付与的一个荧光物质在摄像装置14上所形成的像根据后述的Z坐标的不同而X方向的宽度与Y方向的宽度分别变化。
图5是表示荧光物质的Z坐标(横轴)与像在X、Y方向上各自的宽度的关系的图表。X、Y方向上的宽度Wx、Wy分别在Z<0、Z>0时具有极小值。换言之,Wx在未达到0的某个Z位置处成为极小。Wy在超过0的某个Z位置处成为极小。在Z=0时,Wx=Wy。Wx、Wy分别成为极小时的Z坐标的差Δ即为像散差。换言之,像散差是Wx成为极小时的Z位置与Wy成为极小时的Z位置之差。
显微镜装置100中的试样8的图像观察方法包括:从激光台40内的第一激光光源41a对试样8照射能量弱的活性光L1的步骤;对激光台40内的快门42a、42b以及声光器件45进行切换而从第二激光光源9b向试样8照射能量强的激发光L2以取得荧光图像的步骤;和将这样测定的荧光图像保存的步骤,将这些步骤反复进行几百次到几万次。
显微镜装置100将如下数据存储在控制部25,该数据是使将柱面透镜101配置在成像透镜3与摄像装置14之间的情况下的像的变化率(X方向的宽度与Y方向的宽度的比例;Wy/Wx)与Z坐标相关联的数据并且是预先通过实验等求出的数据。在显微镜装置100中,将对存在于试样8的表面上的各个荧光物质在摄像装置14上所形成的像的形状进行拍摄而得到的数据、和存储在控制部25内的数据进行比较,由此能够检测出像(荧光物质)的Z坐标。这样,显微镜装置100通过摄像装置14拍摄被付与了像散差的像,并根据各图像求出荧光物质的位置(也包含Z坐标),且将这些配置在一张图像中。由此,能够使用显微镜装置100取得包含三维信息(Z坐标)的高分辨率的试样8的图像。
但是,上述的像散差需要与物镜的焦点深度相配合地调整为规定的量。图6A是表示在像散差相对于物镜的焦点深度比较大的情况下的、Z与Wx、Wy的关系的图表。
如图6A所示,在像散差相对于物镜的焦点深度比较大的情况下,Z仅从Z=0的位置稍微偏移,Wx或者Wy就变得非常大。若像变得过大,则摄像装置14上的强度下降,S/N降低。该结果为,从所取得的图像求出的Wx、Wy的误差有变大的倾向,有可能无法正确地求出像的Z坐标。
另一方面,图6B是表示在像散差相对于物镜的焦点深度比较小的情况下的、Z与Wx、Wy的关系的图表。如图6B所示,在像散差相对于物镜的焦点深度比较小的情况下,在Z=0附近的椭圆率(Wy/Wx)的变化率较小。该结果为,存在从像求出的Wx、Wy中所包含的微小误差在Z坐标的计算结果中变成较大误差的倾向,有可能无法正确地求出像的Z坐标。
因此,在进行三维方式的图像观察的情况下,通过与物镜12的焦点深度相配合地使用具有恰当焦距的柱面透镜,能够将像散差调整在最合适的范围内。
具体地,优选为,将像散差调整为物镜的焦点深度的两倍左右。若将物镜的开口数设为NA,将与物镜的样本侧的面接触的介质的折射率设为n,将色素的荧光波长设为λ,则焦点深度FD通过下述的算式表示。
FD=(nλ)/(2NA^2)…(1)
另一方面,若将柱面透镜的焦距设为f,将从柱面透镜到像面的距离设为d,则在通过柱面透镜产生的、像侧的像散差Δ’通过下述的算式表示。
Δ’=(d^2)/(f+d)…(2)
另外,若将物镜的倍率设为β,则将像散差换算为物体侧的值Δ通过下述的算式表示。
Δ=(nΔ’)/(β^2)…(3)
为了使像散差成为焦点深度的两倍,满足下述的条件式可。
Δ=2FD…(4)
若在算式(1)~(4)中求解f,则得到如下的算式。
f=(d^2·NA^2)/(β^2·λ)…(5)
因此,只要与所利用的物镜相配合地切换以使柱面透镜的焦距满足算式(5),就能够得到恰当的像散差。
例如,在通过倍率为100倍、NA为1.4的物镜对荧光波长为550nm的荧光色素进行观察的情况下,只要将焦距为841mm的柱面透镜配置在离镜面50mm的位置上即可。另外,在使用倍率为60倍、NA为1.4的物镜的情况下,只要将柱面透镜的焦距切换为2425mm即可。另外,在利用倍率20倍、NA为0.75的物镜的情况下,只要将柱面透镜的焦距切换为6342mm即可。
本实施方式的显微镜装置100的柱面透镜单元50包含与焦点深度较浅的物镜12a对应的柱面透镜101、和与焦点深度较深的物镜12a对应的柱面透镜102。柱面透镜101的焦距与柱面透镜102的焦距不同。即,显微镜装置100构成为,包括焦距彼此不同的多个柱面透镜101、102,并与所使用的物镜12的焦点深度相配合地选择具有恰当焦距的柱面透镜。
在显微镜装置100中,在使用低倍率物镜12a来进行基于三维方式的图像获取的情况下,控制部25驱动柱面透镜单元50的驱动部105b,使滑动板105a滑动,由此,将柱面透镜101插入到成像光学系统7内的光路中。另一方面,在显微镜装置100中,若由观察者38选择了高倍率物镜12b,则通过控制部25驱动柱面透镜单元50的驱动部105b,使滑动板105a滑动,从而将柱面透镜102插入到来自成像光学系统7的光的光路中。
以上那样,在显微镜装置100中,根据图像获取条件使物镜12的倍率、开口数改变。另外,在显微镜装置100中,即使在焦点深度发生了变化的情况下,也可以与物镜12对应地选择具有最恰当的焦距的柱面透镜101、102的任意一方。由此,能够设定规定范围的像散差,从而能够高精度地进行基于三维方式的试样8的图像观察。
另外,在显微镜装置100中,在观察者38希望进行基于二维方式的图像获取的情况下,通过控制部25驱动柱面透镜单元50的驱动部105b,使滑动板105a滑动,从而将开口部106插入到来自成像光学系统7的光的光路中。此时,由于来自试样8的光从开口部106通过,所以像不会如从柱面透镜通过的情况那样变形为椭圆形,从而在摄像装置14上形成圆形的像。由此,在显微镜装置100中,基于摄像装置14所拍摄的圆形的像,能够取得试样8的二维图像。
另外,在上述的实施方式中,说明了柱面透镜101、102与物镜12的对应关系为两种的情况,但是本发明也能够适用于组合三种以上的柱面透镜以及物镜的情况。例如,柱面透镜的种类数能够为2、3、4、5、6、7、8、9、10或者更多。在该情况下,各柱面透镜具有在与所对应的物镜12组合时能够设定最恰当的像散差的焦距。
(第二实施方式)
接下来,说明本发明的显微镜装置的第二实施方式。本实施方式的构成与第一实施方式的构成仅在物镜单元以及柱面透镜单元的构成上不同。因此,在以下的说明中主要说明柱面透镜单元的构成,在与第一实施方式相同的构成以及部件上标注相同的附图标记,且省略其详细的说明,或者将其说明简略化。
图7是表示本实施方式的显微镜装置的概略构成的图,图8是表示本实施方式中的柱面透镜单元的构成的图。
在本实施方式中,如图7所示,物镜单元112A包括第一物镜112a、第二物镜112b、第三物镜112c、第四物镜112d以及第五物镜112e。这些第一~第五物镜112a~112e被设定成焦点深度以该顺序变深。即,第一物镜112a的焦点深度最浅,物镜112e的焦点深度被设定成最深。以下,为了便于说明,将第一~第五物镜112a~112e统称为物镜112。
如图7所示,在本实施方式的显微镜装置200中,在成像光学系统7中的透镜22、23之间设置有柱面透镜单元150。如图7、8所示,本实施方式的柱面透镜单元150具有多个柱面透镜201~205、和使这些柱面透镜201~205在透镜22、23之间进退的转盘部(进退部)215。转盘部215包括保持柱面透镜201~205的圆板部件215a、和通过使圆板部件215a绕着从该圆板部件215a的中心通过的旋转轴J旋转,而使各个柱面透镜201~205能够在透镜22、23之间进退的旋转驱动部215b。
在圆板部件215a上设置有柱面透镜201~205的保持部201a~205a和开口部206。这些保持部201a~205a以及开口部206沿着圆板部件215a的圆周方向(旋转方向)配置。开口部206被设定为,具有使透过透镜22的光无遮拦地通过的大小。柱面透镜201~205例如通过嵌合在保持部201a~205a上而被保持在圆板部件215a上。
柱面透镜201~205内的箭头表示各透镜的母线方向,在本实施例中,例如以分别沿着圆板部件215a的径向的方式安装。即,各透镜的母线方向相对于旋转轴J所通过的圆板部件215a的中心在放射方向上设定,在各柱面透镜201~205被插入到透镜22、23之间的情况下,各个透镜的母线以成为铅垂方向的方式配置。由此,在使用柱面透镜201~205的任意一个的情况下,都能够防止形成在摄像装置14上的试样8的椭圆方向的朝向发生变化。此外,即使柱面透镜201~205以使其母线方向都成为圆周方向(与径向垂直的方向)的方式配置也没有问题。柱面透镜201~205具有彼此不同的焦距,具体地,以按照从柱面透镜205至柱面透镜201的顺序焦距变短的方式设定。即,柱面透镜205的焦距被设定为最长,柱面透镜201的焦距被设定为最短。
在本实施方式中,使物镜112中的焦点深度最浅的第一物镜112a、与柱面透镜单元150中焦距最长的柱面透镜205相对应。另一方面,使焦点深度最深的第五物镜112e与柱面透镜单元150中焦距最短的柱面透镜201相对应。另外,第二物镜112b与柱面透镜204相对应,第三物镜112c与柱面透镜203相对应,第四物镜112d与柱面透镜202相对应。
基于这种构成,显微镜装置200根据由观察者38选择的物镜112的种类,由控制部25驱动柱面透镜单元150的旋转驱动部215b,使圆板部件215a旋转而将所对应的柱面透镜201~205插入到成像光学系统7的光路中。由此,在显微镜装置200中,即使在根据观察者38所希望的图像获取条件而将物镜112的倍率、开口数改变的情况下,也能够设定与物镜112对应的最恰当的柱面透镜201~205,从而能够高精度地进行基于三维方式的试样8的图像观察。
另外,在显微镜装置200中,在观察者38希望进行基于二维方式的图像获取的情况下,通过控制部25驱动柱面透镜单元150的旋转驱动部215b,使圆板部件215a旋转而将开口部206插入到成像光学系统7的光路中。此时,由于来自试样8的光从开口部206通过,所以像不会如从柱面透镜201~205通过的情况那样变形为椭圆形,而是在摄像装置14上形成圆形的像。由此,在显微镜装置200中,基于摄像装置14所拍摄的圆形的像,能够以二维方式取得试样8的二维图像。
另外,在上述的实施方式中,说明了柱面透镜201~205与物镜112的对应关系为五种的情况,但是本发明也可以适用于少于五种或是六种以上的情况。例如,柱面透镜201~205与物镜112的对应关系的数量可以为2、3、4、5、6、7、8、9、10或者更多。
(第三实施方式)
接下来,说明本发明的显微镜装置的第三实施方式。此外,本实施方式的构成与第一、第二实施方式的构成仅在柱面透镜单元的构成上不同。由此,在以下的说明中主要说明柱面透镜单元的构成,在与上述实施方式相同的构成以及部件上标注相同的附图标记,且省略其详细的说明,或者将其说明简略化。
图9是表示本实施方式的显微镜装置300的概略构成的图,图10是表示本实施方式的柱面透镜单元的构成的图。
如图9所示,在本实施方式的显微镜装置300中,在成像光学系统7中的透镜22、23之间设置有柱面透镜单元250。本实施方式的柱面透镜单元250包括一对柱面透镜301、302、和保持这些柱面透镜301、302的旋转动作缸部315。旋转动作缸部315将一对柱面透镜301、302分别以能够绕着规定的旋转轴K旋转的状态保持。在此处,柱面透镜301、302中的规定的旋转轴K由与成像光学系统7内的像的光线束的中心轴平行的轴来规定。通过使这些柱面透镜301、302相互旋转,能够使像散差连续地变化。
柱面透镜301、302成为彼此的焦距的正负不同,但绝对值相等的关系。具体地,在本实施方式中,如图10所示,作为柱面透镜301,使用凹型柱面透镜,作为柱面透镜302,使用凸型柱面透镜。
图11是从旋转轴K的轴方向观察柱面透镜单元250所看到的图。图11中的箭头A表示柱面透镜301的母线方向,图11中的箭头B表示柱面透镜302的曲率方向(与母线方向垂直的方向),将箭头A、B所成的角度作为θ。此外,在图11中,为了易于说明,将柱面透镜301、302的形状用圆形简化地表示。图12A是表示箭头A、B所成角度θ为0度的情况下的柱面透镜301、302的状态的俯视图,图12B是表示箭头A、B所成角度θ为90度的情况下的柱面透镜301、302的状态的俯视图。
柱面透镜301、302能够在将两根箭头A、B的中线C(合成母线)始终保持在铅垂方向上的同时,以使θ变化的方式相互旋转。即,柱面透镜301、302每次各自向相反方向各旋转相同的角度,使箭头A以及B与中线C所成的角度分别为θ/2。这样,柱面透镜单元250通过将箭头A、B的中线C始终保持在铅垂方向,能够防止在摄像装置14上形成的试样8的像的椭圆方向发生旋转。
由于柱面透镜单元250在如图12A所示θ为0度时,透镜的折射力在铅垂方向与水平方向上的差为最大,所以像散差成为最大。另一方面,由于如图12B所示,在θ为90度时,透镜的折射力在铅垂方向与水平方向上的差消失,所以像散差成为0。这样,柱面透镜单元250通过将θ在0度到90度之间调整,能够使像散差连续地变化。此外,显微镜装置300将如下数据存储在控制部25内,该数据为将预先通过实验等而求出的、使物镜112的焦点深度与产生对应于该焦点深度的像散差的透镜301、302的旋转角度θ相关联的数据。
在显微镜装置300中,根据由观察者38选择的物镜112的种类,由控制部25驱动柱面透镜单元250的旋转动作缸部315,使一对柱面透镜301、302仅旋转规定角度。由此,在显微镜装置300中,即使在根据观察者38希望的图像获取条件而改变了物镜112的倍率、开口数的情况下,也能够设定与物镜112的焦点深度对应的最恰当的像散差,从而能够提供高精度的基于三维方式的试样8的图像观察。
另外,在显微镜装置300中,在观察者38希望进行基于二维方式的图像获取的情况下,通过控制部25驱动柱面透镜单元250的旋转动作缸部315,使一对柱面透镜301、302的角度θ为90度。此时,由于来自试样8的光在通过柱面透镜301、302时不产生像散差,所以像不会发生变形,从而在摄像装置14上形成圆形的像。由此,在显微镜装置300中,基于摄像装置14所拍摄到的圆形的像,能够以二维方式取得试样8的图像。
(第四实施方式)
接下来,说明本发明的显微镜装置的第四实施方式。此外,本实施方式的构成与第二、第三实施方式的构成仅在柱面透镜单元的构成上不同。由此,在以下的说明中主要说明柱面透镜单元的构成,在与第一实施方式相同的构成以及部件上标注相同的附图标记,且省略其详细的说明,或者将其说明简略化。
图13是表示本实施方式的柱面透镜单元的构成的图。本实施方式的柱面透镜单元是使第一实施方式的柱面透镜单元的一部分构成与第三实施方式的柱面透镜单元的一部分构成组合而成的。
具体地,如图13所示,本实施方式的柱面透镜单元350具有保持一对柱面透镜401、402的旋转动作缸部415、和滑动部(进退部)405。滑动部405包括将旋转动作缸部415能够滑动地保持的滑动板405a、和使该滑动板405a滑动的驱动部405b。
在滑动板405a上设置有旋转动作缸部415的保持部415a和开口部306。这些保持部315a以及开口部306沿着滑动板405a的滑动方向(水平方向)配置。开口部306被设定为,具有使从透镜22通过的光无遮拦地通过的大小。旋转动作缸部415通过嵌合在保持部415a上而被保持在滑动板405a上。
在本实施方式中,柱面透镜401、402均使用凸型柱面透镜。由此,虽然无法如将凸型凹型柱面透镜组合的第三实施方式那样使像散差为0,但在本实施方式中,能够通过组合上述开口部306而使像散差处于0的状态下(基于二维方式的图像观察)。
在本实施方式的显微镜装置中,在进行基于三维方式的图像获取的情况下,通过控制部25驱动柱面透镜单元350的驱动部405b,使滑动板405a滑动,从而将旋转动作缸部415插入到成像光学系统7内的光路中。此时,控制部25根据由观察者38选择的物镜112的种类来驱动旋转动作缸部415,使一对柱面透镜401、402仅旋转规定角度。由此,在显微镜装置中,即使在根据观察者38希望的图像获取条件而改变了物镜的倍率、开口数的情况下,也能够设定与物镜的焦点深度对应的最恰当的像散差,从而能够高精度地进行基于三维方式的试样8的图像观察。
另外,在本实施方式的显微镜装置中,在观察者希望进行基于二维方式的图像获取的情况下,通过控制部25驱动柱面透镜单元350的驱动部405b,使滑动板405a滑动,从而将开口部306插入到来自成像光学系统7的光的光路中。此时,由于来自试样8的光从开口部306通过,所以像不会如从柱面透镜通过的情况那样变形为椭圆形,而是在摄像装置14上形成圆形的像。由此,在显微镜装置中,基于摄像装置14所拍摄的圆形的像,能够以二维方式取得试样8的图像。
此外,也可以采用这样的构成,即:使用第二实施方式的转盘部来进行旋转动作缸部与开口部的切换。另外,在上述第四实施方式中,作为一对柱面透镜401、402,使用了凸型柱面透镜与凸型柱面透镜的组合,但是,也可以使用凹型柱面透镜与凹型柱面透镜的组合。
在以上实施例中,说明了在活性化用与激发用中使用波长不同的两种激光的显微镜装置。另一方面,作为仅使用激发用的激光的显微镜,已知有dSTORM(directStochasticOpticalReconstructionMicroscopy;直接随机光学重建显微镜)。在dSTORM中,不会如以往的STORM那样照射活性化用的激光,而是以荧光物质的自发的闪烁为基础,取得仅有少量荧光色素的图像。本发明的像散差改变装置也能够适用在dSTORM中。
在一个实施方式中,显微镜装置具有:各自的倍率不同的多个物镜;成像系统,接收通过对含有荧光物质的试样照射激发光而从上述试样发出且从上述物镜射出的光,并以对上述试样的像付与了像散差的状态成像,其中,上述荧光物质若被照射规定波长的上述激发光则发出荧光;和摄像装置,拍摄经上述成像系统形成的上述试样的像,上述成像系统包括根据上述物镜的焦点深度来改变上述像散差的像散差改变装置。
在一个实施方式中,显微镜装置具有:各自的倍率不同的多个物镜:成像系统,接收通过对含有荧光物质的试样照射激发光而从上述试样发出且从上述物镜射出的光,并以对上述试样的像付与了像散差的状态成像,其中,上述荧光物质若被照射规定波长的活性光则活性化,若在活性化状态下照射与上述活性光的波长不同的上述激发光则发出荧光且成为非活性化状态;和摄像装置,拍摄经上述成像系统形成的上述试样的像,上述成像系统包括根据上述物镜的焦点深度来改变上述像散差的像散差改变装置。
附图标记说明
7成像光学系统(成像系统)
12、112物镜
14摄像装置
50、150、250、350柱面透镜单元(像散差改变装置)
100、200、300显微镜装置
101、102、201~205柱面透镜
105、405滑动部(进退部)
215转盘部(进退部)

Claims (12)

1.一种显微镜装置,其特征在于,具有:
各自的倍率不同的多个物镜;
照射装置,所述照射装置能够使活性化用的光朝向试样,或者能够使活性化用的光及激发用的光中的至少一种朝向所述试样;
成像系统,经由所述物镜接收从含有荧光物质的试样发出的荧光,并且形成被付与了像散差的所述试样的像;和
摄像装置,拍摄来自所述成像系统的所述试样的像,
所述显微镜装置基于对被付与了所述像散差的像进行拍摄而得到的多张图像,确定多个荧光物质的三维空间的X、Y、Z的位置,
所述成像系统包括根据所述物镜的焦点深度来改变所述像散差的像散差改变装置,
各自的所述倍率不同的多个物镜以能够切换的方式配置,
在将一个物镜切换为另一物镜时,控制部控制所述像散差改变装置,以根据所述另一物镜的焦点深度来改变所述像散差。
2.根据权利要求1所述的显微镜装置,其特征在于,
所述像散差改变装置具有:多个柱面透镜,能够对所述试样的像分别付与不同的像散差;和进退部,使所述多个柱面透镜相对于从所述物镜射出的光的光路进退。
3.根据权利要求2所述的显微镜装置,其特征在于,
所述进退部包括能够在圆周方向上旋转的圆板部件,所述多个柱面透镜沿着所述圆板部件的圆周方向而配置。
4.根据权利要求3所述的显微镜装置,其特征在于,
所述多个柱面透镜以使各自的母线方向朝着所述圆板部件的径向的方式配置。
5.根据权利要求2所述的显微镜装置,其特征在于,
所述进退部包括相对于从所述物镜射出的光的光路滑动移动的滑动板,所述多个柱面透镜沿着所述滑动板的滑动方向而配置。
6.根据权利要求5所述的显微镜装置,其特征在于,
所述多个柱面透镜各自的母线方向被配置在与所述滑动方向正交的方向上。
7.根据权利要求2所述的显微镜装置,其特征在于,
所述进退部具有不对所述试样的像付与所述像散差而取得的二维图像用的开口部。
8.根据权利要求1所述的显微镜装置,其特征在于,
所述成像系统包括远焦光学系统,所述像散差改变装置配置在所述远焦光学系统中。
9.根据权利要求1或7所述的显微镜装置,其特征在于,
所述像散差是所述物镜的焦点深度的2倍。
10.根据权利要求1所述的显微镜装置,其特征在于,
所述像散差改变装置包括一对柱面透镜,各个柱面透镜能够绕着规定的旋转轴相互旋转。
11.根据权利要求10所述的显微镜装置,其特征在于,
所述一对柱面透镜每次分别向相反方向各旋转相同的角度。
12.根据权利要求11所述的显微镜装置,其特征在于,
使所述一对柱面透镜旋转的控制部根据使所述物镜的焦点深度与所述角度相关联的数据来控制所述一对柱面透镜。
CN201180026894.6A 2010-06-03 2011-06-03 显微镜装置 Active CN102934005B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010-127906 2010-06-03
JP2010127906 2010-06-03
PCT/JP2011/062808 WO2011152523A1 (ja) 2010-06-03 2011-06-03 顕微鏡装置

Publications (2)

Publication Number Publication Date
CN102934005A CN102934005A (zh) 2013-02-13
CN102934005B true CN102934005B (zh) 2016-06-15

Family

ID=45066878

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180026894.6A Active CN102934005B (zh) 2010-06-03 2011-06-03 显微镜装置

Country Status (5)

Country Link
US (1) US8773758B2 (zh)
EP (1) EP2579084B1 (zh)
JP (1) JP5459399B2 (zh)
CN (1) CN102934005B (zh)
WO (1) WO2011152523A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10051240B2 (en) 2010-06-14 2018-08-14 Howard Hughes Medical Institute Structured plane illumination microscopy
US8711211B2 (en) 2010-06-14 2014-04-29 Howard Hughes Medical Institute Bessel beam plane illumination microscope
DE102012200344A1 (de) 2012-01-11 2013-07-11 Carl Zeiss Microscopy Gmbh Mikroskopsystem und Verfahren für die 3-D hochauflösende Mikroskopie
JP6131568B2 (ja) * 2012-10-30 2017-05-24 株式会社ニコン 顕微鏡装置及び画像形成方法
DE102013102988A1 (de) * 2013-03-22 2014-09-25 Leica Microsystems Cms Gmbh Lichtmikroskopisches Verfahren zur Lokalisierung von Punktobjekten
JP6234109B2 (ja) * 2013-08-12 2017-11-22 オリンパス株式会社 ディスク走査装置、及び、顕微鏡装置
US10247672B2 (en) 2014-09-29 2019-04-02 Howard Hughes Medical Institute Non-linear structured illumination microscopy
US10795144B2 (en) 2014-12-06 2020-10-06 Howard Hughes Medical Institute Microscopy with structured plane illumination and point accumulation for imaging and nanoscale topography
WO2017090211A1 (ja) * 2015-11-27 2017-06-01 株式会社ニコン 顕微鏡装置
WO2017139649A2 (en) 2016-02-12 2017-08-17 Massachusetts Institute Of Technology Method and apparatus for imaging unsectioned tissue speciments
DE102017208615A1 (de) * 2017-05-22 2018-11-22 Carl Zeiss Microscopy Gmbh Verfahren und Adapter zur Adaption eines Mikroskopobjektivs an ein Digitalmikroskop
JP6962714B2 (ja) * 2017-06-07 2021-11-05 オリンパス株式会社 観察装置
CN111323397B (zh) * 2018-12-14 2023-03-28 深圳华大生命科学研究院 光学成像系统、成像检测系统与方法及基因测序方法
CN110646389B (zh) * 2019-09-26 2021-07-23 中国科学院长春应用化学研究所 一种基于透明介质微球的超分辨多色激光扫描光纤探针及其制作方法
CN116718356B (zh) * 2023-08-09 2023-11-14 浙江荷湖科技有限公司 有限远共轭成像系统的测试方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1938626A (zh) * 2004-03-31 2007-03-28 奥林巴斯株式会社 观察装置及荧光观察装置
JP4345739B2 (ja) * 2001-05-10 2009-10-14 横河電機株式会社 バイオチップ読取装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191474A (en) 1989-05-18 1993-03-02 Minolta Camera Kabushiki Kaisha Anamorphic illuminating optical system
JPH03210516A (ja) * 1990-01-12 1991-09-13 Minolta Camera Co Ltd マイクロ・リーダ・プリンター用照明光学系
US5880465A (en) * 1996-05-31 1999-03-09 Kovex Corporation Scanning confocal microscope with oscillating objective lens
US6771417B1 (en) * 1997-08-01 2004-08-03 Carl Zeiss Jena Gmbh Applications of adaptive optics in microscopy
US6388788B1 (en) * 1998-03-16 2002-05-14 Praelux, Inc. Method and apparatus for screening chemical compounds
WO2003100925A2 (en) * 2002-05-22 2003-12-04 Beth Israel Deaconess Medical Center Device for wavelength-selective imaging
GB0308072D0 (en) * 2003-04-08 2003-05-14 Visitech Internat Ltd Fast multi-line laser confocal scanning microscope
JP4417035B2 (ja) * 2003-06-09 2010-02-17 株式会社トプコン 観察装置
JP2005243904A (ja) * 2004-02-26 2005-09-08 Nikon Corp 照明光学装置、露光装置及び露光方法
EP1722669A4 (en) * 2004-02-27 2009-05-27 Optiscan Pty Ltd OPTICAL ELEMENT
JP2005287964A (ja) * 2004-04-02 2005-10-20 Olympus Corp 生体・臓器・組織の観察装置
WO2007041382A1 (en) * 2005-09-29 2007-04-12 General Hospital Corporation Arrangements and methods for providing multimodality microscopic imaging of one or more biological structures
FR2893132B1 (fr) * 2005-11-09 2008-07-25 Innopsys Sa Dispositif d'analyse a balayage d'echantillons biologiques par fluorescence
WO2007067999A2 (en) * 2005-12-09 2007-06-14 Amnis Corporation Extended depth of field imaging for high speed object analysis
EP1840623B1 (en) 2006-03-31 2013-05-08 Yokogawa Electric Corporation Microscope comprising a focus error detecting optical system
JP4614907B2 (ja) * 2006-03-31 2011-01-19 横河電機株式会社 顕微鏡
US7776613B2 (en) 2006-08-07 2010-08-17 President And Fellows Of Harvard College Sub-diffraction image resolution and other imaging techniques
US7838302B2 (en) 2006-08-07 2010-11-23 President And Fellows Of Harvard College Sub-diffraction limit image resolution and other imaging techniques
JP2008203813A (ja) * 2007-01-24 2008-09-04 Olympus Corp 走査型顕微鏡
JP5178107B2 (ja) * 2007-09-14 2013-04-10 オリンパス株式会社 レーザー走査型顕微鏡
JP5526036B2 (ja) * 2007-12-21 2014-06-18 プレジデント アンド フェローズ オブ ハーバード カレッジ 三次元の回折限界未満の画像解像技術
JP2010102332A (ja) * 2008-09-29 2010-05-06 Nikon Corp 光活性化限局顕微鏡及び光活性化限局観察方法
US7675045B1 (en) * 2008-10-09 2010-03-09 Los Alamos National Security, Llc 3-dimensional imaging at nanometer resolutions
JP5325522B2 (ja) * 2008-10-15 2013-10-23 株式会社堀場製作所 複合型観察装置
US8693742B2 (en) * 2008-12-17 2014-04-08 The Regents Of The University Of Colorado Three-dimensional single-molecule fluorescence imaging beyond the diffraction limit using a double-helix point spread function
JP5718329B2 (ja) * 2009-07-09 2015-05-13 ホワルド フグヘス メドイクアル インストイトウテ 適応光学系を有する顕微鏡検査法
US8259170B2 (en) * 2009-08-24 2012-09-04 Cellomics, Inc. Integrated calibration sample bay for fluorescence readers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4345739B2 (ja) * 2001-05-10 2009-10-14 横河電機株式会社 バイオチップ読取装置
CN1938626A (zh) * 2004-03-31 2007-03-28 奥林巴斯株式会社 观察装置及荧光观察装置

Also Published As

Publication number Publication date
US20130088776A1 (en) 2013-04-11
EP2579084A1 (en) 2013-04-10
WO2011152523A1 (ja) 2011-12-08
US8773758B2 (en) 2014-07-08
EP2579084A4 (en) 2017-04-12
CN102934005A (zh) 2013-02-13
JP5459399B2 (ja) 2014-04-02
JPWO2011152523A1 (ja) 2013-08-01
EP2579084B1 (en) 2023-11-08

Similar Documents

Publication Publication Date Title
CN102934005B (zh) 显微镜装置
US10768402B2 (en) Microscopy of a tissue sample using structured illumination
US7015444B2 (en) Optical-scanning examination apparatus
US8704196B2 (en) Combination microscopy
JP5999121B2 (ja) 共焦点光スキャナ
JP2015135463A (ja) 顕微鏡装置、及び、顕微鏡システム
WO2012027542A2 (en) Simultaneous orthogonal light sheet microscopy and computed optical tomography
US20220043246A1 (en) Microscope and method for microscopic image recording with variable illumination
EP1777571A2 (en) Microscope examination apparatus and microscope examination method
CN107003509A (zh) 产生用于多色荧光显微镜的无衍射光片的方法和系统
CN101819319B (zh) 使用菲涅尔双棱镜产生多层光片的荧光显微方法及装置
Keomanee-Dizon et al. A versatile, multi-laser twin-microscope system for light-sheet imaging
JP6131568B2 (ja) 顕微鏡装置及び画像形成方法
US9494781B2 (en) Plane-projection multi-photon microscopy
US20120140057A1 (en) Microscope for Measuring Total Reflection Fluorescence
WO2016207881A1 (en) Controlled optical focusing through flexible graded-index multimode fibers without distal end access
EP1806575A1 (en) Examination apparatus
JP2008102535A (ja) 実体顕微鏡
WO2017090211A1 (ja) 顕微鏡装置
CN107361724A (zh) 层析内窥显微成像装置
Turtaev et al. Accelerated fibre microendoscopy techniques for in-vivo applications
JP2015055643A (ja) 照明装置及び顕微鏡
Pacheco et al. Optics of Biomedical Instrumentation
PL228298B1 (pl) Układ i sposób do holograficznego obrazowania metoda mikroskopii fluorescencyjnej z wygaszaniem przez emisje wymuszona
JP2020042283A (ja) 顕微鏡装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant