CN102931992A - 管线式adc的管线组件电路及减少电容器失配误差的方法 - Google Patents

管线式adc的管线组件电路及减少电容器失配误差的方法 Download PDF

Info

Publication number
CN102931992A
CN102931992A CN201210226666XA CN201210226666A CN102931992A CN 102931992 A CN102931992 A CN 102931992A CN 201210226666X A CN201210226666X A CN 201210226666XA CN 201210226666 A CN201210226666 A CN 201210226666A CN 102931992 A CN102931992 A CN 102931992A
Authority
CN
China
Prior art keywords
switch
capacitor
output
line elements
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210226666XA
Other languages
English (en)
Other versions
CN102931992B (zh
Inventor
利塔立·史考屈寇弗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pixart Imaging Inc
Original Assignee
Pixart Imaging Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pixart Imaging Inc filed Critical Pixart Imaging Inc
Publication of CN102931992A publication Critical patent/CN102931992A/zh
Application granted granted Critical
Publication of CN102931992B publication Critical patent/CN102931992B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1009Calibration
    • H03M1/1033Calibration over the full range of the converter, e.g. for correcting differential non-linearity
    • H03M1/1057Calibration over the full range of the converter, e.g. for correcting differential non-linearity by trimming, i.e. by individually adjusting at least part of the quantisation value generators or stages to their nominal values
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/40Analogue value compared with reference values sequentially only, e.g. successive approximation type recirculation type
    • H03M1/403Analogue value compared with reference values sequentially only, e.g. successive approximation type recirculation type using switched capacitors

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

本发明提供一种管线式模拟-数字转换器中减少电容器失配误差的方法及装置的各种实施例。在第一及第三时间段,呈送一输入电压至在一管线元件电路中并联的一第一电容器及一第二电容器。在第二时间段,在该管线元件电路中放大并储存对应于一第二电荷的一第二电压,该第二电荷与第二电容相关联。在第四时间段,在该管线元件电路中放大并储存对应于一第一电荷的一第一电压。在第一、第二、第三及第四时间段完成后,将该第一及该第二电压的数字表示与其他管线元件电路提供之第一及第二电压之数字表示平均,以产生经数字电容器失配误差校正的输出。

Description

管线式ADC的管线组件电路及减少电容器失配误差的方法
技术领域
本发明涉及模拟-数字转换器(analog-to-digital converter;ADC)领域,具体地,是关于包含于触控荧幕及/或触控板或触控面板控制器中的ADC的领域。
背景技术
为提高导航数字成像应用中(例如,在电容式触控荧幕整合式控制器中,或在OFN/mice中的整合式光学成像仪中)的位解析度,通常需要在设计阶段期间采取措施来解决因ADC中各整合式组件间的失配而造成的问题。管线式ADC架构由于其能够同时处理成像数据阵列中的多个元件而常常用于成像应用中。在金氧硅(metal oxide silicon;MOS)管线式ADC及包含其的集成电路中,所欲匹配的大多数主要组件经常为各该管线元件的乘法数字-模拟转换器(digital-to-analog converter;DAC)中的电容器。电容器,尤其是大电容器,在一集成电路上可能占用大量面积,且当ADC中的有效位数(effective numberof bits;ENOB)等于或超过12时,可能难以设计及实作此等电容器。此外,大电容器可能会明显增大ADC的功耗量。
因此,为获得高的ENOB、同时不耗用过多集成电路的面积及ADC的功率,许多误差校准技术已被提出。基数数字校准(radix digital calibration)技术在数字校准期间,通常需要实施大量数字操作及长时间的迭代。另一技术称为平均化主动式及被动式模拟电容器,此技术已知可用于增大管线式ADC的ENOB,但此技术通常需要额外的放大器及/或额外的电容器。此外,除正常的时钟运作之外,通常亦需要一平均时钟时间段(averaging clock phase)。此等要求将会增大集成电路的尺寸、复杂性及设计,且亦会增大ADC的功耗。
上述问题已于下列公开文献中论述,但并不仅限于下列所列文献:P.Rombouts等人,IEEE电路与系统会刊(IEEE Transactions on Circuits andSystems),第45卷,第9期,1998年9月;EI-Sankary等人,IEEE电路与系统会刊,第51卷,第10期,2004年10月;Sean Chang等人,IEEE固态电路杂志(IEEE Journal of Solid State Circuits),第37卷,第6期,2002年6月;StephenH.Lewis等人,IEEE固态电路杂志,第27卷,第3期,1992年3月;John P.Keane等人,IEEE固态电路杂志,第52卷,第1期,2005年1月;O.Bernal等人,2006年IMTC技术会议(IMTC 2006 Technology Conference),意大利,索伦托,2006年4月24日至27日;Ion P.Opris等人,IEEE固态电路杂志,第33卷,第12期,1998年12月;Dong-Young Chang等人,IEEE电路与系统会刊,第51卷,第11期,2004年11月;Yun Chiu等人,IEEE固态电路杂志,第39卷,第12期,2004年12月,以及Hsin-Shu Chen,IEEE固态电路杂志,第36卷,第6期,2001年6月。上述各参考文献分别以引用方式,全文倂入本文中。
综上所述,一种具有减少电容器失配误差、更小的电容器及更低的ADC功耗的管线式ADC是迫切所需的。
发明内容
在一实施例中,本发明提供一种位于一管线式模拟-数字转换器(analog-to-digital converter;ADC)中之管线元件电路。该管线元件电路包含:一取样-保持电路(sample-and-hold circuit),用以在一输出端子处提供一输入电压;一第一比较器,包含一第一负输入端子及一第一正输入端子,该第一负输入端子可操作地连接至一第一参考电压,该第一正输入端子可操作地连接至该输入电压,该第一比较器提供一第一比较器输出;一第二比较器,包含一第二负输入端子及一第二正输入端子,该第二负输入端子可操作地连接至一第二参考电压,该第二正输入端子可操作地连接至该输入电压,该第二比较器提供一第二比较器输出;一多工器,用以接收该第一比较器输出、该第二比较器输出、该第一参考电压、该第二参考电压、以及地电位作为其输入,该多工器根据该第一比较器输出及该第二比较器输出提供一多工器输出,该多工器输出代表该第一参考电压、该第二参考电压、以及地电位其中之一;以及一放大器电路,用以接收该输入电压及该多工器输出作为其输入,该放大器电路包含一放大器、一第一组开关、一第二组开关、一第三组开关、一第一电容及一第二电容,该放大器具有一放大器输出以及一正放大器输入及一负放大器输入,该正放大器输入连接至地电位;其中在一第一时间段(phase)期间,该第一组开关闭合,该第二组开关及该第三组开关断开,该第一电容器与该第二电容器相对于彼此呈现并联排列,该第一电容器与该第二电容器且经由该第一组开关而被该输入电压充电;在一第二时间段期间,该第二组开关闭合,该第一组开关及该第三组开关断开,该第一电容器与该第二电容器相对于彼此呈现串联排列,且经由该第二组开关将该第二电容器经由该第二组开关被设置于该负放大器输入与该放大器输出之间之一负回馈环路中,该第一电容器被向其提供之该多工器输出充电,且在该放大器输出处提供代表该第二电容之一第二输出电压;在一第三时间段期间,该第一组开关闭合,该第二组开关及该第三组开关断开,该第一电容器与该第二电容器相对于彼此呈现并联排列,该第一电容器与该第二电容器且经由该第一组开关而再次被与该第一时间段中相同之该输入电压充电;在一第四时间段期间,该第三组开关闭合,该第一组开关及该第二组开关断开,该第一电容器与该第二电容器相对于彼此呈现串联排列,该第一电容器且经由该第三组开关而将该第一电容器被设置于该负回馈环路中,该第二电容器被向其提供之该多工器输出充电,且在该放大器输出处提供代表该第一电容之一第一输出电压。
在另一实施例中,本发明提供一种于一管线式模拟-数字转换器(ADC)中减少电容器失配误差之方法。该方法包含:在一管线元件电路中,且在一第一时间段期间,呈送由一取样-保持电路提供之一输入电压至在该管线元件电路中并联排列之一第一电容器及一第二电容器;在该管线元件电路中,且在一第二时间段期间,放大对应于一第二电荷之一第二电压且储存该第二电压,该第二电荷与该第二电容相关联;在该管线元件电路中,且在一第三时间段期间,再次将该第一时间段之该同一输入电压呈送至并联排列之该第一电容器及该第二电容器;在该管线元件电路中,且在一第四时间段期间,放大对应于一第一电荷之一第一电压且储存该第一电压;以及在完成该第一时间段、该第二时间段、该第三时间段及该第四时间段之后,经由对应暂存器将该第一电压及该第二电压之数字表示发送至一数字平均电路以进行后续平均,并据此提供一经数字电容器失配误差校正之输出。
本文将进一步揭示本发明之其他实施例,而熟习此项技术者亦可于阅读并理解本说明书及附图之后,轻易思及未揭露之其他实施例。根据以下实施方式、图式及申请专利范围,本发明之各种实施例之不同态样将可轻易被理解。基于说明减化原则,该等图式未必按实际比例绘制,且图式中相同编号除特别说明外将表示相同部件或步骤。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是一电容式触控荧幕系统之一实施例的剖视图;
图2是一电容式触控荧幕控制器的方框图;
图3是一电容式触控荧幕系统及一主机控制器的一方框图的一实施例;
图4为显示一电容式触控荧幕系统之一实施例的示意性方框图;
图5为根据管线式模拟-数字转换器(ADC)155之一实施例显示一单一管线元件电路150的一实施例;
图6是管线式ADC 155之一单一管线元件电路150的另一实施例;
图7是由一最高有效位(most-significant-bit;MSB)管线元件电路150的配置A及配置B所提供的转换功能的示意图;
图8是管线式模拟-数字转换器(ADC)155的一实施例;
图9(a)是对应于图8之管线式ADC电路之一控制信号协定的一实施例;
图9(b)是图6及图8之电路在根据图9(a)之命令信号协定运作时对应之数据、时钟及管线元件配置的一实施例;
图10是一引导ADC设计的不同管线元件电路的电容器值的标准偏差;
图11根据传统管线式ADC之一实施例而显示其转换功能之模拟绝对偏差的长条图;
图12是类似于图11的长条图、但对C1及C2使用更小之电容器值而获得的长条图;
图13是由于实施数字平均电路及技术而产生的另一长条图;以及
图14及图15是藉由使用管线式ADC数字平均电路及技术而获得之差分非线性(differential non-linearity;DNL)的改良的示意图。
附图标号
40:驱动电路
50:感测电路
90:触控荧幕/触控荧幕或触控面板
95:介电板/罩板
120:主机处理器/主机控制器
100:中央处理装置/触控荧幕控制器/控制器/晶片
110:电容式触控荧幕系统/触控荧幕系统
112:LCD或OLED显示器
150:管线元件电路
150a:管线元件电路
150b:管线元件电路
150c:管线元件电路
150j:管线元件电路
150k:管线元件电路
155:管线式ADC
157:取样-保持电路
170:第一比较器
180:第二比较器
190:多工器
200:第一比较器输出
210:第二比较器输出
220:多工器输出
230:放大器电路
240:放大器
271:第一开关
272:第二开关
273:第三开关
281:第四开关
282:第五开关
291:第六开关
292:第七开关
300:第一电容器
310:第二电容器
320:电容器失配误差补偿电路
330:第一输出暂存器
340:第二输出暂存器
350:平均电路/数字滤波电路
360:时钟1F,S
370:时钟2F
Vin:输入电压
Vr:第一参考电压
-Vr:第二参考电压
Vout:输出
Figure BDA00001846129700071
第一组开关
Figure BDA00001846129700072
第二组开关
Figure BDA00001846129700073
第二组开关
第三组开关
C1:第一电容器/第一电容
C2:第二电容器/第二电容
具体实施方式
如图1所示,一电容式触控荧幕系统110通常由以下组成:一LCD或OLED显示器112、一覆盖至LCD或OLED显示器112上方的触摸敏感面板或触控荧幕90、一设置于触控荧幕90上方的保护罩或介电板95、以及一触控荧幕控制器、微处理器、应用专用集成电路(application specific integrated circuit;ASIC)或中央处理装置(CPU)100。应理解,亦可于触控荧幕90下方设置除LCD或OLED显示器112之外的其他图像显示器。
图2显示一触控荧幕控制器100之一实施例的方框图。在一实施例中,触控荧幕控制器100可为根据本文的教示内容而修改之一Avago TechnologiesTM的AMRI-5000ASIC或晶片100。在一实施例中,触控荧幕控制器为一低功率电容式触控面板控制器,其被设计成为一触控荧幕系统提供高精确度的荧幕导航。
图3及图4所示的电容式触控荧幕或触控面板90可藉由对一介电板之一或多个表面涂敷例如氧化铟锡(Indium Tin Oxide;ITO)等导电材料而形成,该介电板通常包含玻璃、塑料或另一适宜的电绝缘材料且较佳地为光学透射性材料,且该介电板通常被构造成呈一电极网格(grid)的形状。该网格的电容保持一电荷,且当使用一手指触摸该面板时会出现通往使用者身体的一电路通道,此会引起该电容的一变化。
触控荧幕控制器100感测并分析电容的发生此等变化的坐标。当触控荧幕90固定至具有一图形使用者介面的一显示器时,可藉由追踪该等触摸坐标而达成荧幕导航,其中经常需要检测多个触摸。该网格的尺寸藉由该等触摸所需的解析度而被驱动。通常地,存在一额外罩板95来保护触控荧幕90的顶部ITO层,进而形成一完整的触控荧幕解决方案(例如图1所示的态样)。
一种形成一触控荧幕90的方式为仅于一介电板或基板之一侧上涂敷一ITO网格。当触控荧幕90与一显示器配合时,将不需要一额外保护罩。如此将具有形成一改良的透射率(>90%)且更轻薄的显示系统的益处,进而能够实现更明亮且更轻薄的手持式装置。触控荧幕控制器100的应用包括但不限于:智慧型电话(smart phone)、可携式媒体播放器(portable media player)、行动网际网路装置(Mobile Internet Device;MID)、及全球定位系统(GPS)装置。
现在参照图3及图4,在一实施例中,触控荧幕控制器100包含一模拟前端(analog front end),该模拟前端具有16条驱动信号线及9条感测线连接至一触控荧幕上的一ITO网格。触控荧幕控制器100对该等驱动电极施加一激发(excitation),例如一方波(square wave)、一弯折线信号(meander signal)或其他适宜类型的驱动信号,该等信号可具有选自约40千赫兹至约200千赫兹范围的一频率。AC信号经由互电容而耦合至该等感测线。使用一手指触摸触控荧幕或触控面板90会改变该触摸位置处的电容。触控荧幕控制器100可同时解析并追踪多个触摸。一高再新率(refresh rate)容许主机无明显延迟地追踪快速触摸及任何另外的移动。该嵌入式处理器对数据进行滤波、辨识触摸坐标并将该等触摸坐标报告至主机。可经由修补程式(patch)下载来更新所嵌入之固体。应理解,亦可考虑其他数目的驱动线及感测线,例如8×12阵列及12×20阵列。
触控荧幕控制器100具有功耗位准不同的多个运作模式。在静态模式中,控制器100可以由静态速率暂存器(register)所程式化的一速率来周期性地搜寻触摸。在多个静态模式中,每一静态模式皆具有顺次减小的功耗。当某一时间间隔中不存在触摸时,控制器100将自动地变换至次最低(next-lowest)功耗模式。
根据一实施例,及如图4所示,触控荧幕90上的一ITO网格或其他电极配置可包含:感测行20a至20p及驱动列10a至10i,其中感测行20a至20p可操作地连接至对应的感测电路50,且驱动列10a至10i可操作地连接至对应的驱动电路40。图4中显示一种用于将ITO或其他驱动及感测电极路由至触控荧幕控制器100的线的配置。
本领域技术人员将理解,在不背离本发明各实施例的范围或精神的条件下,除了一修改后的AMRI-5000晶片或触控荧幕控制器100以外,亦可采用其他触控荧幕控制器、微处理器、ASIC或CPU。此外,除本文明确所示者之外,亦可采用不同数目的驱动线及感测线、及不同数目及不同配置的驱动电极及感测电极。
现在参照图5及图6,应理解,其中所示各该单一管线元件电路150仅为一管线式ADC中复数个类似管线元件电路其中之一,其中该等管线元件电路分别用以提供与来自复数个管线元件电路的一位以及对应位相对应的模拟电压及数字表示,且其中该等位形成一由管线式ADC输出的数字式字(digitalword)。此外,为避免使电路150的数字电路元件模糊不清,图5及图6中未显示与管线元件电路150相关联的数字电路的细节。举例而言,熟习管线式ADC架构的技术者可轻易及领会,于图5及图6中省略绘示由比较器170及比较器180提供至与其相关联的各个暂存器的标准数字输出。再者,图5及图6所示输入电压Vin是由一取样-保持电路(参见图8)所提供。然而,实际上,仅图8所示的第一管线元件电路150a的输入如此运作;其余的管线元件电路150b至150k则接收由前面的管线元件电路提供的输出作为其输入。
再次参照图5,管线式ADC155(参见图8)的单一管线元件电路150不具有电容器失配误差平均功能。标记为的一第一组开关(271、272及273)对应于信号采集的一第一时间段。在第一时间段中闭合的开关断开前,标记为
Figure BDA00001846129700102
的一第二组开关(281及282)在一第二时间段中闭合。该第一组开关及该第二组开关由非交迭控制信号所操作。图5的管线元件电路150中的信号转换可阐述如下:
(C1+C2)Vin-DVr=C2Vout            (1)
其中D为一与提供至比较器170及比较器180的输入信号值Vin所相对应的数字项,使得:
          D=1若Vin>Vr>-Vr
          D=0若Vr>Vin>-Vr
          D=-1若Vin<-Vr<Vr
理想地,在管线元件电路150中采用等值电容器C1(300)及电容器C2(310)。在实际应用中,电容器300及电容器310将由于工艺及遮罩变化而偏离理想值。因此,可藉由引入参数δ来描述电容器失配如下:
C 1 - C 2 C 2 = &delta; , C 1 C 2 = &delta; + 1 - - - ( 2 )
藉由加入二个开关,图6的管线元件电路150具有能够在二个时间段期间(即,在第二时间段及第四时间段期间)切换电容器300及电容器310的功能。在图6的管线元件电路150中,标记为
Figure BDA00001846129700105
的开关(281及282)形成一第二组开关280,第二组开关280容许电容器C2(310)连接至放大器240的负回馈环路、同时电容器C1(300)根据D值而连接至参考电压-Vr、0及Vr,该D值由多工器190根据比较器170及比较器180所检测到的信号值而选择。上述连接方式类似于上文关于图5的管线元件电路150的第二时间段所述的连接,而在图6的电路150中,该连接是由开关
Figure BDA00001846129700111
实施而非由图5的电路150中的开关
Figure BDA00001846129700112
实施。在一第四时间段中,标记为
Figure BDA00001846129700113
的开关(291及292)形成一第三组开关290,第三组开关290用以将电容器C1(300)连接至放大器240的负回馈环路、同时电容器C2(310)被连接至参考电压-Vr、0及Vr其中之一(其亦根据由多工器190根据比较器170及比较器180所检测到之信号值所选择之D值而定)。类似于上述用于阐述与开关
Figure BDA00001846129700114
相对应的第二时间段的信号转换的表示式(1),可导出对于第四时间段的一表示式如下:
V out = V in ( C 2 C 1 + 1 ) - DV r C 2 C 1 - - - ( 3 )
在表示式(2)中所引入的失配误差参数δ,在配置A及配置B中分别促成管线元件电路150的信号转换如下:
VoutA=Vin(δ+2)-DVr(δ+1)        (4A)
V outB = V in &delta; + 2 &delta; + 1 - DV r 1 ( &delta; + 1 ) - - - ( 4 B )
将表示式(4A)以递归方式应用至ADC155的连续管线元件电路中,并假设主要管线元件电路150的输出被作为输入提供至次要管线元件电路150,如此对于一12位管线式ADC155中一量测信号的一极性,所获得的各输入信号的排序如下:
NcountA=
D1111+1)(δ10+2)(δ9+2)...(δ2+2)+
D1010+1)(δ9+2)(δ8+2)...(δ2+2)+
D99+1)(δ8+2)(δ7+2)...(δ2+2)+
.............................
D33+1)(δ2+2)+                            (5A)
D22+1)+
D1
其中NcountA为一整数,该整数表示对应于D11至D1的位状态(1或0)的计数中的一数字转换码,且δi对应于第i管线元件电路中的电容器失配。类似地,方程式(4B)可用于导出数字转换码NcountB如下:
N countB =
D 11 1 ( &delta; 11 + 1 ) ( &delta; 10 + 2 ) ( &delta; 9 + 2 ) . . . ( &delta; 2 + 2 ) ( &delta; 10 + 1 ) ( &delta; 9 + 1 ) . . . ( &delta; 2 + 1 ) +
D 10 1 ( &delta; 10 + 1 ) ( &delta; 9 + 2 ) ( &delta; 8 + 2 ) . . . ( &delta; 2 + 2 ) ( &delta; 9 + 1 ) ( &delta; 8 + 1 ) . . . ( &delta; 2 + 1 ) +
D 9 1 ( &delta; 9 + 1 ) ( &delta; 8 + 2 ) ( &delta; 7 + 2 ) . . . ( &delta; 2 + 2 ) ( &delta; 8 + 1 ) ( &delta; 7 + 1 ) . . . ( &delta; 2 + 1 ) +
. . . . . . . . . . . . . . . . . . . . . . . . . .
D 3 1 ( &delta; 3 + 1 ) ( &delta; 2 + 2 ) ( &delta; 2 + 1 ) +
D 2 1 ( &delta; 2 + 1 ) +
D 1 - - - ( 5 B )
作为一例示性实例,假设一电容器失配误差仅存在于ADC155(参见图8)的主要有效位(major significant bit)管线元件电路150中,则如图7所示,由一MSB管线元件电路150的配置A及配置B提供的转换功能不同。使用一管线元件电路150的配置A及配置B所获得的数字转换码的平均,将获得具有一更小误差的已改良的转换功能。在对一状态Di求平均后,关于一二进制位加权系数wi的失配误差δi的残余值可藉由表示式(6)估算如下:
W i = 1 2 ( 1 + &delta; i + 1 1 + &delta; i ) 2 i - 1 &cong; 2 i - 1 ( 1 + &delta; i 2 2 ) - - - ( 6 )
表示式(6)显示当采用小的δi值(通常小于2%)时,误差将非常明显地减小。
继续参照图6及图8,现在更详细且透彻地阐释管线元件电路150及对应的ADC155的一实施例的运作。应理解,可在不背离本发明的精神及范围的条件下对管线元件电路150及ADC155进行许多润饰、排列及改变,且本文所述的具体实施方案并不旨在限制本文未明确阐述或显示的替代实施例。图6的管线元件电路150(或图8中的管线元件电路150a至150k其中的任一者)形成管线式ADC155的一部分,且在一实施例中,包含取样-保持电路157,取样-保持电路157用以在其一输出端子处提供输入电压Vin。第一比较器170包含一第一负输入端子及一第一正输入端子,该第一负输入端子可操作地连接至一第一参考电压Vr,该第一正输入端子可操作地连接至输入电压Vin。第一比较器170提供一第一比较器输出200。第二比较器180包含一第二负输入端子及一第二正输入端子,该第二负输入端子可操作地连接至第二参考电压-Vr,该第二正输入端子可操作地连接至输入电压Vin。第二比较器180提供一第二比较器输出210。
如图6所示,多工器190用以接收第一比较器输出200、第二比较器输出210、第一参考电压Vr、第二参考电压-Vr、以及地电位作为其输入。多工器190提供多工器输出220,多工器输出220代表第一参考电压Vr、第二参考电压-Vr、以及地电位其中之一。应注意,根据某些实施例,多工器输出220可经换算,或其极性可相对于向其提供的各种输入而改变。多工器输出220基于由第一比较器输出200及第二比较器输出210向其提供的输出,第一比较器输出200及第二比较器输出210又基于提供至比较器170及比较器180的输入。图6的放大器电路230用以接收输入电压Vin及多工器输出220作为其输入。放大器电路230包含放大器240,放大器240具有一放大器输出Vout以及一正放大器输入及一负放大器输入,其中该正放大器输入连接至地电位。放大器电路230更包含:一第一组开关270(对应于第一时间段、控制信号
Figure BDA00001846129700131
以及开关271、开关272及开关273)、一第二组开关280(对应于第二时间段、控制信号
Figure BDA00001846129700132
以及开关281及开关282)、以及一第三组开关290(对应于第三时间段,控制信号
Figure BDA00001846129700133
以及开关291及开关292)。如图6所示,放大器电路230更包含一第一电容C1(或300)及一第二电容C2(或310)。
在一第一时间段期间,第一组开关270闭合,第二组开关280及第三组开关290断开,第一电容器C1与第二电容器C2呈现并联排列,且电容器C1及电容器C2经由第一组开关270被输入电压Vin充电。
在一第二时间段期间,第一电容器C1及第二电容器C2呈现串联排列,第二组开关280闭合,第一组开关270及第三组开关290断开,且第二电容器C2经由第二组开关280而置于放大器240的负放大器输入与放大器输出间之一负回馈环路中。同样在第二时间段期间,第一电容器C1被多工器输出220充电,且在放大器240的输出处提供代表第二电容C2的一第二输出电压VoutB
在一第三时间段期间,第一组开关270闭合,第二组开关280及第三组开关290断开,第一电容器C1与第二电容器C2呈现并联排列,且第一电容器C1与第二电容器C2经由第一组开关270再次被与第一时间段中相同之输入电压Vin充电。
在一第四时间段期间,第一电容器C1与第二电容器C2呈现串联排列,第三组开关290闭合,第一组开关270及第二组开关280断开,且第一电容器C1经由第三组开关290而置于放大器240的负回馈环路中。同样在第四时间段中,第二电容器C2被多工器输出220充电,且在放大器240的输出处提供代表第一电容C1的一第一输出电压VoutA。
继续参照图6,在管线元件电路150中,第一组开关270分别包含一第一开关271、一第二开关272及一第三开关273,第二组开关280分别包含一第四开关281及一第五开关282,且第三组开关290分别包含一第六开关291及一第七开关292。
在图6的管线元件电路150中,在第一时间段期间,第一电容器C1经由位于第一电容器C1的高压侧上的第一开关271及经由位于第一电容器C1的低压侧上的第三开关273连接至地电位而被输入电压Vin充电至一第一电荷。第二电容器C2经由位于第二电容器C2之高压侧上之第二开关272及经由位于第二电容器C2之低压侧上之第三开关273连接至地电位而被输入电压Vin充电至一第二电荷。
在图6的管线元件电路150中,在第三时间段期间,第一开关271、第二开关272及第三开关273闭合,第四开关281、第五开关282、第六开关291及第七开关292断开,第一电容器C1经由位于第一电容器C1之高压侧上之第一开关271及经由位于第一电容器C1之低压侧上之第三开关273连接至地电位而被输入电压Vin充电至一第一电荷。第二电容器C2经由位于第二电容器C2之高压侧上之第二开关272及经由位于第二电容器C2之低压侧上之第三开关273连接至地电位而被输入电压Vin充电至一第二电荷。
同样在图6的管线元件电路150中,在第二时间段期间,第一开关271、第二开关272、第三开关273、第六开关291及第七开关292断开,第四开关281及第五开关282闭合,第二电容器C2经由第五开关282而被设置于放大器240之负放大器输入与放大器输出Vout之间的负回馈环路中。第一电容器C1经由第四开关281而被多工器输出220充电。
继续参照图6的管线元件电路150,在第四时间段期间,第一开关271、第二开关272、第三开关273、第四开关281及第五开关282断开,第六开关291及第七开关292闭合,且第一电容器C1经由第七开关292而被设置于放大器240的负回馈环路中。第二电容器C2经由第六开关291而被多工器输出220充电。
如图8所示,电容器失配误差补偿电路320用以接收并处理第一输出电压VoutA及第二输出电压VoutB的数字表示(digital representation),并据此提供一输出350,输出350至少实质上减少出现于第一电容C1与第二电容C2之间的电容器失配误差。在某些实施例中,电容器失配误差补偿电路320更包含一第一输出暂存器330及一第二输出暂存器340,第一输出暂存器330及第二输出暂存器340用以接收第一输出电压VoutA及第二输出电压VoutB的数字表示作为其输入。同样在某些实施例中,电容器失配误差补偿电路320可更包含一平均电路350,平均电路350用以自第一暂存器330及第二暂存器340接收第一输出电压VoutA及第二输出电压VoutB的数字表示,其中平均电路为一数字平均电路或任何其他适宜的“平均电路”。此外,如图6所示,第一输出电压VoutA及第二输出电压VoutB可经一换算因数D换算。
现在参照图8,在某些实施例中,管线式ADC155的有效位数(effectivenumber of bits;ENOB)可根据当前的具体应用而至少为10、12、14或任何其他适宜的位数。
图6及图8所示电路的优点其中之一在于,可采用更小的电容器来形成ADC155。举例而言,第一电容C1及第二电容C2可小于或等于约1,000毫微微法拉(femtofarads)、小于或等于约500毫微微法拉、小于或等于约200毫微微法拉、或小于或等于约100毫微微法拉。在一实施例中,管线元件电路150形成一CMOS电路的一部分,且输入电压Vin在被提供至输入信号端子之前已经过滤波。管线元件电路150可整合至一触控荧幕装置(例如,一电容式触控荧幕装置)、一触控面板装置(例如,一电容式触控面板或触控板装置)、一行动电话或一成像装置之一部分之一集成电路、一触控荧幕控制器、或一触控板控制器中。此外,应注意,图8之取样-保持电路157用以在第四时间段期间提供一已更新之输入电压。
在其他实施例中,且继续参照图6及图8,提供一种用于减少管线式模拟-数字转换器(ADC)155中的电容器失配误差的方法,其中该方法包含以下步骤。在管线元件电路150中,在一第一时间段期间,呈送由取样-保持电路157提供的输入电压Vin至在管线电路150中并联排列的第一电容器C1及一第二电容器C2。在一第二时间段期间,在管线元件电路150中放大并储存对应于一第二电荷的一第二电压,该第二电荷与第二电容相关联。在一第三时间段期间,将在第一时间段期间提供至第一电容器C1及第二电容器C2之同一输入电压Vin再次提供至在管线元件电路150中并联排列之第一电容器C1及第二电容器C2。在一第四时间段期间,在管线元件电路150中放大并储存对应于一第一电荷的一第一电压。在第一时间段、第二时间段、第三时间段及第四时间段完成之后,将第一电压及第二电压的数字表示以及由ADC中其他管线元件电路提供的第一电压及第二电压的对应数字表示进行平均,以产生一经数字电容器失配误差校正的输出Dout(参见图8)。
此外,在某些实施例中,该方法可更包含:藉由数字滤波电路350(参见图8)而将第一电压及第二电压的数字表示滤波,数字滤波电路350可为一数字平均电路或其他数据处理电路。该方法亦可包含:在第一时间段及第三时间段期间,将第一电容C1与第二电容C2配置成呈现并联排列,而在第二时间段及第四时间段期间,则将第一电容C1与第二电容C2配置成呈现串联排列。
再次参照图8,其显示管线式ADC电路架构之一实施例,该管线式ADC架构以数字方式对管线式ADC155中的管线元件电路150a至150k的电容器失配误差进行平均。图8的管线式ADC155包含取样-保持(S/H)电路157,取样-保持电路157以管线式ADC155的数据采集速率运作。所有管线元件电路150a至150k皆采用图6所示类型的电路,故容许采用对于上述第二时间段及第四时间段的配置A及配置B。图9(a)显示对应于图8之管线式ADC电路运作的控制信号协定。如图9(a)所示,所采样数据的每一部分被列举为DAT1、DAT2、DAT3、…,并在上文结合图6所述的第一时间段及第三时间段期间,被提供至各该管线元件电路150两次。在配置A及配置B中使用管线元件电路150a至150k来获得输入数据的每一部分或片段之ADC转换码,并使其分别传送至图8所示之输出暂存器A(330)与输出暂存器B(340)。应注意,熟习此项技术者将立即理解并领会,图8中未显示为收集每一量测输入信号的数字数据以及自管线元件电路150a至150k提供至ADC输入的数字数据所需的移位暂存器。在最终数字转换码被提供至ADC输出之前,计算并导出各管线元件电路150之输出暂存器A及输出暂存器B之数字平均值,其中在管线元件电路150a至150k中对应于电容器300及电容器310之电容器失配误差明显减少。
图9(b)显示图6及图8之电路在根据图9(a)的命令信号协定运作时所对应之数据、时钟及管线元件构造。交错之时钟信号(图8中自时钟1F,S或360导出的时钟2F或370、以及时钟A及时钟B)容许经由管线式ADC155的管线元件电路150a至150k的对应端子以一采样频率F来实施上文结合图6所述的第二时间段及第三时间段(
Figure BDA00001846129700181
Figure BDA00001846129700182
)、同时各该管线元件电路150a至150k以一采样频率2F运作。图6及图8的电路容许电容器的尺寸减小10倍或更多,同时亦在一12位或更多位之管线式ADC中明显减少电容器失配误差,以下将更详细说明之。图6及图8之电路亦容许放大器电路230以低功耗且低热耗散而运作。
基于失配电容器统计量的制造厂数据(foundry data)将被用以模拟于使用上述数字失配平均电路及技术时,电容器失配对于ADC解析度及效率之电路效能。制造厂数据是基于在一引导管线式ADC设计中通常所用类型及布局之电容器之所量测失配,该引导管线式ADC设计之特征为12位ENOB运作。电容器失配误差主要为电容器尺寸之一函数,且对应于制造厂测试结构数据。图10中显示一引导ADC设计之不同管线元件电路之电容器值之标准偏差。
图11根据转换功能之一线性拟合而显示传统管线式ADC转换功能的模拟绝对偏差的长条图,其中该模拟使用1,000个蒙特卡罗(Monte Carlo)事件而获得,该等蒙特卡罗事件采用管线式ADC转换功能之一模型,其中管线元件电路电容器失配统计量由图10所示之引导ADC设计参数提供。
图12显示类似于图11之长条图,其为采用一传统设计之管线式ADC而获得之长条图,其中管线元件电路150a至150k之所有电容器300及电容器310皆被减小至图10所示之最小电容(例如,100.8毫微微法拉)。图12的结果显示在一采用小电容器之管线式ADC设计中,ADC转换误差明显增加。
一种构建上述数字平均电路之管线式ADC电路155,会使由电容器失配误差引起之转换误差明显减少。此可由图13之模拟结果显示,其中所有管线元件电路150a至150k中之电容器300及电容器310被指定为100.8毫微微法拉电容器。
图14及图15显示相较于一具有小(100.8毫微微法拉)电容器的传统管线式ADC设计,藉由使用上述管线式ADC数字平均电路及技术,在校准之前及之后所获得的差分非线性(DNL)的改良。在图14及图15中,DNL以ADC转换功能步阶相对于理想正规化步长(step size)之偏差来表示。如图所示,一旦使用相同之管线元件电路电容器300及310来构建图6及图8之平均ADC电路,出现于一传统ADC设计中之遗漏码(其由大于1之DNL绝对值所表示)将完全消失,同时整体之DNL将明显减小。
上述实施例应被视为本发明之实例,而非对本发明范围之限制。除本发明之上述实施例外,在阅读本详细说明及附图后将知,本发明亦存在其他实施例。因此,本文未明确阐述之本发明上述实施例之许多组合、排列、改变及润饰将仍然归属于本发明范围内。

Claims (29)

1.一种位于一管线式模拟-数字转换器中的管线元件电路,其特征在于,所述管线元件电路包含:
一取样-保持电路,用以在一输出端子处提供一输入电压;
一第一比较器,包含一第一负输入端子及一第一正输入端子,所述第一负输入端子可操作地连接至一第一参考电压,所述第一正输入端子可操作地连接至所述输入电压,所述第一比较器提供一第一比较器输出;
一第二比较器,包含一第二负输入端子及一第二正输入端子,所述第二负输入端子可操作地连接至一第二参考电压,所述第二正输入端子可操作地连接至所述输入电压,所述第二比较器提供一第二比较器输出;
一多工器,用以接收所述第一比较器输出、所述第二比较器输出、所述第一参考电压、所述第二参考电压、以及地电位作为其输入,所述多工器根据所述第一比较器输出及所述第二比较器输出提供一多工器输出,所述多工器输出代表所述第一参考电压、所述第二参考电压、以及地电位其中之一;以及
一放大器电路,用以接收所述输入电压及所述多工器输出作为其输入,所述放大器电路包含一放大器、一第一组开关、一第二组开关、一第三组开关、一第一电容及一第二电容,所述放大器具有一放大器输出以及一正放大器输入及一负放大器输入,所述正放大器输入连接至地电位;
其中在一第一时间段期间,所述第一组开关闭合,所述第二组开关及所述第三组开关断开,所述第一电容器与所述第二电容器呈现并联排列,所述第一电容器与所述第二电容器经由所述第一组开关被所述输入电压充电;
在一第二时间段期间,所述第二组开关闭合,所述第一组开关及所述第三组开关断开,所述第一电容器与所述第二电容器呈现串联排列,所述第二电容器经由所述第二组开关被设置于所述负放大器输入与所述放大器输出之间的一负回馈环路中,所述第一电容器被所述多工器输出充电,所述放大器输出提供代表所述第二电容的一第二输出电压;
在一第三时间段期间,所述第一组开关闭合,所述第二组开关及所述第三组开关断开,所述第一电容器与所述第二电容器呈现并联排列,所述第一电容器与所述第二电容器经由所述第一组开关再次被与所述第一时间段中相同的所述输入电压充电;
在一第四时间段期间,所述第三组开关闭合,所述第一组开关及所述第二组开关断开,所述第一电容器与所述第二电容器呈现串联排列,所述第一电容器经由所述第三组开关被设置于所述负回馈环路中,所述第二电容器被所述多工器输出充电,所述放大器输出提供代表所述第一电容之一第一输出电压。
2.根据权利要求1所述的管线元件电路,其特征在于,所述第一组开关包含一第一开关、一第二开关及一第三开关,所述第二组开关包含一第四开关及一第五开关,且所述第三组开关包含一第六开关及一第七开关。
3.根据权利要求2所述的管线元件电路,其特征在于,所述第一时间段期间,所述第一开关、所述第二开关及所述第三开关闭合,所述第四开关、所述第五开关、所述第六开关及所述第七开关断开,所述第一电容器经由位于所述第一电容器的一高压侧上的所述第一开关及经由位于所述第一电容器的一低压侧上的所述第三开关连接至地电位而被所述输入电压充电至一第一电荷,所述第二电容器经由位于所述第二电容器的一高压侧上的所述第二开关及经由位于所述第二电容器的一低压侧上的所述第三开关连接至地电位而被所述输入电压充电至一第二电荷。
4.根据权利要求2所述的管线元件电路,其特征在于,在所述第三时间段期间,所述第一开关、所述第二开关及所述第三开关闭合,所述第四开关、所述第五开关、所述第六开关及所述第七开关断开,所述第一电容器经由位于所述第一电容器的一高压侧上的所述第一开关及经由位于所述第一电容器的一低压侧上的所述第三开关连接至地电位而被所述输入电压充电至一第一电荷,所述第二电容器经由位于所述第二电容器的一高压侧上的所述第二开关及经由所述第二电容器的一低压侧上的所述第三开关连接至地电位而被所述输入电压充电至一第二电荷。
5.根据权利要求2所述的管线元件电路,其特征在于,在所述第二时间段期间,所述第一开关、所述第二开关、所述第三开关、所述第六开关及所述第七开关断开,所述第四开关及所述第五开关闭合,所述第二电容器经由所述第五开关被设置于所述负回馈环路中,所述第一电容器经由所述第四开关被所述多工器输出充电。
6.根据权利要求2所述的管线元件电路,其特征在于,在所述第四时间段期间,所述第一开关、所述第二开关、所述第三开关、所述第四开关及所述第五开关断开,所述第六开关及所述第七开关闭合,所述第一电容器经由所述第七开关被设置于所述负回馈环路中,所述第二电容器经由所述第六开关被所述多工器输出充电。
7.根据权利要求1所述的管线元件电路,其特征在于,一电容器失配误差补偿电路用以接收并处理所述第一输出电压及所述第二输出电压的数字表示,并据此提供一输出,所述输出至少实质上减少出现于所述第一电容与所述第二电容之间的电容器失配误差。
8.根据权利要求7所述的管线元件电路,其特征在于,所述电容器失配误差补偿电路更包含一第一输出暂存器及一第二输出暂存器,所述第一输出暂存器及所述第二输出暂存器用以接收所述第一输出电压及所述第二输出电压的该等数字表示作为其输入。
9.根据权利要求8所述的管线元件电路,其特征在于,所述电容器失配误差补偿电路更包含一平均电路,所述平均电路用以自所述第一输出暂存器及所述第二输出暂存器接收所述第一输出电压及所述第二输出电压之该等数字表示。
10.根据权利要求9所述的管线元件电路,其特征在于,所述平均电路为一数字平均电路。
11.根据权利要求1所述的管线元件电路,其特征在于,所述第一输出电压及所述第二输出电压经由一换算因数D而换算。
12.根据权利要求11所述的管线元件电路,其特征在于,所述输入电压为Vin,所述第一参考电压为Vr,且所述第二参考电压为-Vr
13.根据权利要求12所述的管线元件电路,其特征在于,当Vin>Vr>-Vr时D=1,当Vr>Vin>-Vr时D=0,且当Vin<-Vr<Vr时D=-1。
14.根据权利要求11所述的管线元件电路,其特征在于,D对应于所述管线式模拟-数字转换器中复数个位其中的一位。
15.根据权利要求14所述的管线元件电路,其特征在于,所述管线元件电路被整合至所述管线式模拟-数字转换器。
16.根据权利要求15所述的管线元件电路,其特征在于,所述管线式模拟-数字转换器的有效位数至少为10。
17.根据权利要求1所述的管线元件电路,其特征在于,所述第一电容及所述第二电容小于或等于1,000毫微微法拉。
18.根据权利要求1所述的管线元件电路,其特征在于,所述第一电容及所述第二电容小于或等于100毫微微法拉。
19.根据权利要求1所述的管线元件电路,其特征在于,所述管线元件电路形成一CMOS集成电路的一部分。
20.根据权利要求1所述的管线元件电路,其特征在于,所述管线元件电路形成一触控荧幕或触控板控制器的一部分。
21.根据权利要求1所述的管线元件电路,其特征在于,所述输入电压在被提供至一输入信号端子之前已经过滤波。
22.根据权利要求1所述的管线元件电路,其特征在于,所述管线元件电路被整合至一触控荧幕装置、一触控板装置、一行动电话及一成像装置其中之一。
23.根据权利要求1所述的管线元件电路,其特征在于,所述管线元件电路用以提供对应于来自复数个管线元件电路的一位的模拟电压及数字表示以及对应位,该等位形成一由所述管线式模拟-数字转换器输出的数字式字。
24.根据权利要求1所述的管线元件电路,其特征在于,所述取样-保持电路在所述第四时间段期间提供一已更新输入电压。
25.一种于一管线式模拟-数字转换器中减少电容器失配误差的方法,其特征在于,所述方法包含:
在一管线元件电路中,且在一第一时间段期间,呈送由一取样-保持电路提供的一输入电压至在所述管线元件电路中并联排列的一第一电容器及一第二电容器;
在所述管线元件电路中,且在一第二时间段期间,放大对应于一第二电荷的一第二电压且储存所述第二电压,所述第二电荷与所述第二电容相关联;
在所述管线元件电路中,且在一第三时间段期间,再次将所述第一时间段的所述同一输入电压呈送至并联排列的所述第一电容器及所述第二电容器;
在所述管线元件电路中,且在一第四时间段期间,放大对应于一第一电荷的一第一电压且储存所述第一电压;以及
在完成所述第一时间段、所述第二时间段、所述第三时间段及所述第四时间段之后,经由对应暂存器将所述第一电压及所述第二电压的数字表示发送至一数字平均电路以进行后续平均,并据此提供一经数字电容器失配误差校正的输出。
26.根据权利要求25所述的方法,其特征在于,所述第一电压及所述第二电压的数字表示经由一数字滤波电路而被滤波。
27.根据权利要求26所述的方法,其特征在于,所述数字滤波电路为一数字平均电路。
28.根据权利要求25所述的方法,其特征在于,所述管线元件电路更包含:一第一比较器,包含一第一负输入端子及一第一正输入端子,所述第一负输入端子可操作地连接至一第一参考电压,所述第一正输入端子用以接收所述输入电压,所述第一比较器提供一第一比较器输出;一第二比较器,包含一第二负输入端子及一第二正输入端子,所述第二负输入端子可操作地连接至一第二参考电压,所述第二正输入端子用以接收所述输入电压,所述第二比较器提供一第二比较器输出;一多工器,用以接收所述第一比较器输出、所述第二比较器输出、所述第一参考电压、所述第二参考电压、以及地电位作为其输入,所述多工器根据所述第一比较器输出及所述第二比较器输出提供一多工器输出,所述多工器输出代表所述第一参考电压、所述第二参考电压、以及地电位其中之一;以及一放大器电路,用以接收所述输入电压及所述多工器输出作为其输入,所述放大器电路包含一放大器、一第一组开关、一第二组开关及一第三组开关,所述放大器具有一放大器输出以及一正放大器输入及一负放大器输入,所述正放大器输入连接至地电位。
29.根据权利要求25所述的方法,其特征在于,在所述第一时间段及所述第三时间段期间,所述第一电容与所述第二电容呈现并联排列,而在所述第二时间段及所述第四时间段期间,所述第一电容与所述第二电容呈现串联排列。
CN201210226666.XA 2011-08-11 2012-07-03 管线式adc的管线组件电路及减少电容器失配误差的方法 Expired - Fee Related CN102931992B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/208,318 2011-08-11
US13/208,318 US8405537B2 (en) 2011-08-11 2011-08-11 Systems, devices and methods for capacitor mismatch error averaging in pipeline analog-to-digital converters

Publications (2)

Publication Number Publication Date
CN102931992A true CN102931992A (zh) 2013-02-13
CN102931992B CN102931992B (zh) 2015-08-05

Family

ID=47646719

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210226666.XA Expired - Fee Related CN102931992B (zh) 2011-08-11 2012-07-03 管线式adc的管线组件电路及减少电容器失配误差的方法

Country Status (3)

Country Link
US (1) US8405537B2 (zh)
CN (1) CN102931992B (zh)
TW (1) TWI473435B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103490782A (zh) * 2013-08-29 2014-01-01 苏州苏尔达信息科技有限公司 一种比较器电容平均电路
CN105991135A (zh) * 2015-03-16 2016-10-05 株式会社东芝 放大电路及管线型模拟/数字变换电路

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101881682B1 (ko) * 2014-10-13 2018-07-24 선전 구딕스 테크놀로지 컴퍼니, 리미티드 지문 인식용 센서 픽셀 회로
US10203807B2 (en) 2017-03-20 2019-02-12 Microsoft Technology Licensing, Llc Method for sampling output from a grid based digitizer sensor
CN106921392B (zh) * 2017-03-29 2018-09-25 中国电子科技集团公司第二十四研究所 具有输入信号预比较与电荷重分配的流水线模数转换器
US10256834B1 (en) * 2017-09-29 2019-04-09 Taiwan Semiconductor Manufacturing Company, Ltd. Analog to digital converter
DE102020204915A1 (de) 2020-04-17 2021-10-21 Zf Friedrichshafen Ag Aktuator für Luftfahrtanwendungen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222230A (zh) * 2008-01-24 2008-07-16 上海萌芯电子科技有限公司 可校准电容失配和有限增益误差的流水线型模数转换器
CN101854174A (zh) * 2010-05-18 2010-10-06 上海萌芯电子科技有限公司 一种流水线型模数转换器及其子转换级电路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5710563A (en) * 1997-01-09 1998-01-20 National Semiconductor Corporation Pipeline analog to digital converter architecture with reduced mismatch error
EP0930715A3 (en) 1998-01-15 2001-01-17 Texas Instruments Incorporated Digital self-calibration scheme for a pipelined a/d converter
US6184809B1 (en) 1998-08-19 2001-02-06 Texas Instruments Incorporated User transparent self-calibration technique for pipelined ADC architecture
AU2001243296A1 (en) 2000-02-22 2001-09-17 The Regents Of The University Of California Digital cancellation of d/a converter noise in pipelined a/d converters
US6617992B2 (en) 2001-08-15 2003-09-09 National Semiconductor Corporation Capacitor mismatch independent gain stage for differential pipeline analog to digital converters
JP2006086981A (ja) 2004-09-17 2006-03-30 Fujitsu Ltd スイッチトキャパシタ回路およびパイプラインa/d変換回路
US7280064B2 (en) * 2005-09-08 2007-10-09 Realtek Semiconductor Corp. Pipeline ADC with minimum overhead digital error correction
US7852254B1 (en) * 2009-06-23 2010-12-14 Mstar Semiconductor, Inc. 1-bit cell circuit used in a pipelined analog to digital converter
US7965217B2 (en) * 2009-10-13 2011-06-21 Analog Devices, Inc. Apparatus and method for pipelined analog to digital conversion
CN101777917B (zh) 2010-01-14 2013-04-03 上海迦美信芯通讯技术有限公司 一种流水线模数转换器及其电容失配的快速校准方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222230A (zh) * 2008-01-24 2008-07-16 上海萌芯电子科技有限公司 可校准电容失配和有限增益误差的流水线型模数转换器
CN101854174A (zh) * 2010-05-18 2010-10-06 上海萌芯电子科技有限公司 一种流水线型模数转换器及其子转换级电路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103490782A (zh) * 2013-08-29 2014-01-01 苏州苏尔达信息科技有限公司 一种比较器电容平均电路
CN103490782B (zh) * 2013-08-29 2017-01-18 苏州苏尔达信息科技有限公司 一种比较器电容平均电路
CN105991135A (zh) * 2015-03-16 2016-10-05 株式会社东芝 放大电路及管线型模拟/数字变换电路

Also Published As

Publication number Publication date
TWI473435B (zh) 2015-02-11
US8405537B2 (en) 2013-03-26
TW201308911A (zh) 2013-02-16
US20130038478A1 (en) 2013-02-14
CN102931992B (zh) 2015-08-05

Similar Documents

Publication Publication Date Title
US11625124B2 (en) Ungrounded user signal compensation for pixelated self-capacitance touch sensor panel
CN102931992B (zh) 管线式adc的管线组件电路及减少电容器失配误差的方法
US9619073B2 (en) Touch screen driver including out-of-phase driving signals simultaneously supplied to adjacent TX lines for reducing noise from a display panel, and method for driving the same
US10558302B2 (en) Coded integration of a self-capacitance array
CN102486709B (zh) 不用面板重置的电容性触摸屏的信号获取
US9013442B2 (en) SAR ADC with dynamic input scaling and offset adjustment
CN103809807B (zh) 显示装置及其驱动方法
US10775929B2 (en) Suppressing noise in touch panels using a shield layer
TWI381302B (zh) 影像顯示系統、電容觸控面板及其電容量測裝置與方法
US9146650B2 (en) High resolution capacitance to code converter
CN102789344A (zh) 电容式触控屏幕或触控面板系统及其操作方法
KR20140030170A (ko) 정전용량 감지 어레이용 능동 적분기
CN103649888A (zh) 线性器件值估计方法、电容检测方法、集成电路、触摸传感器系统以及电子设备
CN102591507B (zh) 触控感测装置
US8441378B2 (en) Capacitor mismatch error correction in pipeline analog-to-digital converters
KR20130058512A (ko) 터치 스크린 구동 장치 및 방법
US20210255727A1 (en) Sensor diagnostics for in-cell touch screen controllers
CN102103427B (zh) 触控装置及驱动方法
Lee et al. In-cell capacitive touch panel structures and their readout circuits
KR101745428B1 (ko) 터치감지기 및 그 구동 방법과 그를 이용한 디스플레이장치
CN102970039B (zh) 管线式模拟数字转换器及其方法
KR101848487B1 (ko) 터치 스크린을 포함한 표시장치와 그의 구동 방법
KR20160150571A (ko) 터치 스크린 컨트롤러, 터치 센싱 장치, 및 터치 센싱 방법
CN110554796A (zh) 应用于触控辨识装置的感测模块及其方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150805

Termination date: 20210703

CF01 Termination of patent right due to non-payment of annual fee