CN102891009A - 与咪唑嗡盐化学结合的奈米颗粒,其制造方法及包含其的奈米胶型电解质 - Google Patents

与咪唑嗡盐化学结合的奈米颗粒,其制造方法及包含其的奈米胶型电解质 Download PDF

Info

Publication number
CN102891009A
CN102891009A CN2012102508438A CN201210250843A CN102891009A CN 102891009 A CN102891009 A CN 102891009A CN 2012102508438 A CN2012102508438 A CN 2012102508438A CN 201210250843 A CN201210250843 A CN 201210250843A CN 102891009 A CN102891009 A CN 102891009A
Authority
CN
China
Prior art keywords
rice
rice grain
imidazoles
electrolyte
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012102508438A
Other languages
English (en)
Other versions
CN102891009B (zh
Inventor
韩治焕
赵泰衍
裵祥训
高官右
朴宰亨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOREA ENERGY TECHNOLOGY INST
Korea Institute of Energy Research KIER
Original Assignee
KOREA ENERGY TECHNOLOGY INST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOREA ENERGY TECHNOLOGY INST filed Critical KOREA ENERGY TECHNOLOGY INST
Publication of CN102891009A publication Critical patent/CN102891009A/zh
Application granted granted Critical
Publication of CN102891009B publication Critical patent/CN102891009B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3063Treatment with low-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C08L101/08Carboxyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3669Treatment with low-molecular organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2013Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte the electrolyte comprising ionic liquids, e.g. alkyl imidazolium iodide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y99/00Subject matter not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及与咪唑嗡盐化学结合的奈米颗粒,其制造方法及包含其的染料敏化太阳能电池用奈米胶型电解质。本发明提供同时提高染料敏化太阳能电池的长效稳定度和光电转换效率,并且降低离子性液体的使用浓度,节省生产成本的染料敏化太阳能电池用奈米胶型电解质。活用其于染料敏化太阳能电池,可提供具有优秀的经济效率性、稳定性及光电转换效率的染料敏化太阳能电池。

Description

与咪唑嗡盐化学结合的奈米颗粒,其制造方法及包含其的奈米胶型电解质
技术领域
本发明涉及包含奈米颗粒的染料敏化太阳能电池用奈米胶型电解质,更具体地说,与咪唑嗡盐化学结合的奈米颗粒,其制造方法及包含其的染料敏化太阳能电池用奈米胶型电解质。 
背景技术
近年来,由于严重的环境污染问题和化石能源枯竭的危机,对开发下一代绿色能源的重要性逐渐增大。其中,太阳能电池是以直接从太阳能转换成电能的装置,是污染少,资源无限,具有半永久性寿命,寄望解决未来能源问题的能源。此类太阳能电池根据物质大致分类成无机物太阳能电池(inorganic solar cell),染料敏化太阳能电池(dye-sensitized solar cell)及有机物太阳能电池(organic solar cell)。无机物太阳能电池主要使用单结晶矽,这种单结晶矽系太阳能电池具有可制造成薄膜型太阳能电池的优点,但其具有成本高,稳定性低的问题。 
1991年由瑞士人Gratzel等开发的染料敏化太阳能电池是利用吸收可见光而产生电子电洞对(electron-hole pair)的光敏性染料分子和传达产生电子的奈米结晶二氧化钛颗粒所形成的氧化物半导体电极的光电化学太阳能电池,亦称为色素增减型太阳能电池或湿式太阳能电池。像这样的太阳能电池相较于矽型太阳能电池而言,制造工艺简单,制造成本低廉,并具有实际上可利用的光电转换效率,对其正进行着许多研究。 
一般染料敏化太阳能电池使用液体电解质,对电池模组的稳定性问题正在引起关注,尤其难以密封液体电解质,由外部温度的上升而具有电解质挥发或漏液的问题,长时间使用时发生电气化学上缺乏稳定性问题等。 
为了解决所述问题,最近替代液体电解质开发无机固体电解质、高分子固体电解质等,但利用此类固体状电解质时,电子及离子的介面传达特性不好,相较于液体电解质其具有降低光电转换效率的问题。另外,为了提高此类非液体状电解质的光电转换效率,正活跃地进行着通过利用离子性液体制造胶型电解质等开发“quasi-solid state”或“solid-state”染料敏化太阳能电池的研究。之前发表的论文[Journal of Fluorine Chemistry Volume 125(August 2004), Pages 1241-1245]中曾经发表关于混合奈米二氧化矽物质和液体电解质的胶型电解质的研究。所述论文揭示的混合奈米二氧化矽物质和液体电解质而制造的胶型电解质,因为奈米二氧化矽和液体电解质之间的亲和力不好,具有在高温下液体电解质容易挥发的缺点,并且仍然含有溶剂而对提高长效稳定度总有限制。 
本发明人等为了解决所述问题经不断的努力研究,其结果混合与咪唑嗡盐化学结合的奈米颗粒和离子性液体状电解质,而制造奈米型电解质时可提高染料敏化太阳能电池的长效稳定度,同时又可提高光电转换效率,因此完成了本发明。 
现有技术文献
专利文献
(专利文献1) 1.美国公开专利公报第4,927,721号
(专利文献2) 2.韩国公开专利第2001-0030478号
非专利文献
(非专利文献1) Journal of Fluorine Chemistry Volume 125(August 2004) Pages 1241-1245。
发明内容
发明需要解决的技术课题
本发明的目的在提供可改善使用液体电解质的染料敏化太阳能电池的低长效稳定度,同时比使用现有液体电解质的染料敏化太阳能电池更能提高光电转换效率的,染料敏化太阳能电池用奈米胶型电解质,其制造方法及利用其的染料敏化太阳能电池。
解决课题的技术方案
为了达到上述目的,本发明提供以下述化学式1表示的与咪唑嗡盐化学结合的奈米颗粒;及包含离子性液体状电解质的染料敏化太阳能电池用奈米胶型电解质。
[化学式1] 
(式中,P是奈米颗粒)
根据本发明的奈米颗粒是奈米二氧化矽(SiO2)、奈米二氧化钛(TiO2)或奈米二氧化炀(SnO2),较佳是奈米二氧化矽。
根据本发明的离子性液体状电解质可使用包含离子性液体及氧化-还原衍生物的电解质。 
所述离子性液体具有能使染料敏化太阳能电池内氧化还原对容易移动的作用。对离子性液体而言可无限制地使用在本技术领域中公知的所有物质,但较佳是从由n-甲基咪唑碘、n-乙基咪唑碘、乙基-甲基咪唑碘、1-苯甲基-2-甲基咪唑碘、1-乙基-3-甲基咪唑碘、1-丁基-3-甲基咪唑碘、碘化甲基比啶、碘化乙基比啶、碘化丙基比啶、碘化甲基乙基比咯烷、碘化二甲基比咯烷、1-乙基-3-甲基咪唑二氰胺盐、硫氰酸胍形成的群中可选择1种以上混合制造。 
所述氧化-还原衍生物可无限制地使用在本技术领域中公知的所有物质,但较佳可使用碘化锂、碘化钠、碘化钾、溴化锂、溴化钠、溴化钾、四级铵盐、咪唑嗡盐、比啶盐等。 
一般使用的离子性液体纯度低价格高是提高电解质生产成本的主要原因。本发明使以化学性包含所述化学式1的咪唑嗡盐的奈米颗粒包含于染料敏化太阳能电池用奈米胶型电解质,结果结合于奈米颗粒的咪唑嗡盐能替代部分离子性液体的机能,可降低附加使用的离子性液体的浓度,因此可降低制造整个电解质的总生产成本。 
包含阴极系电极、阳极系电极及电解质的染料敏化太阳能电池的制造方法早已为人所知,本说明书省略其仔细的讨论。只是,使用本发明的染料敏化太阳能电池用奈米胶型电解质时,在阴极系电极的上端以网版印刷法等可印刷形成电解质层。 
另外,本发明提供以下述化学式1表示的与咪唑嗡盐化学结合的奈米颗粒: 
[化学式1]
Figure 993934DEST_PATH_GDA00002255282700031
式中,P是奈米颗粒。
本发明的与咪唑嗡盐化学结合的奈米颗粒是固体状态,由单纯洗涤可精制,可容易合成。根据本发明的奈米颗粒是二氧化矽(SiO2)、奈米二氧化钛(TiO2)或奈米二氧化炀(SnO2),较佳是奈米二氧化矽。 
另外,本发明提供以下述化学式1表示的与咪唑嗡盐化学结合的奈米颗粒的制造方法,其包含(S1)使奈米颗粒和3-(甲基丙烯酸氧)丙基三甲氧基矽烷反应制造以3-甘油酸丙烷三甲氧矽烷表面改质的奈米颗粒的步骤; (S2)以3-甘油酸丙烷三甲氧矽烷表面改质的奈米颗粒和咪唑反应的步骤;及(S3)S2步骤中获得的化合物与碘甲烷反应的步骤: 
[化学式1]
式中,P是奈米颗粒。
S1步骤中使奈米颗粒和3-(甲基丙烯酸氧)丙基三甲氧基矽烷反应制造以3-甘油酸丙烷三甲氧矽烷表面改质的奈米颗粒。 
根据本发明的一实施形态中,本发明的S1步骤是在有机溶剂分散奈米颗粒的溶液中添加3-(甲基丙烯酸氧)丙基三甲氧基矽烷,在常温下搅拌后可执行回流。洗涤反应后获得的物质而获得以3-甘油酸丙烷三甲氧矽烷表面改质的胶型奈米颗粒。本步骤的奈米颗粒可根据公知的方法直接合成或使用市售物质,对其并无特别的限制。另外,有机溶剂只要能分散奈米颗粒就可,并无特别的限制,但较佳是芳香族碳氢化合物系有机溶剂,尤其较佳使用甲苯。 
接着,S2步骤中可使以3-甘油酸丙烷三甲氧矽烷表面改质的奈米颗粒和咪唑反应。本步骤中形成如下述化学式2表示的与咪唑结合的奈米颗粒。 
[化学式1] 
Figure 773671DEST_PATH_GDA00002255282700042
根据本发明的一实施形态中,本发明的S2步骤是以3-甘油酸丙烷三甲氧矽烷表面改质的奈米颗粒分散于有机溶剂后添加咪唑可使其产生反应。有机溶剂可使用乙醇、甲醇、丙醇、异丙醇等醇类溶剂,但不受限于此。
接着,S2步骤中获得的化合物与碘甲烷反应而制造所述化学式1的与咪唑嗡盐化学结合的奈米颗粒。本步骤是对结合奈米二氧化矽的咪唑引入甲基使其带正电荷形成碘阴离子和盐。此时,形成的咪唑嗡盐可替代部分离子性液体的机能。 
根据本发明的一实施形态中,本发明的S3步骤是从S2步骤获得的物质分散于有机溶剂后,混合碘甲烷可执行回流。有机溶剂可使用乙醇、甲醇、丙醇、异丙醇等醇类溶剂,但不受限于此。 
有益效果
根据本发明与咪唑嗡盐化学结合的奈米颗粒中存在的咪唑嗡盐执行离子性液体的机能而可降低整个染料敏化太阳能电池用电解质内的离子性液体的浓度,因此可期待节省生产成本,并可提高染料敏化太阳能电池的效率。
另外,本发明的染料敏化太阳能电池用奈米胶型电解质与提升的长效稳定度优一起点藉由印刷可形成电解质层,有利于大量生产。 
具体实施方式
以下为了补助对本发明的理解提出较佳实施例,但下述实施例只是本发明的例示,本领域的技术人员应了解在本发明的范畴及技术思想范围内可执行多种变更及修正,理所当然此类变更及修正应属权利要求书范围。 
与咪唑嗡盐化学结合的奈米颗粒的制造
实施例1
奈米二氧化矽(德国Evonik公司的AEROSIL 200, 12nm)2.5g分散于甲笨的溶液中放入3-(甲基丙烯酸氧)丙基三甲氧基矽烷9.8后,在常温搅拌约1个小时后回流8小时。然后,冷却到常温后用过滤纸过滤,用甲醇洗涤2次以上合成了以3-甘油酸丙烷三甲氧矽烷表面改质的奈米二氧化矽。合成的以3-甘油酸丙烷三甲氧矽烷表面改质的奈米二氧化矽13.5g分散于50甲醇后放入0.3128g的咪唑在常温搅拌48小时。搅拌结束后用过滤纸过滤,用甲醇洗涤3次以上合成了结合咪唑的奈米二氧化矽。所述合成的物质13.813g分散于50甲醇后混合碘甲烷(CH3I)0.653g后回流12小时合成了目的物与咪唑嗡盐化学结合的奈米二氧化矽。
染料敏化太阳能电池用电解质的制造
实施例2
从实施例1中合成的物质0.6g和电解液(3-甲氧基丙腈 + LiI(0.1M) + I2(0.05M) + 1-丁基-3-甲基咪唑碘(0.6M) + t-丁基比啶(0.5M) )1g混合制造了染料敏化太阳能电池用电解质。
比较例1
奈米二氧化矽(德国Evonik公司的AEROSIL 200, 12nm)0.1g和电解液(3-甲氧基丙腈 + LiI(0.1M) + I2(0.05M) + 1-丁基-3-甲基咪唑碘(0.6M) + t-丁基比啶(0.5M))1g混合制造了染料敏化太阳能电池用奈米胶型电解质
比较例2
只混合电解液(3-甲氧基丙腈 + LiI(0.1M) + I2(0.05M) + 1-丁基-3-甲基咪唑碘(0.6M) + t-丁基比啶(0.5M))1g而制造了染料敏化太阳能电池用液体电解质。
染料敏化太阳能电池的制造
(1)准备以掺杂氟的氧化炀形成透明导电氧化物层的透明玻璃基板。所述基板的透明导电氧化物层上部以刮刀成膜法涂布包含二氧化钛的涂布组成物,在500℃热处理30分,使奈米大小的金属氧化物间形成接触及填充形成约8厚度的奈米氧化物层。接着,所述奈米氧化物层上部以同样的方法涂布包含二氧化钛的涂布组成物,在500℃热处理30分,形成约15厚度的奈米氧化物层。制造0.2nM的二硫氰基-2,2’-联比啶-4,4’-二羧基钌染料溶液。在此把形成所述奈米氧化物层的基板浸泡24小时后干燥,以奈米大小的金属氧化物上吸附染料而制造了阴极系电极。
(2)准备以掺杂氟的氧化炀形成透明导电氧化物层的透明玻璃基板。所述基板的透明导电氧化物层上部滴熔有六氯铂酸(H2PtCl6)的异丙醇溶液后,在450℃热处理30分形成白金层而制造了阳极系电极。 
(3)根据实施例2及比较例1的电解质涂布在阴极系电极的上部,以网版印刷法形成了涂布层。另外,比较例2的液体电解质在电极穿孔注入形成了电解质层。 
(4)使制造的阴极系电极和阳极系电极相互面对面后,以SURLYN(DuPont公司制造)形成厚度约60的热可塑性高分子层后,放入130℃的烤箱维持2分粘附两电极形成密封,制造了染料敏化太阳能电池。 
实验例
为了评价包含根据所述实施例2、比较例1及比较例2电解质的染化敏化太阳能电池的光电转换效率,以如下的方法测定光电压及光电流观察光电特性,由此获得电流密度(ISC)、电压(VOC)、及填充因素(fill factor, ff),利用这些以下述数学式1计算光电转换效率(e)。此时,光源使用了氙灯(Xenon lamp, Oriel),所述氙灯的太阳条件(AM1.5)用标准太阳能电池补正。
[数学式1] 
e = (VOC × ISC × ff) /(Pine)
所述数学式1中,(Pine)表示100/(1 sun)。
如所测定的数值表示在表1。 
表1
电解质区分 电流密度(mA) 电压(V) 填充因数 光电转换效率(%)
实施例2 14.299 0.839 0.687 8.211
比较例1 13.311 0.833 0.705 7.825
比较例2 13.114 0.819 0.709 7.628
如所述表1所示可以确认,在本发明中,包含由根据实施例2的奈米胶型电解质形成的涂布层的染料敏化太阳能电池,相较于现有一般奈米二氧化矽奈米胶(比较例1)及液体电解质(比较例2)的染料敏化太阳能电池,电流密度变高,光电转换效率变高。

Claims (15)

1.一种染料敏化太阳能电池用奈米胶型电解质,其特征是包含由下述化学式1表示的与咪唑嗡盐化学结合的奈米颗粒;及离子性液体状电解质:
[化学式1]
Figure DEST_PATH_336937DEST_PATH_IMAGE001
所述式中,P是奈米颗粒。
2.根据权利要求1所述的染料敏化太阳能电池用奈米胶型电解质,其特征是所述奈米颗粒是奈米二氧化矽(SiO2)、奈米二氧化钛(TiO2)或奈米二氧化炀(SnO2)。
3.根据权利要求1所述的染料敏化太阳能电池用奈米胶型电解质,其特征是所述奈米颗粒是奈米二氧化矽(SiO2)。
4.根据权利要求1所述的染料敏化太阳能电池用奈米胶型电解质,其特征是所述离子性液体状电解质包含离子性液体及氧化-还原衍生物。
5.根据权利要求4所述的染料敏化太阳能电池用奈米胶型电解质,其特征是所述离子性液体是从由n-甲基咪唑碘、n-乙基咪唑碘、乙基-甲基咪唑碘、1-苯甲基-2-甲基咪唑碘、1-乙基-3-甲基咪唑碘、1-丁基-3-甲基咪唑碘、碘化甲基比啶、碘化乙基比啶、碘化丙基比啶、碘化甲基乙基比咯烷、碘化二甲基比咯烷、1-乙基-3-甲基咪唑二氰胺盐及硫氰酸胍形成的群中选择1种以上混合制造。
6.根据权利要求4所述的染料敏化太阳能电池用奈米胶型电解质,其特征是所述氧化-还原衍生物是从由碘化锂、碘化钠、碘化钾、溴化锂、溴化钠、溴化钾、四级铵盐、咪唑嗡盐、比啶盐形成的群中选择。
7.一种与咪唑嗡盐化学结合的奈米颗粒,其特征是以下述化学式1表示:
[化学式1]
Figure DEST_PATH_241308DEST_PATH_IMAGE002
所述式中,P是奈米颗粒。
8.根据权利要求7所述的与咪唑嗡盐化学结合的奈米颗粒,其特征是所述奈米颗粒是二氧化矽(SiO2)、奈米二氧化钛(TiO2)或奈米二氧化炀(SnO2)。
9.根据权利要求7所述的与咪唑嗡盐化学结合的奈米颗粒,其特征是所述奈米颗粒是二氧化矽(SiO2)。
10.一种以下述化学式1表示的与咪唑嗡盐化学结合的奈米颗粒的制造方法,其特征是包含:
(S1)使奈米颗粒和3-(甲基丙烯酸氧)丙基三甲氧基矽烷反应制造以3-甘油酸丙烷三甲氧矽烷表面改质的奈米颗粒的步骤;
(S2)以3-甘油酸丙烷三甲氧矽烷表面改质的奈米颗粒和咪唑反应的步骤;及
(S3)S2步骤中获得的化合物与碘甲烷反应的步骤,
[化学式1]
Figure DEST_PATH_698834DEST_PATH_IMAGE003
所述式中,P是奈米颗粒。
11.根据权利要求10所述的与咪唑嗡盐化学结合的奈米颗粒的制造方法,其特征是所述奈米颗粒是二氧化矽(SiO2)、奈米二氧化钛(TiO2)或奈米二氧化炀(SnO2)。
12.根据权利要求10所述的与咪唑嗡盐化学结合的奈米颗粒的制造方法,其特征是所述奈米颗粒是二氧化矽(SiO2)。
13.根据权利要求10所述的与咪唑嗡盐化学结合的奈米颗粒的制造方法,其特征是所述S1步骤是在有机溶剂分散奈米颗粒的溶液中添加3-(甲基丙烯酸氧)丙基三甲氧基矽烷,在常温下搅拌后执行回流。
14.根据权利要求10所述的与咪唑嗡盐化学结合的奈米颗粒的制造方法,其特征是所述S2步骤是以3-甘油酸丙烷三甲氧矽烷表面改质的奈米颗粒分散于有机溶剂后添加咪唑反应。
15.根据权利要求10所述的与咪唑嗡盐化学结合的奈米颗粒的制造方法,其特征是所述S3步骤是从S2步骤获得的物质分散于有机溶剂后,混合碘甲烷执行回流。
CN201210250843.8A 2011-07-21 2012-07-19 与咪唑嗡盐化学结合的纳米颗粒,其制造方法及包含其的纳米胶型电解质 Active CN102891009B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0072265 2011-07-21
KR1020110072265A KR101348391B1 (ko) 2011-07-21 2011-07-21 이미다졸륨염이 화학적으로 결합된 나노입자, 이의 제조방법 및 이를 포함하는 염료감응 태양전지용 나노젤형 전해질

Publications (2)

Publication Number Publication Date
CN102891009A true CN102891009A (zh) 2013-01-23
CN102891009B CN102891009B (zh) 2015-09-09

Family

ID=47534487

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210250843.8A Active CN102891009B (zh) 2011-07-21 2012-07-19 与咪唑嗡盐化学结合的纳米颗粒,其制造方法及包含其的纳米胶型电解质

Country Status (3)

Country Link
US (1) US8808565B2 (zh)
KR (1) KR101348391B1 (zh)
CN (1) CN102891009B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2812091T3 (pl) 2012-09-17 2021-07-19 W.R. Grace & Co. - Conn. Podłoża chromatograficzne i urządzenia
SG11201404684RA (en) * 2012-09-17 2014-10-30 Grace W R & Co Functionalized particulate support material and methods of making and using the same
US11229896B2 (en) 2014-01-16 2022-01-25 W.R. Grace & Co.—Conn. Affinity chromatography media and chromatography devices
PL3137209T3 (pl) 2014-05-02 2023-01-02 W.R. Grace & Co. - Conn. Funkcjonalizowany materiał nośnikowy i sposoby wytwarzania oraz stosowania funkcjonalizowanego materiału nośnikowego
KR101949457B1 (ko) 2014-08-04 2019-02-19 주식회사 엘지화학 고흡수성 수지 제조용 표면 개질 무기 나노 입자 및 고흡수성 수지 제조용 중화액
KR101648001B1 (ko) * 2014-09-04 2016-08-16 한국에너지기술연구원 표면이 개질된 나노입자, 이의 제조방법 및 이를 포함하는 나노젤형 전해질
JP2018517559A (ja) 2015-06-05 2018-07-05 ダブリュー・アール・グレース・アンド・カンパニー−コーンW R Grace & Co−Conn 吸着性バイオプロセス清澄化剤並びにその製造及び使用方法
KR101966222B1 (ko) 2017-04-25 2019-04-05 한국과학기술연구원 보론산계 화합물, 및 이의 제조방법
KR101962882B1 (ko) 2017-06-01 2019-03-28 한국과학기술연구원 구연산염 검출 센서 및 이를 이용한 구연산염 검출 방법
KR102568794B1 (ko) 2017-12-12 2023-08-22 삼성전자주식회사 복합 전해질, 이를 포함하는 보호막, 이를 포함하는 보호 음극 및 리튬금속전지

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1417407A (zh) * 2002-12-12 2003-05-14 中国科学院化学研究所 一种含不饱和双键的室温离子液体及制备方法和应用
US20080041438A1 (en) * 2006-06-09 2008-02-21 Yasuteru Saito Photoelectric conversion device
CN102049202A (zh) * 2010-11-03 2011-05-11 厦门大学 一种含氟咪唑鎓盐聚合物阴离子交换膜及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH674596A5 (zh) * 1988-02-12 1990-06-15 Sulzer Ag
US6384321B1 (en) * 1999-09-24 2002-05-07 Kabushiki Kaisha Toshiba Electrolyte composition, photosensitized solar cell using said electrolyte composition, and method of manufacturing photosensitized solar cell
KR101473320B1 (ko) * 2008-01-08 2014-12-16 삼성에스디아이 주식회사 벤조인돌계 화합물 및 이를 이용한 염료 감응 태양전지
KR20100058996A (ko) * 2008-11-25 2010-06-04 엘지디스플레이 주식회사 염료 감응 태양전지용 염료

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1417407A (zh) * 2002-12-12 2003-05-14 中国科学院化学研究所 一种含不饱和双键的室温离子液体及制备方法和应用
US20080041438A1 (en) * 2006-06-09 2008-02-21 Yasuteru Saito Photoelectric conversion device
CN102049202A (zh) * 2010-11-03 2011-05-11 厦门大学 一种含氟咪唑鎓盐聚合物阴离子交换膜及其制备方法

Also Published As

Publication number Publication date
US8808565B2 (en) 2014-08-19
KR101348391B1 (ko) 2014-01-14
KR20130011245A (ko) 2013-01-30
CN102891009B (zh) 2015-09-09
US20130020523A1 (en) 2013-01-24

Similar Documents

Publication Publication Date Title
CN102891009B (zh) 与咪唑嗡盐化学结合的纳米颗粒,其制造方法及包含其的纳米胶型电解质
Zakeeruddin et al. Solvent‐free ionic liquid electrolytes for mesoscopic dye‐sensitized solar cells
Lee et al. Ni3Se4 hollow architectures as catalytic materials for the counter electrodes of dye-sensitized solar cells
Zafer et al. Dicationic bis-imidazolium molten salts for efficient dye sensitized solar cells: Synthesis and photovoltaic properties
JP5404058B2 (ja) イオン性液体電解質
Hsu et al. Dye-sensitized solar cells based on agarose gel electrolytes using allylimidazolium iodides and environmentally benign solvents
WO2004064192A1 (ja) 光電変換素子およびその製造方法ならびに電子装置およびその製造方法
Lennert et al. Efficient and stable solid-state dye-sensitized solar cells by the combination of phosphonium organic ionic plastic crystals with silica
Stathatos et al. Dye-sensitized photoelectrochemical solar cells based on nanocomposite organic–inorganic materials
CN103588808A (zh) 基于poss的固态离子液体及其制备方法和应用
CN104465113A (zh) 一种氮掺杂石墨烯对电极制备方法及其在染料敏化太阳能电池中的应用
Sun et al. Ionic liquid gel electrolytes for quasi-solid-state dye-sensitized solar cells
Chen et al. An efficient binary ionic liquid based quasi solid-state electrolyte for dye-sensitized solar cells
Giannouli et al. Effects of using multi‐component electrolytes on the stability and properties of solar cells sensitized with simple organic dyes
Yang et al. Influence of the preparation conditions of TiO2 electrodes on the performance of solid-state dye-sensitized solar cells with CuI as a hole collector
Wyss et al. Influence of cations of the electrolyte on the performance and stability of dye sensitized solar cells
Chou et al. The effect of various concentrations of PVDF-HFP polymer gel electrolyte for dye-sensitized solar cell
US20100300537A1 (en) Dye-sensitized solar cell and organic solvent-free electrolyte for dye-sensitized solar cell
KR20110095439A (ko) 암모니움 이미다졸륨 염 및 이를 함유하는 염료감응 태양전지용 전해질 조성물
Kanzaki et al. Retardation of interfacial charge recombination by addition of quaternary ammonium cation and its application to low temperature processed dye-sensitized solar cells
Cheng et al. Electrochemical characterization and photovoltaic performance of the binary ionic liquid electrolyte of 1-methyl-3-propylimidazolium iodide and 1-ethyl-3-methylimidazolium tetrafluoroborate for dye-sensitized solar cells
Santa-Cruz et al. Effect of heterocyclic nitrogen ionic liquid additives on the rate of backreaction in DSSCS: An electrochemical characterization
Wu et al. A Silicon‐based Imidazolium Ionic Liquid Iodide Source for Dye‐Sensitized Solar Cells
Park et al. TiO2 hollow spheres as effective additives in oligomer electrolytes for dye-sensitized solar cells
Lan et al. A highly efficient electric additive for enhancing photovoltaic performance of dye-sensitized solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant