CN1028749C - 芳族化合物的烷基化 - Google Patents

芳族化合物的烷基化 Download PDF

Info

Publication number
CN1028749C
CN1028749C CN 90103474 CN90103474A CN1028749C CN 1028749 C CN1028749 C CN 1028749C CN 90103474 CN90103474 CN 90103474 CN 90103474 A CN90103474 A CN 90103474A CN 1028749 C CN1028749 C CN 1028749C
Authority
CN
China
Prior art keywords
zeolite
weight
sio
benzene
alkylation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN 90103474
Other languages
English (en)
Other versions
CN1057640A (zh
Inventor
李光高
黛维·欧文·玛拉
约翰·保罗·马克威廉斯
麦·考尼·罗宾
乔苏·希姆
史蒂芬·汪叔范
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Oil Corp
Original Assignee
Mobil Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mobil Oil Corp filed Critical Mobil Oil Corp
Publication of CN1057640A publication Critical patent/CN1057640A/zh
Application granted granted Critical
Publication of CN1028749C publication Critical patent/CN1028749C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

一种烷基化芳族化合物的方法,它包括在由合成的多孔结晶沸石构成的催化剂存在下使芳族化合物与至少一个烷基化剂相接触,该沸石具有下述的衍射线条:
表I
晶面间d-间距()
12.36±0.4
11.03±0.2
8.83±0.14
6.18±0.12
6.00±0.10
4.06±0.07
3.91±0.07
3.42±0.06
/相对强度I/I0×100
M-VS(中等-极强)
M-S(中等-强)
M-VS(中等-极强)
M-VS(中等-极强)
W-M(弱-中等)
W-S(弱-强)
M-VS(中等-极强)
VS(极强)

Description

本发明涉及利用合成的多孔结晶沸石作为烷基化催化剂的芳族化合物的烷基化方法。
沸石材料,不论天然的还是合成的,以往对各种类型烃类的转化都显示有催化的性质。某些经定级的沸石材料为多孔结晶的硅酸铝,经X-射线衍射测定,它具有一定的晶体结构,其内部有大量的小空穴,这些小空穴通过许多还要小的沟道或微孔相互连接。这些空穴和微孔在一种特定沸石材料内其大小是均一的。由于这些微孔的大小是均一的,以致于它能接受某种尺寸大小分子的吸附而排斥那些较大尺寸分子的吸附,这些材料已被称为“分子筛”,并且利用这些性质在各种不同方法中被使用。这种分子筛,不论天然的和合成的,包括许多含有正离子的结晶硅酸盐。这些硅酸盐可被看作SiO4和周期表ⅢA族元素氧化物如AlO4的刚性三维结构骨架,其中该四面体通过共享的氧原子而交联,因此总的ⅢA族元素如铝和硅原子与氧原子的比为1∶2。含有ⅢA族元素如铝的电价系由包合在晶体内的阳离子如碱金属或碱土金属阳离子来平衡。这里可用ⅢA族元素如铝与各种阳离子数目的比率来表示,如和Ca/2,Sr/2,Na、K或Li,其比率等于1。一种类型的阳离子可全部或部分地用另一种类型的阳离子来交换,这可利用常用方法中的离子交换技术来达到。
现有技术已产生了大量多种合成沸石,这些沸石的大部分已由字或简便符号来表示,如沸石Z(美国专利号2,882,243),沸石X(美国专利号2,882,244),沸石Y(美国专利号3,130,007),沸石ZK-5(美国专利号3,247,195),沸石ZK-4(美国专利号3,314,752),沸石ZSM-5(美国专利号3,702,886),沸石ZSM-11(美国专利号3,709,979),沸石ZSM-12(美国专利号3,832,449),沸石ZSM-20(美国专利号3,972,983),沸石ZSM-35(美国专利号4,016,245),和沸石ZSM-23(美国专利号4,076,842)。
给定沸石的SiO2/Al2O3比率是经常可变的。例如沸石X能用比率为2-3的SiO2/Al2O3来合成;沸石Y用比率为3-6的SiO2/Al2O3来合成。某些沸石其SiO2/Al2O3比率的上限是不受限制的。ZSM-5就是一个这样的例子,其中SiO2/Al2O3比率至少为5,直至现代分析测量技术的极限。美国专利号3,941,871(再公告号 29,948)公开了一种多孔结晶硅酸盐,它是由含有不是精密加入的氧化铝的反应混合物制得的。并显示有ZSM-5的X射线衍射图象特征。美国专利号4,061,724,4,073,865和4,104,294中描述了不同氧化铝和金属含量的结晶硅酸盐。
烷基化是烃类的最重要和有用的反应之一,路易斯酸(Lewis)和布朗斯台德酸(Bronsted),包括各种天然的和合成的沸石,已被用作催化剂。利用某种结晶沸石催化剂所进行的芳族烃化合物的烷基化在工艺技术中是已知的。例如,美国专利号3,251,897中描述了在结晶硅酸铝如八面沸石、片沸石、斜发沸石、丝光沸石、环晶沸石(dachiardite)、沸石X和沸石Y的参与下的液相烷基化反应。
美国专利号3,631,120和3,641,177中描述了在某种沸石参与下芳族烃与链烯烃作用的液相烷基化方法。
美国专利号3,751,504和3,751,506中描述了在特定类型沸石催化剂存在下芳族烃与链烯烃的气相烷基化作用。
美国专利号3,755,483和4,393,262中公开了在沸石ZSM-12存在下丙烯与苯的气相反应,以制取异丙基苯。
美国专利号4,469,908中公开了使用ZSM-12作烷基化催化剂使芳族烃与具有1-5个碳原子的较短链的烷基化剂发生烷基化作用。
美国专利号4,283,573中描述了采用沸石如钙霞石、钠菱沸石、丝光沸石、钾沸石(offretite)或ZSM-12作为催化剂。通过苯酚与具有在链长度上至少有5个碳原子的一个或多个可利用的烷基的长链烷基化剂发生烷基化作用而制得比较长的长链烷基酚的方法。
本发明属于使芳族化合物烷基化的方法,它包括在烷基化催化剂存在下使芳族化合物与至少一个烷基化剂相接触,该烷基化催化剂包括一种合成的多孔结晶沸石,它具有的X-射线衍射图象所包括的数值基本上已列出于说明书的表1中。
根据其技术本身确认的范围,它包括取代的和未取代的单环和多环化合物,就可理解这里所用的关于可烷基化的“芳族的”化合物的这个术语。具有杂原子芳族特性的化合物也可使用,只要在所选择的反应条件下它们不起到使催化剂中毒作用的话。
在这里能被烷基化的被取代的芳族化合物必须具有至少一个氢原子直接连接于芳族环。该芳族环能被一个或多个烷基、芳基、烷芳基、烷氧基、芳氧基、羟基、环烷基、卤素、和/或其他基团所取代,而这些基团并不干扰烷基化反应。在一特殊的具体实例中,该芳族化合物为一苯酚化合物。
适用的芳族烃包括苯、甲苯、二甲苯、萘、蒽、并四苯、苝、蔻(晕苯)和菲。
一般来说,能作为芳族化合物上的取代基而存在的烷基包含有1-22个碳原子,较好地为1-8个碳原子,最好为1-4个碳原子。
适用的被烷基取代的芳族化合物包括有甲苯、二甲苯、异丙基苯、正丙基苯、α-甲基萘、乙基苯、枯烯、
Figure 901034746_IMG2
杜烯、对-繖花烃、丁苯、假枯烯、邻-二乙苯、间-二乙苯对二乙苯、五异戊基苯,异己基苯,五乙基苯,五甲基苯、1,2,3,4-四乙基苯;1,2,3,5-四甲基苯;1,2,4-三乙苯;1,2,3-三甲苯;间-丁基甲苯;对-丁基甲苯;3,5-二乙基甲苯;邻-乙基甲苯;对-乙基甲苯;间-丙基甲苯;4-乙基-间-二甲苯;二甲基萘;乙基萘;2,3-二甲基蒽;9-乙基蒽;2-甲基蒽;邻-甲基蒽;9,10-二甲基菲;和3-甲基菲。高分子量的烷基芳族烃也可用作起始材料,并包括芳族烃,如由芳族烃与链烯低聚物烷基化而制得的芳族烃类。这种产物在工艺技术中通常称之为烷基化物,并包括己基苯、壬基苯、十二烷基苯、十五烷基苯、己基甲苯、壬基甲苯、十二烷基甲苯和十五烷基甲苯。通常烷基化物作为高沸馏分而得到,其中接连于芳族环的烷基其大小可从C6变化至C12
含有大量苯、甲苯和/或二甲苯的重整产品构成了本发明烷基化方法的尤其有用的加入物。
适用的可烷基化的苯酚化合物包括甲基苯酚(甲酚);二甲基苯酚(二甲苯酚);乙基、丙基和丁基苯酚;卤代苯酚(如氯代和溴代);烷基卤代苯酚;烷氧基苯酚;二羟基苯(例如氢醌、儿茶酚、雷琐酚;以及羟基化的稠环体系,例如萘酚、蒽酚和菲酚。
在本发明的一个具体实例中,烷基化剂为具有至少一个能与可烷基化的芳族化合物反应的有效的烷基化基团和具有1-5个碳原子的有机化合物。适用的烷基化剂的实例为C2-C5链烯,如乙烯、 丙烯、丁烯和戊烯;醇类(包括一元醇、二元醇、三元醇等)如甲醇、乙醇、丙醇、丁醇和戊醇;醛类如甲醛、乙醛、丙醛、丁醛和正戊醛;以及烷基卤化物如氯代甲烷、乙基氯(氯乙烷)、丙基氯、丁基氯和戊基氯。
低分子链烯的混合物在本发明的所述的一个具体实例中特别适用作为烷基化剂。因此,乙烯、丙烯、丁烯和/或戊烯的混合物在这里均为可用的烷基化剂,这些气体为许多冶炼厂气体的主要成分,如可燃气体、含有乙烯、丙烯等的煤气厂排放气体、含有低分子链烯的石脑油裂化器排出气体以及冶炼厂FCC丙烷/丙烯气。例如,一种典型的FCC轻链烃气具有以下的组成:
重量%    摩尔%
乙烷    3.3    5.1
乙烯    0.7    1.2
丙烷    14.5    15.3
丙烯    42.5    46.8
异丁烷    12.9    10.3
正丁烷    3.3    2.6
丁烯    22.1    18.32
戊烷    0.7    0.4
在本发明所述的具体实例中,按照本发明方法能获得的有用产物包括有乙苯和枯烯(异丙基苯)(通过苯与乙烯和丙烯各自的烷基化作用),和烷基化物重整产品(通过重整产品与燃气或其他轻链烃类气源的烷基化作用)。在用苯的烷基化制取乙苯或枯烯的情况下,人们发现该发明方法可导致少于500ppm的二甲苯副产品。
在本发明的另一具体实例中,烷基化剂为具有一个或多个可利用的烷基化脂族基团的脂族或芳族的有机化合物,该脂族基团至少具有6个碳原子,较好地至少为8个,更好地至少为12个碳原子。适用的烷基化剂的例子在链烯如己烯、庚烯、辛烯、壬烯、癸烯、十一碳烯和十二碳烯;醇类如己醇、庚醇、辛醇、壬醇、癸醇、十一烷醇和十二烷醇;以及烷基卤如己基氯、辛基氯和十二烷基氯。支链烷基化剂,尤其为低聚链烯如乙烯、丙烯和丁烯轻链烯类的三聚物、四聚物和五聚物,在这里也是可用的。另一个具体实例的典型产物,尤其所用的原料包括苯、甲苯、二甲苯和/或萘,是低倾点和低浊点,高粘度和良好热和氧化稳定性的芳族润滑油基油原料。基原料为苯酚,则能获得长链烷基酚,该物质可用于合成洗涤剂的制造。
以其锻烧过的形式,用作本发明烷基化方法中的催化剂的多孔性结晶沸石,其具有的X-射线衍射图象所包括的线条列出于下面的表1中:
表Ⅰ
晶面间d-间距(A) 相对强度I/I0×100
12.36±0.4    M-VS
11.03±0.2    M-S
8.83±0.14    M-VS
6.18±0.12    M-VS
6.00±0.10    W-M
4.06±0.07    W-S
3.91±0.07    M-VS
3.42±0.06    VS
较具体地来说,该线条列出于下面的表Ⅱ中:
表Ⅱ
晶面间d-间距(A) 相对强度I/I0×100
30.0±2.2    W-M
22.1±1.3    W
12.36±0.4    M-VS
11.03±0.2    M-S
8.83±0.14    M-VS
6.18±0.12    M-VS
6.00±0.10    W-M
4.06±0.07    W-S
3.91±0.07    M-VS
3.42±0.06    VS
还可更较具体地来说,该线条列出于下面的表Ⅲ中:
表Ⅲ
晶面间d-间距(A) 相对强度I/I0×100
12.36±0.4    M-VS
11.03±0.2    M-S
8.83±0.14    M-VS
6.86±0.14    W-M
6.18±0.12    M-VS
6.00±0.10    W-M
5.54±0.10    W-M
4.92±0.09    W
4.64±0.08    W
4.41±0.08    W-M
4.25±0.08    W
4.10±0.07    W-S
4.06±0.07    W-S
3.91±0.07    M-VS
3.75±0.06    W-M
3.56±0.06    W-M
3.42±0.06    VS
3.30±0.05    W-M
3.20±0.05    W-M
3.14±0.05    W-M
3.07±0.05    W
2.99±0.05    W
2.82±0.05    W
2.78±0.05    W
2.68±0.05    W
2.59±0.05    W
更具体地来说,该煅烧过的沸石,它具有的X-射线图象所包括的线条列在下面的表Ⅳ中:
表Ⅳ
晶面间d-间距(A) 相对强度I/I0×100
30.0±2.2    W-M
22.1±1.3    W
12.36±0.4    M-VS
11.03±0.2    M-S
8.83±0.14    M-VS
6.86±0.14    W-M
6.18±0.12    M-VS
6.00±0.10    W-M
5.54±0.10    W-M
4.92±0.09    W
4.64±0.08    W
4.41±0.08    W-M
4.25±0.08    W
4.10±0.07    W-S
4.06±0.07    W-S
3.91±0.07    M-VS
3.75±0.06    W-M
3.56±0.06    W-M
3.42±0.06    VS
3.30±0.05    W-M
3.20±0.05    W-M
3.14±0.05    W-M
3.07±0.05    W
2.99±0.05    W
2.82±0.05    W
2.78±0.05    W
2.68±0.05    W
2.59±0.05    W
这些数值由标准技术方法来测定。该辐射为铜的K-α电子偶(对),并且使用装有闪烁计数器的衍射仪和连带的计算机。峰值高度,I,和作为2Q函数的位置,此处Q为布勒格(Bxagg)角,可用与衍射仪相连的计算机的算法规则来测定。由这些,就可测定相对于强度I/I0×100(这里I0为最强谱线或峰的强度)和d(观测的),它是相应于所记录谱线的以埃( )表示的晶面间的间距。在表Ⅰ-Ⅳ中,相对强度是依据字符W=弱,M=中等,S=强、VS=极强,来表示的。根据强度,它们一般可表示如下:
W=0-20
M=20-40
S=40-60
VS=60-100
应该理解,这些X-衍射图象为所有沸石种类的特征。钠型以及其他阳离子型大体上显现有相同的图象,只是在晶面间距上有些少量的移位和在相对强度方面有些变化。其他少量变化的发生则取决于Y与X,例如,硅与铝,特定试样的摩尔比,以及它的热处理程度。
用作本发明烷基化方法中的催化剂的合成的多孔性结晶沸石一般具有包含下述摩尔关系的组成:
X2O3∶(n)YO2
其中X为三价元素,如铝、硼、铁和/或镓,最好为铝,Y为四价元素,如硅和/或锗,最好为硅,n至少为10,通常为10-150,较通常地为10-60,更通常地为20-40。在当合成时的式中,沸石具有一分子式,以无水的为基准,并根据每n摩尔YO2的氧化物摩尔数来表示如下:
(0.005-0.1)Na2O∶(1-4)R∶X2O3∶nYO2
其中R为一种有机组分。Na和R组分是伴随沸石而产生的,由于它们在结晶时就存在,通过下文将更详细描述的后一结晶法它们可很容易地被除去。
此处所用的沸石为热稳定的,并显示有较高的表面积[用BET(Bruenauer,Emmet和Teller)试验法测量时,大于400m/gm],当与相似的晶体结构比较时,具有非常大的吸附能力。特别是该沸石所显示的平衡吸附能力对环己烷蒸气来说为大于4.5%(重量),一般可大于7%(重量),对正己烷蒸气来说为大于10%(重量);对水蒸气来说通常大于10%(重量)。由上述分子式明显可知,本沸石的合成几乎没有Na阳离子,因此,它可被用作不需交换步骤而带有酸性活度的烷基化催化剂。然而,根据专业领域中熟知的技术,作为当合成出来的材料的原有的钠阳离子可通过与其他阳离子的离子交换,而被取代至少部分的所需程度。较理想的取代阳离子包括有金属离子、氢离子、氢前体,例如铵、其离子和混合物。特别可优选的阳离子为那些可满足烷基化催化剂活性的阳离子。这些阳离子包括氢、稀土金属、及元素周期表的ⅡA、ⅢA、ⅣA、ⅠB、ⅡB、ⅢB和Ⅷ族的金属。
在用作烷基化催化剂之前,该沸石应使其经受热处理,以除去其中存在的部分或全部任何的有机成分。
这里所用的沸石烷基化催化剂也可使用于与氢化剂组分紧密结合,这些氢化剂组分有如钨、钒、钼、铼、镍、钴、铬、锰,或贵金属如铂或钯(这些组分可应用作氢-脱氢的功能)。这此组分可通过共结晶化作用而被引入催化剂组合物中,以一定程度的量交换至组合物中,在此结构中ⅢA族元素如铝被渗透于其中或在物理上可其完全混和的。这种组分能被渗透入沸石内或在沸石表面上,例如,如就铂而言,通过用含有铂金属离子的溶液处理沸石的方法来达到。于是,为此目的的适用的铂化合物包括有氯铂酸,氯化亚铂和各种含有铂胺复合体的化合物。
在使用本发明的烷基化方法之前,本沸石晶体应脱水,至少部分脱水。这可通过在某气氛下如空气、氮气等气氛下和在大气压、低于大气压或高于大气压下将沸石在200-595℃温度范围内加热30分钟至48小时。脱水也可通过将结晶材料置于真空中仅仅在室温下完成,但若要得到充分的脱水量,就需要较长的时间。
本发明方法所用的沸石可由下述反应混合物来制备,该反应混合物含碱或碱土包括(M)源,如钠或钾,阳离子,三价元素X如铝的氧化物,四价元素Y如硅的氧化物,有机(R)引向剂,六亚甲基亚胺,如水,所述的反应混合物所具有的组成,依据氧化物的摩尔比,在下述范围内:
反应剂    可用的    优选的
YO2/X2O310-60 10-40
H2O/YO25-100 10-50
OH/YO20.01-1.0 0.1-0.5
M/YO20.01-2.0 0.1-1.0
R/YO20.05-1.0 0.1-0.5
在较理想的合成方法中,YO2反应剂含有相当量的固体YO2,例如至少约30%(重量)的固体YO2。这里YO2为SiO2,使用含有至少约30%(重量)固体氧化硅的氧化硅源,例如Ultrasil(一种含有90%重量氧化硅的沉淀的、喷雾干燥的氧化硅)或HiSil(一种含有87%重量氧化硅、6%重量游离水和4.5%重量水合的结合水的沉淀的水合氧化硅,并具有0.02微米的颗粒尺寸),这些物质有利于从上述混合物中生成晶体。假如使用其他氧化硅源,如Q-Brand(由28.8%重量SiO2,8.9%重量Na2O和62.3%重量H2O所组成的硅酸钠),若制造任何所需的沸石和其他晶体结构如ZSM-12的不纯物相时,则结晶产生很少。因此,较好地YO2如SiO2源含有至少30%(重量)的固体YO2如SiO2,更好地至少为40%(重量)的固体YO2如SiO2
所需沸石的结晶化作用可在适用的反应容器如聚丙烯缶或衬有聚四氟乙烯的或不锈钢的高压釜中在或静态的或搅拌的条件下来完成。结晶化作用一般在80-225℃温度下进行25小时至60天。此后,该晶体从液体中分离出并收得。
要使结晶化作用变得更为方便,可通过使其有至少0.01%,较好地为0.10%,更好地为1%的晶种存在(以结晶产物总重量为基准)。
在使用本发明方法之前,生成物沸石最好能与其他材料相结合,该材料能耐受高温以及耐受使用于本发明烷基化工艺中的其他条件。这些材料包括有活性的和非活性材料,合成的或天然产生的沸石,以及无机材料如粘土、氧化硅,和/或金属氧化物如氧化铝。后者或者是天然产生的或者是胶质 沉淀物形式或包括氧化硅和金属氧化物的混合物的凝胶体形式。使用连同本沸石在一起的材料,即与其结合的或在其合成时存在的材料,它本身为有催化活性的,因此它可以变催化剂的转化和/或选择性。非活性材料可合适地用作稀释剂以控制其转化量,致使在不使用为了控制反应速率的其他方法手段情况下可经济地和有顺序地得到烷基化产物。这些材料可被加入至天然产生的粘土,例如,膨润土(皂土)和高岭土,使在工业上的烷基化操作条件下改进催化剂的破碎强度。所述的材料,即粘土、氧化物等,起到催化剂的粘合剂作用。由于要在工业上使用,人们希望能提供一种具有良好破碎强度的催化剂,希望防止催化剂破碎成象粉状的材料。通常使用这些粘土粘合剂,其目的只是为了改进催化剂破碎强度。
能与本沸石组合的天然产粘土包括有蒙特土和高岭土类族。该类族包括亚膨润土和高岭土,通常称为Dixie    Mc    Namee,Georgia和Florida粘土或其他,其中主要的矿物组成为多水高岭土、高岭石、地开石、珍珠陶土或蠕陶土。这些粘土可以使用原始开采的原料状态,或起始经受过煅烧的,酸处理或化学改性的。用以与沸石组合的粘合剂也包括无机氧化物,主要是氧化铝。
除前述的材料外,本沸石可与多孔的基体材料组合,如SiO2-Al2O3,SiO2-MgO,SiO2-ZrO2,SiO2-ThO2,SiO2-BeO,SiO2-TiO2,以及三元组合物如SiO2-Al2O3-ThO2,SiO2-Al2O3-ZrO2,SiO2-Al2O3-MgO和SiO2-MgO-ZrO2。也可有利地提供至少部分的胶体形式的前述基体材料,以便有利于挤压出结合的催化剂组分。
沸石和无机氧化物基体的相对比例变化范围很宽,沸石含量范围在1-90%(重量),特别当复合体制成珠的形式时,通常为该复合体的2-80%(重量)范围。
本发明的烷基化催化剂的稳定性可由蒸气法来提高,这可方便地来实现,可用5-100%的蒸气在至少300℃(更好为300-650℃)温度下和101-2500/千帕斯卡压力下接触沸石至少1小时(更好为1-200小时)。在更详细的具体方案中,催化剂的制造可用75-100%蒸气在315-540℃温度和大气压力下进行蒸热1-25小时。
本发明的烷基方法一般在0℃-500℃温度下进行,较好地为50°-400℃,更好地为100°-400℃;压力为20-25.350千帕斯卡(0.2-250大气压),较好地为100-2,550千帕斯卡(1-25大气压);可烷基化的芳族化合物与烷基化剂的摩尔比为0.1∶1到50∶1,更好地为0.5∶1到10∶1;每小时空间速度的进料重量(WHSV)为0.1-500,更好地为0.5-100,后者WHSV是以活性催化剂的总重量为基准(假如存在有粘合剂的话,还包括粘合剂)。
本发明的烷基化方法可以单独批料型式、半连续或连续操作(利用固定床、流态化或移动床催化剂系统)的形式来实施。
现在参考实施例和附图,本发明将更详细地进行描述,其中:
图1-5为下文将提出的实施例1、3、4、5和7的煅烧过的晶体材料产物的X-射线衍射图;
图6-10为下文描述的有关实施例15的方法操作特性数据的图形表示。
在这些实施例中,每当比较水、环己烷和/或正己烷的吸附能力而提出吸附数据时,它们是平衡吸附值,且由下述方法测定:
将已称重的煅烧过的吸附剂试样在吸附室中与所需的纯吸收物质蒸气进行接触,抽真空至小于1毫米汞柱,并与1.6KPa(12Torr)的水蒸气或5.3KPa(40Torr)的正-己烷或5.3KPa(40Torr)的环己烷蒸气相接触,其压力小于各自吸收质在90℃时的气-液相平衡压力。在吸附期间(不超过8小时)加入由恒压器控制的吸收质蒸气时,使其压力保持恒定(约在±0.5毫米汞柱之内)。当吸附物质被沸石吸附时,压力的降低引起恒压器打开阀门,并使更多的吸收质蒸气进入吸附室以恢复上述的控制压力。当吸附室内压力变化不足以驱动恒压器时,吸附就完成。计算出增加的重量作为试样的吸附能力,以克/100克的煅烧吸收剂来表示。本发明方法中所用的沸石经常显示有的平衡吸附值对环己烷蒸气来说为大于4.5%(重量),一般大于7%(重量);对正-己烷蒸气来说为大于10%(重量),对水蒸气来说通常为大于10%(重量)。
当测定α值时,应注意到该α值是与标准催化剂相比较的催化剂的催化裂化活性的近似表示值,它给出相对速率常数(每单位时间每单位催化剂体 积正常己烷的转化速率)。它是建立在以高度活性的SiO2-Al2O3裂化催化剂的活性当作α值为1的基础上的(速率常数=0.016秒)。这里所使用的α试验(Alpha Test)在J.Catalysis,61.pp.390-396(1980)中有所描述。
实施例1
将1份铝酸钠(43.5%Al2O3,32.2%Na2O,25.6%(H2O)溶解于含有1份50%NaOH溶液和103.13份H2O的溶液中。再加入4.50份六亚甲基亚胺至此溶液中。将所得的溶液加入到8.55份的Ultrasil,即一种沉淀的喷雾干燥的氧化硅(约90%SiO2)。
该反应混合物具有下述的组成(以摩尔比表示):
SiO2/Al2O3=30.0
OH/SiO2=0.18
H2O/SiO2=44.9
Na/SiO2=0.18
R/SiO2=0.35
此处,R为六亚甲基亚胺。
将该混合物在不锈钢反应器中随同搅拌在150℃下结晶7天。结晶产物经过滤、用水洗涤,并在120℃下干燥。在538℃下煅烧20小时后,含有主要线条的X-射线衍射图列出于表Ⅴ中。图1表示煅烧产物的X-射线衍射图。测得煅烧材料的吸附能力为:
H2O 15.2%(重量)
环己烷    14.6%(重量)
正-己烷    16.7%(重量)
测得煅烧的结晶材料的表面积为494米2/克。
未煅烧材料的化学组成经测定如下:
组分    重量%
SiO266.9
Al2O35.40
Na    0.03
N    2.27
灰分    76.3
SiO2/Al2O3摩尔比 21.1
表Ⅴ
度2-Q 晶面d-间距(A) I/I0
2.80    31.55    25
4.02    21.98    10
7.10    12.45    96
7.95    11.12    47
10.00    8.85    51
12.90    6.86    11
14.34    6.18    42
14.72    6.02    15
15.90    5.57    20
17.81    4.98    5
20.20    4.40    20
20.91    4.25    5
21.59    4.12    20
21.92    4.06    13
22.67    3.92    30
23.70    3.75    13
24.97    3.57    15
25.01    3.56    20
26.00    3.43    100
26.69    3.31    14
27.75    3.21    15
28.52    3.13    10
29.01    3.08    5
29.71    3.01    5
31.61    2.830    5
32.21    2.779    5
33.35    2.687    5
34.61    2.592    5
实施例2
将部分实施例1的煅烧结晶产物于α试验(Alpha    Test)中进行测试,并发现它具有的α值为224。
实施例3-5
制备三个单独的合成反应混合物。其组成示于表Ⅵ中。该混合物是由铝酸钠,氢氧化钠,Ultrasil,六亚甲基亚胺(R)和水制备而成。将此混合物分别地在150℃,143℃和150℃温度和在自生的压力下不锈钢高压釜中分别地保持7,8和6天。固体通过过滤使从任何未反应组分中分离出来,然后用水洗,接着在120℃下干燥。结晶产 物使经受X-射线衍射,吸附,表面积和化学分析。吸附、表面积和化学分析的结果表示在表Ⅵ中,X-射线衍射图分别表示于图2、3和4中。吸附和表面积的测量是对煅烧过产物而言。
表Ⅵ
实施例    3    4    5
合成混合物    摩尔比
SiO2/Al2O330.0 30.0 30.0
OH-/SiO20.18 0.18 0.18
H2O/SiO219.4 19.4 44.9
Na/SiO20.18 0.18 0.18
R/SiO20.35 0.35 0.35
产物组成    重量%
SiO264.3 68.5 74.5
Al2O34.85 5.58 4.87
Na    0.08    0.05    0.01
N    2.40    2.33    2.12
灰分    77.1    77.3    78.2
SiO2/Al2O3摩尔比 22.5 20.9 26.0
吸附    重量%
水    14.9    13.6    14.6
环己烷    12.5    12.2    13.6
正己烷    14.6    16.2    19.0
表面积 米2/克 481 492 487
实施例6
将一定量的实施例3、4和5的煅烧过的(538℃下3小时)结晶硅酸盐产物在α试验(Alpha    Test)中进行测试,并发现其具有的α值分别为227、180和187。
实施例7
用实验说明本沸石的另一个制备方法,将4.49份六亚甲基亚胺加入到含有1份铝酸钠,1份50%的氢氧化钠溶液和44.19份水的溶液中,在此混合的溶液中再加入8.54份Ultrasil氧化硅。将该混合物随着搅拌在145℃温度下结晶59小时,将最终生成的产物进行水洗并在120℃下干燥。
干燥的结晶产物的X-射线衍射图表示在图5中,并表明了该产物为本发明的结晶材料。产物的化学组成、表面积和吸附分析结果阐明于表Ⅶ中:
表Ⅶ
产物组成(未煅烧的)
C    12.1%(重量)
N    1.98%(重量)
Na    640ppm
Al2O35.0%(重量)
SiO274.9%(重量)
SiO2/Al2O3摩尔比 25.4
吸附    重量%
环己烷    9.1
正己烷    14.9
水    16.8
表面积 米2/克 479
实施例8
将25克得自实施例7的固体结晶产物在流动的氮气氛中于538℃煅烧5小时,随后用5%氧气(余量为氮气)在538℃下又吹洗16小时。
将个别的3克煅烧过的材料试样用100毫升的0.1N TEABr,TPABr和LaCl3溶液分别地进行离子交换。每个离子交换在周围环境温度(室温)下进行24小时,并重复三次。经交换过的试样通过过滤收集之,水洗使其不含卤化物,并干燥之。经交换过的试样的组成列表于下,表明本硅酸盐结晶对不同离子的交换能力。
交换离子    TEA    TPA    La
离子组成,%(重量)    -    -    -
Na    0.095    0.089    0.063
N    0.30    0.38    0.03
C    2.89    3.63    -
La    -    -    1.04
实施例9
将得自实施例8的镧-交换的试样筛分至14-25网目,然后在空气中于538℃煅烧3小时时。煅烧过的材料具有的α值为173。
实施例10
将得自实施例9的煅烧过的镧-交换的材料试样在100%蒸气中于649℃急剧蒸热2小时。蒸热试样具有的α值为22,表明该沸石在剧烈水热处 理下具有非常良好的稳定性。
实施例11
本实施例说明本沸石的制备方法,这里前文一般结构式中的X为硼。将硼酸2.59份加入到含有1份45%的KOH溶液和42.96份水的溶液中。在此溶液中再加入8.56份Ultrasil氧化硅,完全调和该混合物。将3.88份的六亚甲基亚胺加入到混合物中。
该反应混合物具有下述的组成(以摩尔比表示):
SiO2/B2O3=6.1
OH-/SiO2=0.06
H2O/SiO2=19.0
K/SiO2=0.06
R/SiO2=0.30
此处R为六亚甲基亚胺。
该混合物在不锈钢反应器内随同搅拌在150℃下结晶8天。过滤出结晶产物,用水洗涤,并在120℃下干燥。将部分产物在540℃煅烧6小时,并发现具有以下的吸附能力:
水(12乇)    11.7%(重量)
环己烷(40乇)    7.5%(重量)
正己烷(40乇)    11.4%(重量)
经煅烧的结晶材料的表面积测得(BET)为405米2/克。
未煅烧的材料的化学组成经测定如下:
N    1.94%(重量)
Na    175ppm
K    0.60%(重量)
B(硼)    1.04%(重量)
Al2O3920ppm
SiO275.9%(重量)
灰分    74.11%
SiO2/Al2O3,摩尔比=1406
SiO2/(Al+B)2O3,摩尔比=25.8
实施例12
将部分实施例11的煅烧过的结晶产物用NH4Cl处理,并再次煅烧。最终结晶产物在α试验(Alpha Test)中进行测试,并发现具有的α值为1。
实施例13
本实施例说明本沸石的另一个制备方法,其中前文一般结构式中的X为硼。将硼酸2.23份加入到含有1份50%的NaOH溶液和73.89份水的溶液中。在此溶液中再加入15.29份的Hi    Sil氧化硅,接着加入6.69份六亚甲基亚胺。该反应混合物具有以下的组成(以摩尔比表示):
SiO2/B2O3=12.3
OH-/SiO2=0.056
H2O/SiO2=18.6
K/SiO2=0.056
R/SiO2=0.30
这里R为六亚甲基亚胺。
该混合物在不锈钢反应器内随同搅拌在300℃下进行结晶9天。过滤结晶产物,用水洗涤,并在120℃干燥之。该煅烧过的材料(在540℃下煅烧6小时)的吸附能力经测定为:
H2O(12乇) 14.4%(重量)
环己烷(40乇)    4.6%(重量)
正己烷(40乇)    14.0%(重量)
该煅烧过的结晶材料的表面积经测定为438米2/克。
未经煅烧的材料的化学组成经测定如下:
组分    重量%
N    2.48
Na    0.06
B    0.83
Al2O30.50
SiO273.4
SiO2/Al2O3,摩尔比=249
SiO2/(Al+B)2O3,摩尔比=28.2
实施例14
将实施例13的部分经煅烧的结晶产物在α试验(Alpha    Test)中进行测试,并发现其具有的α值为5。
实施例15
使用本发明沸石和ZSM-12进行以丙烯来使苯烷基化以对比催化剂的老化试验。在工艺条件为17小时-1苯WHSV、苯与丙烯的摩尔比为3∶1和2170千帕斯卡(300磅/平方英寸)下进行。
本发明沸石的制备方法是:将4.49份数量的六亚甲基亚胺加入到含1份铝酸钠,1份50%NaOH,8.54份Ultrasil VN3和44.19份无离子水的混合物中。将该反应混合物加热至143℃ (290°F),并在高压釜中在结晶温度下进行搅拌。在达到完全结晶度之后,大部分六亚甲基亚胺通过有控制的蒸馏从高压釜中除去,并通过过滤沸石结晶从剩留的液体中分离出来,用无离子水洗涤和干燥之。
部分沸石结晶与Al2O3并合而形成65份(重量)沸石和35份Al2O3的混合物。将水加至该混合物中,使所得结晶形成压出物。催化剂通过在540℃(1000°F)下于氮气中煅烧使其活化,接着用硝酸铵溶液进行离子交换,并在540℃(1000°F)下于空气中煅烧。
图6表示保持丙烯完全转化所需的温度。在130℃,本沸石当在等温反应条件下的270个气流小时期间不会老化。
本发明沸石和ZSM12对异丙基苯(IPBs)的选择性分别示于图7和8中。使用本沸石,在丙烯完全转化条件下,其对IPBs的总选择性约为100%,而使用ZSM-12,与其比较则为90%。这个情况以及层析色谱分析数据表明经使用ZSM-12丙烯呈现聚化的,因而导致异丙基苯(IPB)选择性的降低。
图9中标绘的数据表示本发明沸石在生成二异丙基苯(DIPB)过程中比ZSM-12催化剂更具活力。因此,当用丙烯来使苯烷基化时,使用本沸石,则10%的产物为二异丙基苯(DIPB),主要为间位和对位的同分异构体。图9表示使用本沸石时,对-二异丙基苯(Para-DIPB)的产率(约全部烃产物的5%重量)大于使用ZSM-12时的产率(约4%重量)。DIPBs为制造二羟基苯如氢醌(对苯二酚)(对-)和间苯二酚(间-)的中间体,此两者具有重要的工业用途。
图10表示在使用ZSM-12和使用本沸石时反应产物中的正-丙基苯与枯烯(异丙基苯)的比率随反应温度变化的情况。用本沸石经270小时反应,正丙基苯与枯烯(异丙基苯)的比率保持近于恒定,为160ppm。此种情况可与使用ZSM-12时在有98%丙烯转化的同样条件下(仅只是较高温度)的700ppm大小程度相比较。
实施例16
此实施例说明在本沸石存在下用丙烯来烷基化枯烯(异丙基苯)以得到二异丙基苯(DIPBs)。烷基化反应条件为2170千帕斯卡(300磅/平方英寸)、150℃和枯烯的摩尔为1∶1。可达到的枯烯变成烷基化物的转化率为81%。DIPBs包括有84%的这种烷基化产物,其余的为三异丙基苯(TIPB)。该DIPBs为65%的对-,34%的间-、和1%的邻-DIPBs。
实施例17
此实施例表明使用本沸石以α-C14链烯来烷基化苯酚以得到烷基化苯酚的混合物。烷基化是在1升的高压釜中进行,使用400克(2.02摩尔)链烯,95克(1.01摩尔)苯酚和38克催化剂,65%(重量)MCM-22/35%(重量)Al2O3粘合剂。在2860千帕斯卡(400磅/平方英寸)氮气下,温度为177℃(350°F),反应时间为6小时。
产物经分析,表明存在有单取代,双取代三取代的十四烷基酚。
实施例18
此实施例表明使用二种(每种)已知的烷基化催化剂即路易斯酸AlCl3和沸石β(这些已公开于美国专利4,301,316中)以1-十二碳烯来烷基化苯的情况。其同分异构物的分配示于下面的表Ⅷ中:
表Ⅷ
1-十二碳烯烷基化的同分异构
物的分配,重量%
烷基苯 AlCl3沸石β
异构物
2    30    57
3    19    18
4    17    10
5    17    7
6    17    8
该十二烷基苯混合物的组成情况在某些程度上取决于所包含的酸催化剂。据报导硫酸可产生41%(重量)的2-十二烷基苯,而HF只产得20%(重量)。对于其他包括比较大的(即C+ 6,)烷基化剂的烷基化作用,也可显示有同样结果。
实施例19
本实施例表示分别使用本发明的沸石(根据实施例15所制得的)和分别使用沸石β。以α-C14链烯(Shell′s Neodene-14)来烷基化苯的情况。烷基化在1升的高压釜中进行,使用400克 (2.02摩尔)链烯,79克(1.01摩尔)苯和38克催化剂。在2860千帕斯卡(400磅/平方英寸)的氮气下,在204℃(400°F)温度下,反应时间为6小时。其同分异构物示于表Ⅸ如下:
表Ⅸ
烷基化同分异构物的分配,重量%
烷基苯异构物    本发明的沸石    沸石β
2    59.2    54.7
3    36.2    20.3
4    2.5    9.4
5    0.9    5.8
6    0.4    5.3
7    0.5    5.5
正如实施例18和19中的数据所示,使用本发明的沸石作为烷基化催化剂,在相同或相似条件下能产生比已知的路易斯酸或沸石β烷基化催化剂有高得多的2-和3-烷基异构体种类的百分含量。
具有约8-16个碳原子烷基侧链的烷基化产物,特别可用作制造线性烷基苯磺酸盐合成洗涤剂的中间体。
实施例20
在单独分开的烷基化试验A和B中,使用两种不同的沸石催化剂,即按实施例15制造的本发明的沸石和沸石β,在基本上相同条件下进行试验,以提供一种润滑油基本原料,每种催化剂组成中含有65%沸石并结合有35%(重量)的氧化铝。
每个试验的烷基化反应在1升高压釜中进行,使用400克(2.02摩尔)的αC14链烯(Shell Neodene-14),79克(1.01摩尔)的苯(苯与链烯的摩尔比为5∶1)随同38克催化剂在2860千帕斯卡(400磅/平方英寸)的氮气压力下、在204℃(400°F)一起反应6小时。
表Ⅹ阐明由采用下述沸石进行的烷基化作用所产生的润滑油产率和润滑油性质。
表Ⅹ
试验A    试验B
催化剂    本发明的实施例15    β
润滑油产率,重量%    77.0    37.0
润滑油性质:
倾点°F(℃)    -60(-51)    -60(-51)
浊点°F(℃)    -38(-39)    -50(-46)
40℃时的动力粘滞度    12.59    14.54
(厘沲)
100℃时的动力粘    31.51    3.471
滞度(厘沲)
粘度指数    113    117
经气相色谱分析和场离子质谱分析表明,由本发明催化剂制得的合成润滑油分别含有-烷基苯和二-烷基苯化合物为67和33%(重量)的混合物。另一催化剂,即沸石β,不仅增进形成一-和二-烷基苯的烷基化作用,而且增进C14低聚作用而形成C28链烯。除了显示有独特的烷基化选择性外,本发明催化剂与沸石β相比,它具有非常大的活性,并可制得非常低的倾点和浊点的烷基化苯润滑油基本原料。
实施例21
本实施例比较了本发明催化剂的活性与沸石β在萘与αC14链烯烷基化作用中的活性。该反应是在与实施例20相似的工艺条件下进行的,并采用α链烯与萘的摩尔比为0.5∶1。该烷基化了的萘润滑油产率约为94%(重量),含有合成润滑油的产物主要含有一取代、二取代和三取代烷基萘的混合物,并具有以下性质(表Ⅺ)
表Ⅺ
催化剂    本发明的沸石
润滑油产率,%(重量)    94
润滑油性质
倾点,°F(℃)    <-65(<-54)
40℃时的动力粘滞度,(厘沲)    37.27
100℃时的动力粘滞度,(厘沲)    5.894
粘度指数    100
实施例22
本实施例也是表明用αC14链烯来烷基化其他芳族化合物如甲苯(实施例22A)和二甲苯(实施例22B时所采用的本沸石催化剂的优良活性和选择性在相似工艺条件下与苯(实施例22C)的比较(表Ⅻ
表Ⅻ
实施例序号    22A    22B    22C
芳族化合物    甲苯    二甲苯    苯
链烯 C14C14C14
摩尔比,C14芳族 1 1 1
润滑油产率,%    88.6    73.0    92.0
(重量)
润滑油性质
倾点,°F(℃)    <-65(-54)    <-65(-54)    -45(-43)
浊点,°F(℃)    <-65(-54)    <-65(-47)    -44(-42)
在40℃时的动力
粘滞度(厘池)在    9.408    16.13    7.651
100℃时的动力
粘滞度(厘池)    2.505    3.393    2.265
粘度指数    87    70    106
实施例23
本实施例说明按本发明的烷基化方法,它利用得自1-癸烯(使用丙醇助催化的BF3催化剂)低聚作用的链烯原料。该所用的催化剂为本发明实施例15所制得的沸石,包括与AlO3粘合剂相结合的,并转变为氢型的形式。
将1-癸烯、BF3和丙醇加入到反应器中,使1-癸烯低聚化。将低聚产物在从真空蒸馏装置中分离出轻产物之前,首先用NaOH、然后用水洗涤之。然后用250克的含有33%(重量)的C30链烯,52%(重量)的C40链烯和15%(重量)的C50链烯的1-癸烯低聚物来烷基化78克苯,并用22克本发明的沸石作催化剂。该反应在2860千帕斯卡(400磅/平方英寸)氮气下和204℃(400°F)下进行6小时。
在倾析出催化剂和蒸馏出任何未反应的苯之后,该润滑油产率为88%(重量),表明有12%(重量)的苯己被烷基化,且已并合到癸烯低聚物之主链结构中。这个事实可进一步由红外线分析所确认。苯烷基化前和后的低聚物的性质如下所示(表ⅩⅢ):
表ⅩⅢ
方法    低聚化    烷基化
润滑油性质
倾点,°F(℃)    <-65(<-54)    <-65(<-54)
浊点,°F(℃)    <-65(<-54)    <-65(<-54)
40℃时的动力粘    25.73    33.03
滞度(厘沲)
100℃时的动力粘
滞度(厘沲)    5.225    6.039
粘度指数
产物性质    138    131
在288℃(550°F)
下的热稳定性
粘度降低%    10.9    4.6
B-10氧化稳定性
粘度增加%    120    80.6
在180℃时    5.0    10.5
DSC-IP分钟
结果表明,烷基化步骤可制得具有良好产物性质如非常低的倾点和浊点、高粘度指数连同一起的改进的附加溶解本领的特性以及较高的热和氧化稳定性的含苯合成润滑油基本原料。
实施例24
本实施例说明用以Cr/SiO2为催化剂所得的1-癸烯低聚物产物而进行的本发明的烷基化方法。
因此,将1-癸烯和Cr/SiO2加入到低聚反应器中,接着由此而得的产物被真空气提,之后,与苯一起加入到烷基化反应器中。
烷基化反应是在如同实施例23的相同工艺条件下进行,只是使用500克癸烯低聚物和95克苯6克本发明的沸石作催化剂。在苯烷基化前和后的癸烯低聚物的性能如下所示(表ⅩⅣ):
表ⅩⅣ
方法    烷基化
润滑油性质
倾点,°F(℃)    -30(-34)    -25(-32)
浊点,°F(℃)    <-65(<-54)    -30(<-34)
在40℃时的动力    122.9    68.11
粘滞度
(厘沲)
在100℃时的动力    18.33    11.60
粘滞度(厘沲)
粘度指数    167    166
实施例25
用与实施例23相似的方法,用400克的204-371℃(400-700°F)下的馏出液(78重量%),它是通过在使用ZSM-5催化剂下使轻链低聚化作用而制得,将该馏出液在本发明催化剂存在下与115克萘(12重量%)进行烷基化反应。所得的370℃,(700°F)的润滑油产率为54%(重量)。表ⅩⅤ表示经烷基化的萘润滑基本原料的性质:
表ⅩⅤ
方法    链烯转化为    烷基化
汽油和馏出液
性质
倾点,°F(℃)    <-65(-54)    0(-18)
40℃动力粘滞度(厘沲)    -    152.6
100℃动力粘滞度(厘沲)    2.5    10.15
类如的馏出液,
°F(℃)
IBP/5%    00/375(149/191)    636/679(336/359)
10/20%    435/467(224/242)    701/732(372/389)
30/40%    488/509(253/265)    754/776(401/413)
50%    529(276)    799(426)
60/70%    533/583(289/306)    825/856(441/458)
80/90%    622/679(328/354)    894/948(479/509)
95%    725(385)    990(532)

Claims (11)

1、一种烷基化芳族化合物的方法,包括在由合成的多孔性结晶沸石构成的催化剂存在下使芳族化合物与至少一个烷基化剂相接触,该沸石具有大体上包括如表Ⅰ所阐明的数值的X-射线衍射图谱,该烷基化剂系由至少一个不饱和的、具有2-5个碳原子的脂族基团所组成,或其包括至少一个具有至少6个碳原子的脂族链。
表Ⅰ
晶面间d-间距(A) 相对强度I/I0×100
12.36±0.4  M-VS
11.03±0.2  M-S
8.83±0.14  M-VS
6.18±0.12  M-VS
6.00±0.10  W-M
4.06±0.07  W-S
3.91±0.07  M-VS
3.42±0.06  VS
2、如权利要求1所述的方法,其特征是该沸石具有的X-射线衍射图大体上包括如表Ⅱ所阐明的数值。
表Ⅱ
晶面间d-间距(A) 相对强度I/I0×100
30.0±2.2  W-M
22.1±1.3  W
12.36±0.4  M-VS
11.03±0.2  M-S
8.83±0.14  M-VS
6.18±0.12  M-VS
6.00±0.10  W-M
4.06±0.07  W-S
3.91±0.07  M-VS
3.42±0.06  VS
3、如权利要求1所述的方法,其特征是该沸石具有的X-射线衍射图大体上包括如表Ⅲ所阐明的数值。
表Ⅲ
晶面间d-间距(A) 相对强度I/I0×100
12.36±0.4  M-VS
11.03±0.2  M-S
8.83±0.14  M-VS
6.86±0.14  W-M
6.18±0.12  M-VS
6.00±0.10  W-M
5.54±0.10  W-M
4.92±0.09  W
4.64±0.08  W
4.41±0.08  W-M
4.25±0.08  W
4.10±0.07  W-S
4.06±0.07  W-S
3.91±0.07  M-VS
3.75±0.06  W-M
3.56±0.06  W-M
3.42±0.06  VS
3.30±0.05  W-M
3.20±0.05  W-M
3.14±0.05  W-M
3.07±0.05  W
2.99±0.05  W
2.82±0.05  W
2.78±0.05  W
2.68±0.05  W
2.59±0.05  W
4、如权利要求1所述的方法,其特征是该沸石具有的X-射线衍射图大体上包括如表Ⅳ所阐明的数值。
表Ⅳ
晶面间d-间距(A) 相对强度I/I0×100
30.0±2.2  W-M
22.1±1.3  W
12.36±0.4  M-VS
11.03±0.2  M-S
8.83±0.14  M-VS
6.86±0.14  W-M
6.18±0.12  M-VS
6.00±0.10  W-M
5.54±0.10  W-M
4.92±0.09  W
4.64±0.08  W
4.41±0.08  W-M
4.25±0.08  M
4.10±0.07  W-S
4.06±0.07  W-S
3.91±0.07  M-VS
3.75±0.06  W-M
3.56±0.06  W-M
3.42±0.06  VS
3.30±0.05  W-M
3.20±0.05  W-M
3.14±0.05  W-M
3.07±0.05  W
2.99±0.05  W
2.82±0.05  W
2.78±0.05  W
2.68±0.05  W
2.59±0.05  W
5、如权利要求1所述的方法,其特征是该沸石具有的组成包括有下述的摩尔关系
X2O3∶(n)YO2
其中n至少约为10,X为三价元素,Y为四价元素。
6、如权利要求5所述的方法,其特征是X包括铝,Y包括硅。
7、如权利要求1所述的方法,其特征是该沸石具有的平衡吸附能力,对环己烷蒸气来说为大于4.5%(重量);对正己烷蒸气来说为大于10%(重量)。
8、如权利要求1所述的方法,其特征是该烷基化剂为丙烯,该芳族化合物为苯和/或枯烯。
9、如权利要求1所述的方法,其特征是该烷基化剂为乙烯,该芳族化合物为苯。
10、如权利要求1所述的方法,其特征是该烷基化条件包括0°-500℃的温度,20-25350千帕斯卡(0.2-250大气压)的压力,0.1-500的WHSV,以及可烷基化的芳族化合物与烷基化剂的摩尔比为0.1∶1至50∶1。
11、如权利要求1所述的方法,其特征是该烷基化条件包括10°-350℃的温度,100-2550千帕斯卡(1-25大气压)的压力,0.5-100的WHSV,以及可烷基化的芳族化合物与烷基化剂的摩尔比为0.5∶1至10∶1。
CN 90103474 1986-07-29 1990-06-23 芳族化合物的烷基化 Expired - Lifetime CN1028749C (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US89026886A 1986-07-29 1986-07-29

Publications (2)

Publication Number Publication Date
CN1057640A CN1057640A (zh) 1992-01-08
CN1028749C true CN1028749C (zh) 1995-06-07

Family

ID=25396480

Family Applications (2)

Application Number Title Priority Date Filing Date
CN 90103009 Pending CN1057451A (zh) 1986-07-29 1990-06-15 一种醚的制备方法
CN 90103474 Expired - Lifetime CN1028749C (zh) 1986-07-29 1990-06-23 芳族化合物的烷基化

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN 90103009 Pending CN1057451A (zh) 1986-07-29 1990-06-15 一种醚的制备方法

Country Status (1)

Country Link
CN (2) CN1057451A (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100391608C (zh) * 2004-05-28 2008-06-04 中国石油化工股份有限公司 合成对二异丙苯的催化剂
CN100391607C (zh) * 2004-05-28 2008-06-04 中国石油化工股份有限公司 生产烷基苯的催化剂
US10364204B2 (en) * 2015-06-22 2019-07-30 Lyondell Chemical Technology, L.P. Process for manufacturing methyl tertiary-butyl ether (MTBE) and other hydrocarbons
CN105251529B (zh) * 2015-11-25 2017-09-12 广东工业大学 一种负载型催化剂及其制备方法与催化长链烷基酚的合成方法
CN108368016B (zh) * 2015-12-28 2023-09-26 日本瑞翁株式会社 环戊基烷基醚化合物的制造方法

Also Published As

Publication number Publication date
CN1057640A (zh) 1992-01-08
CN1057451A (zh) 1992-01-01

Similar Documents

Publication Publication Date Title
CN1027048C (zh) 新沸石催化剂、制法及应用
CN1025323C (zh) 化学转化方法
CN1034325C (zh) 沸石
CN1046494C (zh) 芳烃的制备方法
CN1033850C (zh) 沸石
CN1341078A (zh) 合成的多孔结晶的mcm-68及其合成和应用
CN1159100C (zh) 用于烯烃转化的催化剂的生产
CN1094792C (zh) 氧化物沸石的制备方法及其作为催化剂的应用
CN1203036C (zh) 从混合c8 芳烃中变压吸附分离对二甲苯和乙苯的方法
CN1209443C (zh) 烯烃的生产
CN1032059C (zh) 将直链烯烃异构成异烯烃的方法
CN1020716C (zh) 二甲基萘满的制备方法
CN1057039A (zh) 多孔结晶合成材料,其合成和应用
CN1124973A (zh) 合成多层材料mcm-56,它的合成方法及它的用途
CN1011505B (zh) 钛-铝-硅氧化物分子筛组合物的制备方法
CN1323991C (zh) 制备烷基芳基化合物及其磺酸盐的方法
CN1284109A (zh) 丙烯的生产
CN1733871A (zh) 液化石油气制造用催化剂以及使用该催化剂的液化石油气的制造方法
CN1054246A (zh) 双功能催化剂及使用它的异构化反应
CN1029840C (zh) 化学转化方法
CN1028749C (zh) 芳族化合物的烷基化
CN1406271A (zh) 具有增强的水硬度耐受性的固体烷基苯磺酸盐和清洁组合物
CN1028019C (zh) 异链烷烃-烯烃烷基化方法
CN87101272A (zh) 生产二烯烃的方法
CN1749371A (zh) 液化石油气的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C17 Cessation of patent right
CX01 Expiry of patent term

Granted publication date: 19950607