CN102870087A - 流体有限体积仿真的方法和系统 - Google Patents

流体有限体积仿真的方法和系统 Download PDF

Info

Publication number
CN102870087A
CN102870087A CN2011800218294A CN201180021829A CN102870087A CN 102870087 A CN102870087 A CN 102870087A CN 2011800218294 A CN2011800218294 A CN 2011800218294A CN 201180021829 A CN201180021829 A CN 201180021829A CN 102870087 A CN102870087 A CN 102870087A
Authority
CN
China
Prior art keywords
grid
coarse
basic function
calculate
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800218294A
Other languages
English (en)
Other versions
CN102870087B (zh
Inventor
I·D·米舍夫
O·杜布瓦
L·蒋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Upstream Research Co
Original Assignee
Exxon Production Research Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Production Research Co filed Critical Exxon Production Research Co
Publication of CN102870087A publication Critical patent/CN102870087A/zh
Application granted granted Critical
Publication of CN102870087B publication Critical patent/CN102870087B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling

Abstract

本发明提供一种建模碳氢化合物储层的方法,其包括使用多级混合多尺度有限体积(MMMFV)方法在精细非结构化网格上推导可计算网格。推导可计算网格包括计算用于压力的第一代数多级基础函数,构建互相作用区域,以及生成主网格。用于速率近似的第二代数多级基础函数被计算并且主网格被离散。使用可计算的网格仿真碳氢化合物储层。至少部分基于仿真的结果在非瞬态计算机可读介质内产生物理碳氢化合物储层的数据表示。

Description

流体有限体积仿真的方法和系统
相关申请的交叉引用
本申请要求申请号为No.61/330,012美国临时专利申请的权益,该申请提交于2010年4月30日,标题为METHOD AND SYSTEM FORFINITE VOLUME SIMULATION OF FLOW,其全部内容包括在此作为参考。
技术领域
本技术的示例性实施例涉及提供多孔介质中流体的有限体积仿真的方法和系统。
背景技术
本部分意图介绍可以与本技术的示例性实施例关联的本领域各方面。该讨论据信帮助提供框架从而促进本技术的特别方面的更优理解。因此,应理解本节应据此阅读并且不必需作为现有技术的承认来阅读。
现代社会非常依赖为燃料和化学原料使用碳氢化合物。碳氢化合物一般在一般称为储层的地下岩层中发现。从储层去除碳氢化合物取决于岩层的许多物理性质,尤其例如含碳氢化合物岩石的渗透度、碳氢化合物流过岩层的能力,以及碳氢化合物存在的百分比。
经常地,称为“仿真模型”的数学模型用来仿真碳氢化合物储层以便定位碳氢化合物并最优化碳氢化合物的生产。仿真模型是一类计算流体动力学仿真,其中支配流过多孔介质和被连接设施网络的多相、多成分流体流动的一组偏微分方程(PDE)可以逼近并求解。这是其中最优化特别碳氢化合物生产策略的迭代的、时间步进的过程。
储层仿真模型的性质,例如渗透度或孔隙度,经常是高度非均匀的并且可以变化。变化在从最小到可以与储层大小比较的最大尺度的全部长度尺度中。使用非常精细的栅格离散化从而捕捉非均匀性的这样模型的计算机仿真是计算上非常昂贵的。然而,忽视非均匀性可以导致错误结果。
为实现合理的计算性能,储层性质经常放大尺度。例如,调和化技术可以用来在较粗糙的仿真栅格上定义储层性质。在不同的变体中该技术以合理的成功广泛用于学术界和工业界。然而,放大尺度可以具有众多缺点。例如,放大尺度可以不为带有不可分离尺度的问题良好运作,如在下面更详细讨论。进一步地,放大尺度可以不完全捕捉储层流动中的全局特征。在复杂流动建模时,放大尺度也可以具有评估误差的困难。
非均匀或多尺度现象可以分为两类:可分离现象和不可分离现象。对于多孔介质,具有介质性质可以在其上变化的多尺度是普遍的。例如,如果特征跨储层连续变化,那么储层中的尺度可以是不可分离的。放大尺度方法可以用可分离尺度求解模型,但可以不能正确求解不可分离模型。
除不可分离现象之外,具有可以延伸穿过储层的巨大部分的特征如沟渠、长裂缝和断层。这些可以称为全局特征和信息。当前的放大尺度方法可以丢失可以对流动仿真显著的全局特征的影响,即可以没有放大尺度算法可以用来生成更复杂模型的信息。因此,结果可以不是非常现实的。
可以代替放大尺度或除放大尺度之外使用的另一途径是多尺度仿真。在多尺度仿真中,计算仍在较粗糙栅格上执行,但精细栅格信息用来构造一组基础函数,该组基础函数可以用于映射精细栅格性质到粗糙栅格。多尺度仿真可以比在精细栅格上的仿真快若干数量级,提供具有可比较质量的解。一种多尺度方法是多尺度有限元法(MsFEM),见于例如T.Y.Hou和X.H.Wu,A multiscale finite element method forelliptic problems in composite materials and porous media,J.Comput.Phys.,134:169-189,1997。该技术向其它数值多尺度法共享相似性,例如变分多尺度有限元法,见于T.Arbogast和K.Boyd,Subgridupscaling an mixed multiscale finite elements,SIAM Num.Anal.,44:1150-1171,2006;也见于T.J.R.Hughes,G.R.Feijoo,L.Mazzei和J.-B.Quincy,The variational multiscale method-A paradigm for computationalmechanics,Comput.Meth.Appl.Mech.Eng.,166:3-24,1998。该技术也可以相似于由W.E和B.Engquist,The heterogeneous multi-scalemethods,Comm.Math.Sci.,1(1)(2003),pp.87--133提出的非均匀多尺度法。已发展的另一途径是混合多尺度有限元法MMsFEM,其局部质量守恒并可以应用到多相仿真。见于Z.Chen和T.Y.Hou,A mixedmultiscale finite element method for elliptic problems with oscillatorycoefficients,Math.Comp.,72:541-576,2002。如这些参考示出,对多尺度方法的使用的深入研究已执行多于十年,尤其在学术界。尽管具有将多尺度方法应用于更实际和复杂问题的趋势,但用多尺度方法求解的仿真问题已简化并且是理论多于实践的。
上面讨论的多尺度方法使用局部信息并为可分离尺度良好执行。然而,仅使用局部信息的多尺度方法可以受到谐振误差影响,该谐振误差可以是多尺度仿真中的支配误差。谐振误差作为跨仿真单元的函数的振荡示出,增加接近仿真网格中单元边缘的量值。谐振误差通常与特性长度尺度和粗糙网格大小之间的比率成比例。在特性长度尺度的量值与粗糙网格大小的量值明显不同时,该比率为小。在特性长度尺度接近粗糙网格大小时,该比率变大。因此,误差为特性长度尺度的整个范围示出,并且误差对于不同的特性长度尺度不同。见于例如Y.Efendiev,V.Gunting,T.Y.Hou和R.Ewing,Accurate multiscale finiteelement methods for two-phase flow simulations,J.Comp.Phys.,220(1):155-174,2006。使用一些受限全局信息可以对基础函数的构造有用,以便发展减小或去除谐振误差的多尺度方法,见于J.E.Aarnes,Y.Efendiev和L.Jiang,Mixed multiscale finite element methods usinglimited global information,SIAM MMS,7(2):655-676,2008。此外,使用全局信息的MsFEM可以应用于没有尺度分离的问题。
工业界和学术界研究者已为相似技术,多尺度有限体积法(MSFV)报告结果。见于例如P.Jenny,S.H.Lee和H.A Tchelepi,Multi-scalefinite-volume method for elliptic problems in subsurface flow simulation,J.Comput.Phys.,187(2003),pp.47-67;也见于P.Jenny,S.H.Lee和H.A Tchelepi,Adaptive multiscale finite-volume method for multiphaseflow and transport,SIAM MMS,3(2004),pp.50-64。
例如,Jenny等人的美国专利No.7,496,488披露用于地层流动仿真的多尺度有限体积法。在该方法中,多尺度有限体积(MSFV)法用来求解起因于多孔介质中的单或多相流动的带有多个空间尺度的椭圆问题。该方法在粗糙网格上有效捕捉小尺度的效应,是守恒的,并正确处理张量导磁率。基础思想是构造捕捉微分算子的局部性质的传递率。这为有限体积解算法导致多点离散化方案。MSFV法的传递率优选仅作为预处理步骤构造一次并可以局部计算。
Lee等人的美国专利申请公开No.2008/0208539披露使用包括黑油建模的多尺度有限体积法的用于储层仿真的方法、装置和系统。多尺度有限体积(MSFV)法在重力和毛细管力存在的情况下将非线性的不可混溶三相可压缩流动建模。与MSFV构架一致,使用全隐式按序算法分离地且不同地处理流动和传送。使用算子分裂算法求解压力场。压力的通解分解成椭圆部分、浮力/毛细管力支配部分,以及带有源/汇和蓄积的不均匀部分。MSFV法用来计算椭圆分量的基础函数,捕捉压力场中的长范围相互作用。在最初粗糙栅格上速率场的直接构造和传送问题的解在调节物理机制中提供灵活性。MSFV法计算合适压力场,包括过程尺度压力方程的解;构造精细尺度流量;以及计算相传送方程。
如在上面参考中描述,MSFV法已用于结构化笛卡尔栅格,并紧密涉及在石油工业中受欢迎的多点流量近似方案(MPFA)。MSFV依靠都用于粗糙尺度压力的两组基础函数。
然而,具有使用MSFV的有限体积离散化的现有途径的若干问题。例如,为基础函数求解问题可以是计算昂贵的。进一步地,MSFV没有延伸到非构造化栅格,并且全局信息不用于MSFV。可以需要几何信息从而施加边界条件,这对于非结构化栅格非常难以实施。另外,多尺度基础仅使用局部信息,并且不可以求解全局特征如沟渠、不可渗透的页岩障碍、裂缝等。
发明内容
本技术的示例性实施例提供用于将碳氢化合物储层建模的方法。该方法包括使用多级混合多尺度有限体积(MMMFV)法从精细非结构化网格导出可计算网格。导出可计算网格包括计算用于压力的第一代数多级基础函数、构造互相作用区、生成主网格、计算用于速率近似的第二代数多尺度基础函数,以及使用可计算网格仿真碳氢化合物储层。该方法也包括至少部分基于仿真结果在非瞬时计算机可读介质中生成物理碳氢化合物储层的数据表示。
该方法也可以包括通过选择辅助网格、对辅助网格上的解求近似,以及使用提供的全局信息计算一个或多于一个速率基础函数,在第二代数多尺度基础函数的构造中使用全局信息。进一步地,在该方法中第一代数多级基础函数、第二代数多尺度基础函数或该两者可以至少部分基于离散调和函数。
在该方法中,导出可计算网格可以包括计算主网格和一个或多于一个互相作用区,并选择近似空间,其中该近似空间包括P和U。导出可计算网格也可以包括选择测试空间,其中该测试空间包括Q和V,并且选择离散梯度和散度算子。
在该方法中,计算第一代数多级基础函数可以包括在主网格中粗糙可计算单元的中心点将多个边界条件设置成一、在主网格中粗糙可计算单元的边界将该多个边界条件设置成零,以及使用该多个边界条件求解基础函数。
在该方法中,计算粗糙基础可以包括在可计算网格∑h中用直线[ai,b]连接两点ai和b。令最接近直线[ai,b]的∑h中的点为ai+1,连接生成从ai到ai+1的直线,并且如果ai+1≠b,那么设置i=i+1。计算粗糙基础可以包括选择另一连接并重复,例如直到全部连接完成。
在该方法中,计算粗糙基础可以包括选择互相作用区的中心点,选择互相作用区的一个或多于一个边缘的中心点,将互相作用区的中心点连接到边缘的中心点,以及连接一个或多于一个边缘从而形成多边形的面。
在该方法中,构造互相作用区可以包括通过构造三角测量的每个边缘来构造粗糙点的三角测量。构造三角测量的每个边缘可以包括在可计算网格∑h中用直线[ai,b]连接两个粗糙点ai和b,并且令∑h中的点为ai+1,其中该点最接近直线[ai,b]。进一步地,构造三角测量的每个边缘可以包括连接生成从ai到ai+1的直线;并且如果ai+1≠b,那么设置i=i+1,并重复直到ai+1=b。构造三角测量的每个边缘也可以包括选择另一连接并重复。最终,构造三角测量的每个边缘可以包括通过选择互相作用区的中心点,选择互相作用区的一个或多于一个边缘的中心点,将互相作用区的中心点连接到边缘的中心点,以及连接多边形的一个或多于一个面,来构造三角测量的一个或多于一个面。
该方法可以包括至少部分基于数据表示管理源自物理碳氢化合物储层的碳氢化合物的生产。管理生产可以包括将注入井转变成生产井、将生产井转变成注入井、改变生产率、钻探新井到储层,或其任何组合。在该方法中,速率近似的质量可以通过计算特殊向量基础函数,并为粗糙单元求解小型局部系统来改善。
本技术的另一示例性实施例提供用于从碳氢化合物储层生产碳氢化合物的方法。该方法包括在非结构化网格上使用多级混合多尺度有限体积法仿真碳氢化合物储层。仿真储层可以包括为压力计算第一代数多级基础函数、构造互相作用区、生成主网格、为速率近似计算第二代数多尺度基础函数,以及至少部分基于仿真结果从碳氢化合物储层生产碳氢化合物。
在该方法中,生产碳氢化合物可以包括钻探一个或多于一个井到碳氢化合物储层,其中该井包括生产井、注入井或该两者。进一步地,生产碳氢化合物可以包括设置源自碳氢化合物储层的生产率。
本技术的另一示例性实施例提供用于仿真多孔介质中的流动的混合多尺度有限体积法。该混合多尺度有限体积法包括收集关于碳氢化合物储层的全局信息、基于饱和度方程导出椭圆问题、计算多个非结构化粗糙网格和对应于该多个非结构化粗糙网格的多个压力基础函数、求解该多个基础函数从而为多个非结构化粗糙网格的每个重构速率向量场,以及迭代仿真直到达到最终时间帧。该仿真可以包括为多个非结构化粗糙网格的每个中的多个计算单元求解压力方程、为多个粗糙网格的每个计算总速率、为多个非结构化粗糙网格的每个求解椭圆问题、为多个非结构化粗糙网格的每个计算相位速率,以及为多个非结构化粗糙网格的每个计算成分运输。
混合多尺度有限体积法可以包括将为多个非结构化粗糙网格的每个计算的相位速率组合,从而为碳氢化合物储层获得相位速率。混合多尺度有限体积法也可以包括将为多个粗糙网格的每个计算的成分运输组合,从而为碳氢化合物储层获得相位速率。
本技术的另一示例性实施例提供用于仿真碳氢化合物储层的系统。该系统包括处理器和非瞬时存储设备,其中该存储设备包括碳氢化合物储层的数据表示,其中该数据表示是由混合多尺度有限体积法确定的非结构化可计算网格。该系统也包括内存设备,其中该内存设备包括代码从而引导处理器为压力计算第一代数多级基础函数、构造互相作用区、生成主网格、为速率近似计算第二代数多尺度基础函数、使用主网格仿真碳氢化合物储层,以及至少部分基于仿真结果更新数据表示。在该系统中,处理器可以包括多处理器集群。
附图说明
本技术的优点通过参考下面详细描述和附图更优理解,其中:
图1是根据本技术的示例性实施例的储层的示意图;
图2是根据本技术的示例性实施例的储层顶视图,其示出可计算网格在储层上的平面投影;
图3是根据本技术的示例性实施例的用于将储层建模的工作流程的过程流程图;
图4是根据本技术的示例性实施例的用于为一个牛顿步的顺序公式计算近似解的方法的过程流程图。
图5是称为Voronoi网格的可以用于示例性实施例的第一类网格的图解;
图6是称为矩形网格的可以用于示例性实施例的第二类网格的图解;
图7是称为四边形网格的可以用于示例性实施例的第三类网格的图解;
图8根据本技术的示例性实施例示出非结构化的二维三角形网格;
图9是根据本技术的示例性实施例示出双线性基础函数的图表;
图10根据本技术的示例性实施例示出可以用来图解建立下级更粗糙基础函数的进程的非结构化的二维三角形网格;
图11是根据本技术的示例性实施例的计算单元的图解,其图解用于计算基础函数的技术;
图12是根据本技术的示例性实施例的从上面讨论的进程导致的多尺度基础函数的例子;
图13是根据本技术的示例性实施例的代数多尺度函数的例子;
图14是根据本技术的示例性实施例的能量最小化基础函数的图解;
图15是根据本技术的示例性实施例的精细可计算网格的图解,其图解在过程中选择的粗糙点;
图16是根据本技术的示例性实施例的在精细可计算网格内粗糙点的三角测量,该精细网格带有通过将粗糙点的每个与线段连接创造的六个三角形;
图17是根据本技术的示例性实施例的矩形可计算网格的图解,其示出三角测量的近似结果;
图18是根据本技术的示例性实施例的精细矩形可计算网格的图解,其示出主网格的生成;
图19是根据本技术的示例性实施例的带有三角形互相作用区的可计算网格的图解,其示出恒速场;
图20是根据本技术的示例性实施例的带有四边形互相作用区2000的可计算网格;
图21是根据本技术的示例性实施例的示出不均匀基础函数的图表;
图22是根据本技术的示例性实施例的互相作用区的图解,其示出精细总速率的计算;
图23是根据本技术的示例性实施例的过程流程图,其示出用于使用在此描述的技术执行仿真的方法;以及
图24是可以用于本技术的示例性实施例的示例性集群计算系统的框图。
具体实施方式
在以下详细描述章节中,本技术的特定实施例连同优选实施例描述。然而,就以下描述对本技术的特别实施例或特别使用特定来说,其意图仅用于示例性目的并简单提供示例性实施例的描述。因此,本技术不限于在下面描述的特定实施例,但相反这样的技术包括落入附加权利要求的真实精神和保护范围内的全部替换、修改和等效。
起初,并为容易参考,阐述用于本申请的某些术语及其用于该上下文的意义。就在此使用的术语不在下面定义来说,应给予其如在至少一个印刷出版物或已提交专利中反映的本领域技术人员给予的最广泛定义。进一步地,由于服务于相同或相似目的的全部等效、同义词、新发展和术语或技术认为在本权利要求的保护范围内,因此本技术不受下面示出术语的用法限制。
“粗化”指代通过使单元更大例如表示储层中更大空间,在仿真模型中减少单元的数目。粗化经常用来通过在生成或运行仿真模型之前在地质模型中减少单元数目来降低计算成本。
“计算机可读介质”或“非瞬时计算机可读介质”如在此使用,指代参与提供指令到处理器以便执行的任何非瞬时存储和/或传输介质。这样的介质可以包括但不限于非易失性介质和易失性介质。非易失性介质包括例如NVRAM或磁或光盘。易失性介质包括动态存储器例如主存储器。计算机可读介质的共同形式包括例如软盘、软磁盘、硬盘、硬盘阵列、磁带,或任何其它磁介质、磁光介质、CD-ROM、任何其它光介质、RAM、PROM、EPROM、FLASH-EPROM、固态介质如存储器卡、任何其它存储器芯片或盒式磁带,或计算机可以从其读取数据或指令的任何其它有形介质。
如在此使用,“显示”或“正在显示”包括导致显示物理物体的图形表示的直接行动,以及促进显示物理物体的图形表示的任何间接行动。间接行动包括提供用户通过其能够影响显示器的网站、超链接到这样的网站,或与执行这样的直接或间接行动的实体协作或合作。因此,第一方可单独操作或与第三方卖主协作,从而使信息能够在显示器设备上生成。显示器设备可以包括适合显示参考图像的任何设备,无限制例如虚拟现实显示器、3d显示器、CRT监视器、LCD监视器、等离子设备、平板设备或打印机。显示器设备可以包括已通过使用任何常规软件校准的设备,该常规软件意图用于评估、校正和/或改善显示效果(例如已使用监视器校准软件调整的彩色监视器)。代替(或除此之外)在显示器设备上显示参考图像,与本发明相容的方法可以包括向对象提供参考图像。“提供参考图像”可以包括创造或由实体的、电话的或电子的输送分配参考图像、提供经由网络访问参考,或创造或向对象分配软件,该软件经配置在包括参考图像的对象的工作站或计算机上运行。在一个例子中,提供参考图像可以包括使对象能够以硬拷贝的形式经打印机获得参考图像。例如,信息、软件和/或指令可以传输(例如经数据存储设备或硬拷贝电子或物理传输)和/或以其它方式可用(例如经网络),以便促进对象使用打印机打印参考图像的硬拷贝形式。在这样的例子中,打印机可以是已通过使用任何常规软件校准的打印机,该常规软件意图用于评估、校正和/或改善打印结果(例如已使用色彩校正软件调整的彩色打印机)。
“示例性”在此专门用来意谓“用作例子、实例或说明”。在此描述为“示例性”的任何实施例不解释为超过其它实施例优选或有利。
“流动仿真”定义为使用仿真模型将传送通过物理系统的质量(通常,流体例如油、水和气体)或能量仿真的数值方法。物理系统可以包括三维储层模型、流体性质以及井的数目和位置。流动仿真可以使用或提供策略(经常称为井管理策略)以便控制注入和生产率。这些策略可以用来通过用注入流体(例如水和/或气体)代替生产流体来维持储层压力。在流动仿真正确再创造过去的储层性能时,其称为“历史匹配的”,并且更高程度的置信度置于其能力中从而预测储层中的未来流体行为。
“渗透度”是岩石传递流体通过岩石的互连孔隙空间的能力。可以使用达西定律测量渗透度:Q=(k ΔP A)/(μL),其中Q=流速(cm3/s),ΔP=跨长度L(cm)和截面积A(cm2)的圆柱体的压降(atm),μ=流体粘度(cp),并且k=渗透度(达西)。渗透度测量值的习惯单位是毫达西。术语“相对可渗透”关于地层或其部分定义为10毫达西或更多(例如100毫达西)的平均渗透度。
“孔隙度”定义为以百分比表达的孔隙空间的体积对材料总毛体积的比率。孔隙度是储层岩石的流体存储容量的测量。孔隙度优选从岩心、声测井记录、密度测井记录、中子测井记录或电阻率测井记录获得。总或绝对孔隙度包括全部孔隙空间,而有效孔隙度仅包括互连孔隙并对应可用于消耗的孔隙体积。
“储层”或“储层地层”定义为包括砂岩、石灰岩、白垩、煤和一些类型页岩的产油层(例如,碳氢化合物生产层)。产油层可以在厚度上从小于一英尺(0.3048m)到数百英尺(数百m)变化。储层地层的渗透度为生产提供潜力。
“储层性质”和“储层性质值”定义为表示含有储层流体的岩石的物理属性的量。术语“储层性质”如在本申请中使用,包括可测量和描述性的属性。可测量储层性质值的例子包括孔隙度、渗透度、含水饱和度和裂缝密度。描述性储层性质值的例子包括外观、岩石学(例如砂岩或碳酸盐),以及沉积环境(EOD)。储层性质可以构成储层构架从而生成储层模型。
“仿真模型”指代物理碳氢化合物储层的特定数学表示,其可以认为是特别类型的地质模型。仿真模型用来进行目标是确定最有益操作策略的关于油田的进一步性能的数值试验(储层仿真)。管理碳氢化合物储层的工程师可以创造可能具有变化复杂度的许多不同仿真模型,以便量化储层过去性能并预测其未来性能。
“传递率”指代给定压降的在单位粘度的两个点之间的体积流率。传递率是连通度的有用测量。在储层中任何两个分隔(断块或地质带)之间,或在井和储层(或特别地质带)之间,或在注入井和生产井之间的传递率都可以对理解储层中的连通度有用。
“井”或“井孔”包括套管的、套管并胶结的或裸眼的井孔,并可以是任何类型的井,包括但不限于生产井、试验井、探井等。井孔可以是垂直的、水平的、在垂直和水平之间任何角度的、偏离的或不偏离的,及其组合,例如带有不垂直组成的垂直井。井孔通常钻探并然后通过在井孔内安置套管柱来完成。常规地,通过使水泥流通进入在套管柱的外表面和井孔面之间定义的环带,套管柱胶结到井面。套管柱一旦在井内水泥中嵌入,则穿孔从而允许跨感兴趣间隔的管道内外之间的流体连通。该穿孔允许处理化学品(或物质)从套管柱里面流入周围地层,以便刺激流体的生产或注入。后来,穿孔用来从地层接收碳氢化合物的流动,因此它们可以通过套管柱输送到地面,或为储层管理或处置目的允许流体连续注入。
概述
有限体积(FV)法是用于储层仿真的高效的离散化方法。FV法可以为可接受计算成本提供合理的准确度,并可以延伸到非结构化栅格。在本技术的示例性实施例中,FV法的多尺度一般化应用到非结构化栅格。由于使用多尺度算法的离散化构造,因此该方法是计算有效的。
该方法使用多级途径建立粗糙栅格基础函数。离散调和函数可以用于粗糙栅格基础,这可以减小或消除边界条件的影响,并使本技术可应用于非结构化栅格。可以然后以提供最优近似,尤其例如能量最小化的方式在每级上建立支集。本技术使用精细的和粗糙的非结构化栅格,并在过程中包括全局信息。
图1是根据本技术的示例性实施例的储层102的示意图100。储层102,例如石油或天然气储层,可以是可以通过从地面110钻探井104、106和108通过覆盖层112进入的地下地层。井104、106和108可以偏离,例如方向地钻探从而沿着储层102。进一步地,井可以分支从而增加可以从储层抽取的碳氢化合物的量,如为井104和108示出。井104、106和108可以具有带有穿孔120(指示为靠近井的点)的众多区域从而允许碳氢化合物从储层102流入井104、106和108以便移除到地面。储层102可以具有可以约束或增强碳氢化合物流动的一个或多于一个断层114分割区,例如区域116和118。
储层102的仿真模型或仿真器可能发现在井104、106和108附近发生的最大改变,以及其它储层特征,例如断层114。因此,在这些特征的每个附近保持精细结构是有用的。
图2是根据本技术的示例性实施例的储层顶视图,其示出可计算网格200在储层上的平面投影。尽管可计算网格200示作计算单元(或块)202的二维栅格从而简化问题的解释,但应理解实际可计算网格200可以是包括储层的计算单元202的三维结构。进一步地,计算单元202可以具有任何大小或形状,导致非结构化栅格。一般地,计算单元202是表示储层中物理位置的仿真模型内单独二维或三维位置。计算单元202可以具有关联属性,例如孔隙度,该关联属性在整个计算单元202上假设为单值,并赋值到计算单元202的中心。例如通过具有赋值到与邻近计算单元202的共享边沿的流量性质,计算单元202可以与邻近计算单元202相互作用。流量性质可以包括由在邻近计算单元202之间的温度或压力差驱动的热或质量转移。
例如通过将不接近井或其它储层特征的计算单元202组合,可计算网格200可以在具有较少显著改变的区域中粗化。相似地,如在图2中示出,可计算网格200可以在井或其它储层特征,例如第一井204,或其它储层特征例如第二井206、第三井208、断层210,或可以示出大于其它区域的改变的任何其它特征附近保持精细网格结构。可计算网格200可以用来将储层建模,如关于图3进一步讨论。
用于将储层建模的工作流程
图3是根据本技术的示例性实施例的用于将储层建模的工作流程300的过程流程图。尽管求解过程的离散化(粗化)和隐性水平(其规定变量,例如压力或饱和度在公式中隐性或显性处理)变化,但仿真模型可以用与工作流程300相似的方式执行。仿真模型可以通过解析用户输入数据在方框302开始。输入数据可以包括问题公式、带有在每个栅格块定义的物理性质的离散化进入栅格块的地质模型,该物理性质包括岩石性质(例如渗透度)和流体性质(例如传递率)。在方框304,例如可以从基本方程计算用于仿真的边界条件。
在方框306,线性解算器可以使用雅可比矩阵为仿真生成近似解。在方框308,从近似解计算物理性质。在方框310,将计算性质与先前计算性质或与测量性质比较,从而例如通过检查收敛来确定是否达到希望的准确度。在示例性实施例中,通过确定计算性质自从最近迭代(其可以指示收敛)没有显著改变,因此做出确定。例如,收敛可以指示当前计算解是否在先前计算解的0.01%、0.1%、1%、10%或更多之内。如果没有达到希望的准确度,那么过程流程返回到方框306从而执行线性解算器的另一迭代。
如果在方框310已达到希望的准确度,那么过程流程进展到方框312,在方框312结果生成并且时间以希望的时间步进增加。该结果可以存储在有形的、机器可读的介质例如数据库上的数据结构中,以便后来呈现,或该结果可以在生成之后立即显示或打印。时间步进可以是例如一天、一周、一个月、一年、5年、10年或更多,至少部分取决于仿真的希望时间长度。在方框314,新时间与仿真希望的长度比较。如果仿真已达到希望的时间长度,那么仿真在方框316结束。如果时间没有达到希望的长度,那么流程返回到方框304,从而继续下个增加。仿真时间帧可以是一个月、一年、五年、十年、二十年、五十年或一个世纪或更多,取决于希望的仿真结果使用。
计算近似解
在方框306计算近似解可以包括在一系列步骤求解物理模型。例如,在NP相中的NC成分的流动的顺序隐式公式遵循在图1中示出的压力方程。
φ [ 1 φ · dφ dp - 1 v T ( ∂ v T ∂ p ) ] ∂ p ∂ t = Σ i = 1 N c V Ti Θ i 方程1
在方程1中,□表示孔隙度,并且VTi表示成分i的偏摩尔体积。进一步地,
Figure BDA00002329396300142
其中Ui表示成分i的摩尔流率,并且Ri表示成分i的源和汇。成分i的摩尔流率在方程2中定义。
U i = Σ J = 1 N P x ij ξ j v j 方程2
在方程2中,xij是相j中分量i的摩尔分数,ξj是相j的摩尔密度,并且vj表示相位速率。广义达西定律给出相位速率和相压力之间的关系,如在方程3中示出。
v j = - K k rj μ j ( ▿ P j - ρ j g ▿ D ) , 方程3
在方程3中,K表示绝对渗透度,krj表示相j的相对渗透度,μj表示相j的粘度,ρj表示相j的质量密度,g表示重力加速率常数,并且D表示深度。对于带有蒸汽相(v)和水相(a)的液相(l),相压力通过毛细压力Pc,j,j=v,a,涉及底部液体压力:Pj=P+Pc,j,j=v,a,P=Pl
饱和度定义为比率其中Vj是相j的体积,并且VP是孔隙体积。饱和度方程如在方程4中示出。
∂ ∂ t ( φ S j ) + φ S j c j ∂ p ∂ t = Σ i = 1 N C V ji Θ j , j=1,2,...,NP。方程4
在方程4中,Vji表示关于分量i的相j的偏摩尔体积,并且cj表示相j的压缩率。这些方程可以用来使用在图4中示出的方法求解近似。
图4是根据本发明的示例性实施例的用于为一个牛顿步的顺序公式计算近似解(即图3的方框306)的方法400的过程流程图。方法400用压力方程的求解在方框402开始(方程1)。在方框404,使用方程2、3计算在这些压力的流体流动的总速率。饱和度方程(方程4)在方框406显性或隐性求解。在方框408,计算每个单元202(图2)中相位速率、成分运输和每个分量的量。方法400可应用于复合与黑油模型。
混合有限体积法
有限体积离散化可以为线性椭圆方程确定,即在类时间欧拉后向法中的隐式离散化执行之后。考虑在方程5中示出的方程组。
- div ( K ▿ p ( x ) ) = f ( x ) 在Ω中,
方程5
p(x)=0在
Figure BDA00002329396300155
上。
如果
Figure BDA00002329396300156
那么方程5可以重写为在图6中示出的方程组。
K - 1 u + ▿ p = 0 方程6
div(u)=f(x)
在方程6中的第一方程可以乘以向量函数v,并且在方程6中的第二方程可以与标量函数q相乘。方程的积分导致问题:找出u,u∈U和p,p∈P以满足方程7。
∫ Ω K - 1 u · v + ∫ Ω ▿ p · v = 0 ∀ v ∈ V , 方程7
∫ Ω div ( u ) q = ∫ Ω f ( x ) q , ∀ q ∈ Q .
如果空间U,V和P,Q适当挑选,那么在方程7中存在的问题等效于在方程5中存在的问题。例如,本领域技术人员认识到U是函数的空间,该空间的散度是平方可积分函数。进一步地,该V是平方可积分向量函数的空间;P是带有平方可积分第一导数的函数的空间;以及Q是平方可积分函数的空间。可以通过求解近似离散问题找出对该问题的近似解uh和ph。第一步是用有限维子空间Uh,Vh和Ph,Qh替代有限维空间U,V和P,Q。接下来,连续算子
Figure BDA00002329396300164
(梯度)和div(散度)与离散算子
Figure BDA00002329396300165
和divh近似。因此,离散问题是找出uh∈U和ph∈Ph以满足方程8。
∫ Ω K - 1 u h · v h + ∫ Ω ▿ h p h · v h = 0 ∀ v h ∈ U h , 方程8
∫ Ω div h ( u h ) q h = ∫ Ω f ( x ) q h , ∀ q h ∈ Q h .
混合有限体积栅格的例子
在下面提出可计算网格的若干例子。在这些例子的全部中,具有主计算单元和双计算单元(其可以称为“互相作用区”)。如果描述主网格和对偶网格、定义近似(测试和试验)空间,并且指定离散算子,那么完全定义如由方程8描述的特别的混合有限体积法。
图5是称为Voronoi网格500的可以用于示例性实施例的第一类网格的图解。在Voronoi网格500中,主计算单元是Voronoi体积502,并且互相作用区是三角形504。通过将每个Voronoi体积502的中心点506连接到与Voronoi体积502共享面510的邻接Voronoi体积508,来形成三角形504。认为在中心点506之间的直线512垂直于面510,并因此平行于法向向量n。dij是连接节点I和j的间隔的长度。认为适当参数例如c、p和s在中心点506存在。
Ph是在Voronoi体积双倍的Delaunay三角形上的线性分段连续函数的空间。这些是三角形504。Qh是Voronoi体积502上分段常数的空间。进一步地,Uh=Vh是带有连续法向分量的三角形上分段向量常数的空间。可以与Voronoi网格500一起使用的算子包括
Figure BDA00002329396300171
以及
Figure BDA00002329396300172
在一些实施例中,Voronoi网格500可以由Donald网格替代。在Donald网格中,可以通过将三角形502重心连接到三角形502边缘的中心来形成控制体积502。
图6是称为矩形网格600的可以用于示例性实施例的第二类网格的图解。矩形网格600具有主计算单元602和互相作用区604。通过将计算单元602的中心点608连接的直线606创造互相作用区604。Ph=Qh是单元中心网格,即单元602上分段常数函数的空间。进一步地,Uh=Vh是带有连续法向分量的双三角形上分段向量常数的空间。
可以与矩形网格600一起使用的算子包括其中[]表明在计算单元602之间边缘610的不同侧面上的值之间的差(跳跃),例如
Figure BDA00002329396300174
另一可能MFV法可以经构造假设Ph是分段双线性函数的空间。在此实例中,
Figure BDA00002329396300175
对于每个单元中心608具有一个双线性基础函数。基础函数在该特别点是一,并在单元外是零。
图7是称为四边形网格700的可以用于示例性实施例的第三类网格的图解。在四边形网格700中,主计算单元是四边形体积702,并且互相作用区包括通过连接四边形702的中心点706形成的四个多边形704。Ph是在每个四边形702内创造的三角形708上分段线性函数的空间。每个三角形708的一个顶点在单元中心点706中,而其它两个顶点710在四边形702的边缘712上。进一步地,Qh是四边形702上分段常数的空间,Uh是带有连续法向分量的多边形704上分段向量常数的空间,并且Vh是多边形704上分段常数向量的空间。因此,Uh和Vh可以由从三角形708的顶点710绘制的向量714表示。
可以与四边形网格700一起使用的算子包括
Figure BDA00002329396300181
Figure BDA00002329396300182
另一版本具有由四边形702和多边形704的互相作用区形成的四边形子网格上的分段双线性函数的空间Ph(例如,互相作用区的四分之一)。可以然后为多边形704的中心添加另外方程。在此实例中
Figure BDA00002329396300183
上面例子的全部可以延伸到三维网格。特别例子是三维Voronoi栅格,所谓2.5-D PEBI(中垂线)栅格,该栅格在xy平面中是Voronoi的并且在z方向上是棱柱,并由一致或变形的平行六面体构成。
多级基础函数
在示例性实施例中,使用多级技术建立空间Ph。因此,下面讨论可应用于有限体积和有限元离散化。在多尺度基础的多级构造中,如在此讨论,用于仿真的计算花费和精细网格上未知数的数目成比例。相反,不使用多级技术构造的标准多尺度基础具有与至少精细网格上未知数数目的平方成比例的计算花费。为简化该概念的解释,可以在以下附图的解释中假设具有精细非结构化网格,并且Ph的基础在该网格上定义。
图8根据本技术的示例性实施例示出非结构化的二维三角形网格800。基础函数可以为有限元离散化在每个顶点802定义。基础函数的值在顶点802是一,并且在其支集区804之外是零。三个基础函数的支集区804在图8中示出。函数是分段线性的,即在每个三角形上是线性的。有限元法的基础函数在每个单元上是常数。
图9是根据本技术的示例性实施例示出双线性基础函数的图表900。对于矩形网格600(图6),函数是双线性的。在该图表900中,轴902表示网格中的物理位置。基础函数的峰值904在计算单元的中心。
在多级进程中建立下级更粗糙基础
图10根据本技术的示例性实施例示出可以用来图解建立下级更粗糙基础函数的进程的非结构化的二维三角形网格1000。一个或多于一个粗糙点1002可以在网格上选择。粗糙点是有限元或有限体积的单元中心的顶点,该顶点是更粗糙基础函数的“中心”,即其中基础函数是一的点。本领域技术人员认识到具有可以用于选择粗糙点和粗糙网格的众多算法。通常,粗糙网格和在其上定义的离散化必须能够求解储层中的流动。因此,可以选择粗糙点从而表示可以具有储层中最高级改变例如井等等的点。
一旦选择粗糙点,那么与每个粗糙点1002关联的精细点1004可以在网格1000上鉴别。可以注意在精细网格上的一些函数可以属于若干粗糙网格点的支集。一旦已鉴别精细点,那么可以在每级计算基础函数。进程可以递归重复直到最粗糙基础函数具有足够小的尺寸。
粗化的目标是可观减小粗糙网格的大小,因此计算花费也减少。另一方面,产生的粗糙基础必须足够精细从而准确近似问题的解。为平衡这两个对立目标,可以使用一些进一步的准则。由于基础函数仅计算一次或非常不频繁地计算,因此基础的质量可以检查。这可以用不同方式完成,例如通过将模型椭圆问题的精细解与粗糙解比较。这样的进程允许适应地粗化网格,同时提供良好近似性质并与原精细网格的大小比较减小最终粗糙网格的大小。基础的质量可以取决于选择粗糙网格点和怎样构造基础函数的方式。
图11是根据本技术的示例性实施例的计算单元1100的图解,其图解用于计算基础函数的技术。具有计算基础函数的若干不同方式。粗糙基础函数的支集包括数个三角形1102,其中中心点1104构成每个三角形1102的顶点中的一个。方程5可以在每个三角形1102上但用指定的不同边界条件求解。基础函数的值可以在中心点1104设置成一并在每个边界1106设置成零。一维问题可以然后沿每个边缘1108求解。一维问题的解可以然后用作二维基础函数的边界条件。用于三维基础函数的进程首先为边缘求解一维问题,并然后使用该解作为面的二维问题的边界条件。二维问题的解提供基础函数的边界条件。
图12是根据本技术的示例性实施例的从上面讨论的进程导致的多尺度基础函数的例子。然而,上面概述的计算进程为网格使用几何信息,并因此可以是麻烦的并且计算密集的。
在示例性实施例中,可以考虑可替换途径。使用该途径计算的基础函数可以称为代数多尺度。关于先前的进程,边界条件可以在支集的中心点1104中设置成一,并且在边界1106上设置成零。方程5可以然后用上面指定的边界条件求解,沿每个边缘消除个别一维问题的解。
图13是根据本技术的示例性实施例的代数多尺度函数的例子。可以注意代数多尺度函数的计算比关于图12讨论的解容易。给定全局精细矩阵A,行和列可以为粗糙点的支集中的点选择,从而形成矩阵Ac,如在图9中示出。
Figure BDA00002329396300201
b = 0 1 0 , 方程9
或等效地(c=1):
a f 1 f 1 a f 1 f 2 a f 2 f 1 a f 2 f 2 f 1 f 2 = - a f 1 c a f 2 c
方程9表示在为特别粗糙点将右手侧设置成一并为全部其它点设置成零之后有待求解的线性问题。为每个粗糙点求解一个线性问题。
可以注意几何信息不用来计算这些基础函数。因此,代数多尺度基础可以对计算非结构化网格上的基础函数有用。一旦已求解局部问题,那么它们可以改变尺度从而确保基础函数和为一。这可以使用方程10中的公式执行。
f c i ( x ) = f c i ( x ) Σ j f c j ( x ) . 方程10
其它途径可以用来在当前技术的示例性实施例中计算基础函数。例如,全部粗糙函数可以这样同时计算,以便最小化基础函数的能量。该进程可以称为能量最小化基础。能量最小化基础函数可以数学表达,如在方程11中示出。
min 1 2 Σ i = 1 m f c i ( x ) T A c i f c i ( x ) , 以使
Figure BDA00002329396300212
方程11
图14是根据本技术的示例性实施例的能量最小化基础函数的图解。上面描述的技术可以一起引入从而实施混合多尺度有限体积法。
混合多尺度有限体积(MsMFV)法
对网格段求近似
在实施MsMFV法中的第一步是对在给定网格Σh和对偶网格Ψh上的线段[a,b]求近似。如下面描述,a,b∈Σh或a,b∈Ψh。可以使用两种算法。第一算法是在二维网格中线段的近似。第二方法对平面多边形,例如在三维网格中的平面多边形求近似。
为简化用于线段近似的第一算法的解释,可以假设a,b∈Σh,并且起始点是a。该算法在此称为“第一算法”。首先,点a和b可以与直线连接,提供设置I=0和a=a0。如果还没有挑选,那么选择来自ai和最接近[a,b]的Σh的点的连接。该点可以设置成ai+1。将ai连接到ai+1。如果ai+1≠b那么设置i=i+1。为点ai+1重复相同步骤。如果已达到点b,那么线段的近似完成。尽管第一算法对构造二维网格有用,但需要另外的工具以便构造三维网格。
第二算法为三维网格提供多边形表面的近似。该算法在此称为“第二算法”。给定多边形表面及由第一算法构造的其边缘的近似,可以选择多边形表面的一个顶点。在该顶点之外具有至少两条线段。选择属于精细网格的面(多边形表面)的两条线段。如果在该多边形表面中具有之前没有近似并在其之外具有至少两个线段的点,那么重复相同进程。如果源自全部点的线段都已近似,那么近似完成。
一旦在网格上的多边形已近似,那么MsMFVM可以构造。起始,可以生成粗糙基础函数,如上面关于图10-13描述。
图15是根据本技术的示例性实施例的精细可计算网格1500的图解,其图解在过程中选择的粗糙点1502。可以然后构造对偶网格,即互相作用区。这可以通过建立粗糙点1502的三角测量来执行。该三角测量包括在二维网格中的三角形和在三维网格中的四面体或棱柱。
图16是根据本技术的示例性实施例的在精细可计算网格1500内粗糙点1502的三角测量,该精细网格1500带有通过将粗糙点1502的每个与线段1604连接创造的六个三角形1602。可以然后使用第一算法对三角测量的每个边缘(线段1604)求近似。该点是精细网格单元的中心,并且我们在互相作用区(对偶网格)的边缘上移动。即,精细网格点的一些(单元的中心)可以选择为粗糙网格点。接下来,基础函数建立。最终,通过首先建立边缘(使用第一算法),并在此之后建立面(使用第二算法),来建立对偶网格。
图17是根据本技术的示例性实施例的矩形可计算网格1500的图解,其示出三角测量的近似结果。是每个原三角形1602(图16)的边缘的线段1604由线段1702近似,创造对应于三角形1602的六个多边形1704。在精细网格1500非结构化时,由线段1604近似边缘(线段1604)变得更准确。由近似边缘1702跨越的面可以使用第二算法近似。
生成主网格
图18是根据本技术的示例性实施例的精细矩形可计算网格1500的图解,其示出主网格(由粗线1802指示)的生成。粗糙网格点1804用来使用上面讨论的进程构造粗糙互相作用区1806(由虚线1808描绘)。通过首先在每个粗糙互相作用区1806里面选择点1810来创造主网格。接下来,主精细网格到选择点1810的最接近顶点可以鉴别。最接近点鉴别为互相作用区1806的中心点1812。如果在精细网格(例如1814)中具有处在到选择点1816的相同距离的多于一个点,那么第一点可以挑选为中心点1812。在每个互相作用区1806中鉴别中心点1812之后,最接近粗糙互相作用区1806的每个边缘(虚线1808)的中心的精细网格上的点选为该边缘的“中心”。第一算法可以然后用来将互相作用区的中心连接到边缘的中心。中心点1812变成精细主网格(由粗线1802指示)中的顶点。
接下来,考虑主网格(由粗线1802指示)的边缘。如果问题是二维的,那么这是粗糙主网格。对于三维问题,这些是粗糙主网格的面的边缘。第二算法可以用来从边缘构造面。
构造速率场
对于为速率场计算基础函数具有两个可能情况。第一情况是在互相作用区相似于三角形时,如在图19中示出。第二情况是在互相作用区是四边形时,如在图20中示出。通常,四边形情况可以分为两个三角形,但经常更方便的是保持四边形。进一步地,具有构造速率场的多个途径。例如,可以使用速率的常数近似。由于速率可以变化,因此多尺度速率近似也可以使用。
图19是根据本技术的示例性实施例的带有三角形互相作用区1900的可计算网格的图解,其示出恒速场。粗糙中心点1901选择并用来生成粗糙互相作用区1900,如关于图15-17讨论。恒速场是速率的最简单近似,并且其使用上面提出的技术构造。粗线1902是粗糙单元的边界,细线1904是精细单元的边界,并且虚线1906是互相作用区的边界。速率场(由箭头1908指示)在互相作用区1900的每个部分1910中是常数,并且具有连续法向分量。计算的速率是跨互相作用区1900的平均速率。在许多情况下提供充足准确度,同时避免源自更复杂计算的开销。然而,常数近似不考虑系数的变化,并且在一些状况下采取更全面途径可以是有用的。
图20是根据本技术的示例性实施例的带有四边形互相作用区2000的可计算网格。使用上面讨论的技术,更粗糙中心点2002选择并用来生成互相作用区2000。在计算单元之间的边缘2004由粗线指示。流动的速率2006由箭头指示。
速率的更优近似可以通过使用更优基础函数构造。为每个互作用子区使用两个基础函数。例如,对于带有边界e1、e2、l11、l12的互作用子区K14,使用混合有限体积或混合有限元离散化解决在方程8中说明的问题,如在方程12中示出。
在K14中,-div(v1)=0,  在K14中,-div(v1)=0,
在e4上,v1·n=1,      在e4上,v2·n=0,
在l12上,v1·n=-1,    在l12上,v2·n=0,      方程12
在e1上,v1·n=0,      在e1上,v2·n=1,
在l11上,v1·n=0,     在l11上,v2·n=-1
可替换地,可以通过在两个邻近子区中求解方程12构造基础函数。注意如果在每个子区K14中的每个精细单元中系数相同,那么基础函数v1和v2是常数,并与上面讨论的混合有限体积栅格的例子中的基础一致。因此,如在图20中示出,局部速率不再相同。因此,速率基础中的每个函数构造成分段常数,并具有连续的法向分量。
在上面提出的本技术的示例性实施例中,已构造主网格和对偶网格与近似空间Ph和Uh。测试空间Qh挑选为主网格的体积上分段常数的空间。空间Vh是带有连续法向分量的分段常数向量函数的空间。可以在实施例中使用其它空间,例如Ph=Qh和Uh=Vh。这些空间可以具有相同的近似性质,但需要稍多的计算。
全局信息的使用
关于储层的全局信息可以用来改善粗糙网格解的质量。例如,全局信息可以用于速率的基础函数的计算。如果通过求解简化问题或从地质信息获知流动的行为,那么向量场w可以在比粗糙网格更精细的网格上确定。因此,可以选择中间辅助网格,即比粗糙网格更精细,但比精细网格更粗糙的辅助网格。粗糙基础函数可以使用在方程13中示出的公式在边缘e上计算。
v · n | e i = w · n | e i ∫ e w · n , i=1,2,...,k,          方程13
其中w已在中间网格上计算。
在方程13中,边缘分为k个部分。这改变基础函数的形状。
图21是根据本技术的示例性实施例的示出不均匀基础函数的图表。在该例子中,左流量(a)是均匀的。然而,通过比较,右流量(b)是均匀的,在第二半部中具有多出三倍的流动。一般地,这可以对应于沿一侧具有更可渗透岩层的地层。在仿真期间基础函数的形状改变流动的行为。
注意
Figure BDA00002329396300251
并因此可以使用在方程14中示出的修改问题来计算方程8中的基础函数。
在K14中,-div(v1)=0,在K14中,-div(v2)=0,
在e4上, ∫ e 4 v 1 · n = 1 , 在e4上,v2·n=0,
在l12上, ∫ l 12 v 1 · n = - 1 , 在l12上,v2·n=0,方程14
在e1上,v1·n=0,在e1上, ∫ e 1 v 2 · n = 1 ,
在l11上,v1·n=0,在l11上, ∫ l 11 v 2 · n = - 1
一致速率的计算
图22是根据本技术的示例性实施例的互相作用区的图解,其示出精细总速率的计算。无关于使用恒速或变速,第一步是使用如在此讨论由混合多尺度有限体积法产生的近似u计算总速率。这对一些情况可以是足够的,但在希望精细网格上的更准确总速率时,结果可以后处理从而得到更高准确度。第一途径是求解方程5,但用Neumann边界条件,即如在方程15中示出。
- div ( K ▿ p ( x ) ) = f ( x ) 在K中,
方程15
- K ▿ p ( x ) · n = u H { ∂ K · n
Figure BDA00002329396300258
上。
方程15在精细网格上使用混合有限体积或混合有限元法。该途径可以是计算昂贵的。另一方式是使用混合有限体积构架求解粗糙问题。首先可以使用在方程16中的公式计算基础函数v12、v13、v24、v34
在K1∪K2中,-div(v12)=0,在K1∪K3中,-div(v13)=0,
在l12上,v12·n=1,在l13上,v13·n=1,
在l13∪l24上,v12·n=0,在l12∪l34上,v13·n=0,
在e11∪e12上,v12·n=0,在e11∪e12上,v13·n=0,
在e21∪e22上,v12·n=0,在e31∪e32上,v13·n=0,
                                                方程16
在K2∪K4中,-div(v24)=0,在K3∪K4中,-div(v34)=0,
在l24上,v24·n=1,在l34上,v34·n=1,
在l12∪l34上,v24·n=0,在l13∪l24上,v34·n=0,
在e21∪e22上,v24·n=0,在e31∪e32上,v34·n=0,
在e41∪e42上,v24·n=0,在e41∪e42上,v34·n=0
相似地,计算在外侧边缘上速率的基础函数。在方程16中的计算仅完成一次。它们唯一定义空间U。空间V可以与空间U相同,或仅具有分段常数。空间P是分段常数或双线性函数的空间,并且空间Q由分段常数构成。下个步骤是在方程15的离散化版本中求解u和p。这通过为每个粗糙单元求解小方程组来执行。计算的精细网格流量在全部精细网格中一致。进程不限于速率,但可以用于改善任何向量变量的精细网格近似和一致性。这可以是总速率、相位速率或感兴趣的一些其它向量变量。
用于多孔介质中流动的仿真的多级混合多尺度有限体积法的应用。
图23是根据本技术的示例性实施例的过程流程图,其示出用于使用在此描述的技术执行仿真的方法2300。在该示例性实施例中,一般目标是用由方程1和方程4描述的模型执行储层仿真。这是在图4中示出的过程流程图的延伸。该方法在方框2302用问题的分析开始。该分析包括为跨储层的流动的行为收集全局信息。在这点上,可以关于使用全局信息示例性有益做出决定。全局信息可以从简化仿真搜集,或可以由专家提供。
在方框2304,导出基于方程4的椭圆问题。该椭圆问题是方程4的简化,通过跳过时间导数来创造。多级网格在方框2306计算,如在此讨论。在方框2308,为多级网格计算基础。在方框2310,计算与压力关联的均匀速率场。如果在方框2312做出希望更准确速率场(例如,带有变化压力)的决定,那么在方框2314计算更准确的基础函数。在任一情况下,流程进展到方框2316。在方框2316,评估压力基础函数的质量。这可以通过确定近似怎样良好来执行,例如通过对源自储层的流动数据的历史匹配来执行。如果基础函数中的任何不与希望一样良好,那么可以重计算它们。流程然后进展到方框2318。
方框2318标志迭代仿真过程的开始。在方框2318,使用在此描述的多级混合多尺度有限体积法将在方程1中示出的压力方程离散化,并然后求解。系数的一些可以在每个时间步进用源自先前时间步进的数据重计算。在方框2320,计算总速率。为执行该函数,使用源自方框2310的解计算粗糙网格总速率流量。然后,如希望,那么使用在方框2130或在方框2314计算的速率基础函数计算精细网格总速率。
在方框2322,求解在方程4中示出的饱和度方程。饱和度方程可以在粗糙网格上隐性求解或在精细网格上显性求解。适应性解也是可能的。例如,在饱和度的隐性粗糙解之后,其中饱和度改变高于给定容限的粗糙单元可以选择,并且可以使用源自粗糙网格解的边界条件求解精细网格问题。可以执行若干精细时间步进,直到达到粗糙时间步进。精细时间步进可以选择,因此精细网格显性饱和度问题是稳定的,并且多个精细网格时间步进等于粗糙网格时间步进。
在方框2324可以计算相位速率,并且在方框2326计算成分运输。这些计算可以用与在方框2324的总速率计算相似的方式执行。可以使用如在方框2322描述的适应性算法。不同的相和分量可以使用不同的适应性区域。
在方框2328,时间以选择的时间步进增加。该时间步进可以取决于仿真的总时间。例如,总仿真可以覆盖1年、5年、20年、40年或更多。该时间步进可以覆盖1个月、2个月、6个月、1年或更多。在方框2330,将增加的时间与为仿真设置的初始时间比较。如果时间指示还没有达到仿真的结束,那么过程流程返回到方框2316从而继续另一迭代。如果仿真已结束,那么过程流程进展到方框2332。在方框2332,仿真的结果存储在非瞬时计算机可读介质中,并可以向用户呈现,例如通过用来计算物理储层的视觉表示。在结果呈现之后,在方框2334,进程结束。
本技术在碳氢化合物采集中的使用
在示例性实施例中,方法2300可以用来在储层中定位碳氢化合物,或调整源自碳氢化合物油气田的生产。这包括基于多级混合多尺度有限体积模型生成储层仿真模型。源自油气田的碳氢化合物生产的控制可以至少部分基于从储层模型获得的结果来调整。
调整源自油气田的碳氢化合物生产的控制可以包括改变注入压力、将注入井转变成生产井、将生产井转变成注入井、钻探更多新井到储层,或其任何组合。统计地质学测量值可以包括传递率、孔隙体积、排放体积、在井之间或在井和表示储层一部分的单元之间的最小累积反传递率、传递时间,或其任何组合。
示例性集群计算系统
图24是可以用于本技术的示例性实施例的示例性集群计算系统2400的框图。图解的集群计算系统具有四个计算单元2402,其每个都可以为仿真模型的部分执行计算。然而,本领域技术人员认识到由于可以选择任何数目的计算配置,因此本技术不限于该配置。例如,微小仿真模型可以在单个计算单元2402例如工作站上运行,而巨大仿真模型可以在具有10个、100个、1000个以至更多的计算单元2402的集群计算系统2400上运行。在示例性实施例中,计算系统2402的每个都为单个子域或计算单元的群运行仿真。然而,计算单元2402的分配可以用任何数目的方式执行。例如,多个子域可以分配到单个计算单元2402,或多个计算单元2402可以分配到单个子域,取决于在每个计算单元2402上的负载。
集群计算系统2400可以从一个或多于一个客户端2404经由网络2406访问,例如通过高速网络接口2408访问。网络2406可以包括局域网(LAN)、广域网(WAN)、互联网或其任何组合。客户端系统2404的每个可以具有计算机可读存储器2410以便操作代码和程序的存储,包括随机访问存储器(RAM)和只读存储器(ROM)。操作代码和程序可以包括用来实施在此讨论的方法中的全部或任何部分的代码,例如关于图23讨论。进一步地,非瞬时计算机可读介质可以保存物理碳氢化合物储层的数据表示,例如由多级混合多尺度有限体积(MMMFV)在非结构化网格上生成的该数据表示。客户端系统2404也可以具有其它非瞬时计算机可读介质,例如存储系统2412。存储系统2412可以包括一个或多于一个硬盘驱动器、一个或多于一个光盘驱动器、一个或多于一个闪存驱动器、这些单元的任何组合,或任何其它合适存储设备。存储系统2412可以用于代码、模型、数据和用来实施在此描述的方法的其它信息的存储。例如,数据存储系统可以保存至少部分使用多级混合多尺度有限体积(MMMFV)在非结构化网格上生成的物理碳氢化合物储层的数据表示。
高速网络接口2408可以在集群计算系统2400中耦合到一条或更多通信总线,例如通信总线2414。通信总线2414可以用来将指令和数据从高速网络接口2408通信到集群存储系统2416,并通信到集群计算系统2400中计算单元2402的每个。通信总线2414也可以用来在计算单元2402和存储阵列2416之间通信。除了通信总线2414之外,高速总线2418可以存在从而提高计算单元2402和/或集群存储系统2416之间的通信速率。
集群存储系统2416可以具有一个或多于一个有形的、计算机可读的介质设备例如存储阵列2420,以便存储数据、视觉表示、结果、代码或其它信息,例如关于图23的方法的实施和源自该方法的结果的信息。存储阵列2420可以包括硬盘驱动器、光盘驱动器、闪存驱动器、全息存储阵列或任何其它合适设备的任何组合。
计算单元2402的每个可以具有处理器2422和关联的本地有形计算机可读介质,例如存储器2424和存储2426。存储器2424可以包括ROM和/或RAM,该ROM和/或RAM用来存储代码,例如用来引导处理器2422实施在图23中图解的方法的代码。存储2426可以包括一个或多于一个硬盘驱动器、一个或多于一个光盘驱动器、一个或多于一个闪存驱动器,或其任何组合。存储2426可以用来为中间结果、数据、图像或包括用来实施图23的代码的与操作关联的代码提供存储。
本技术不限于在图24中图解的架构或单元配置。例如,任何合适的基于处理器的设备可以用来实施本技术的实施例的全部或一部分,无限制包括个人计算机、网络个人计算机、膝上计算机、计算机工作站、GPU、移动设备,以及带有(或没有)共享存储器的多处理器服务器或工作站。此外,实施例可以在专用集成电路(ASIC)或超大规模集成(VLSI)电路上实施。事实上,本领域技术人员可以利用能够根据实施例执行逻辑操作的任何数目的合适结构。
尽管本技术可以易受各种修改和可替换形式,但在上面讨论的示例性实施例仅作为例子示出。然而,应再次理解本技术不希望限于在此公开的特别实施例。当然,本技术包括落入权利要求的真实精神和保护范围内的全部替换、修改和等效。

Claims (21)

1.一种建模碳氢化合物储层的方法,包括:
使用多级混合多尺度有限体积(MMMFV)方法,从精细非结构化网格推导可计算网格,包括:
计算用于压力的第一代数多级基础函数;
构建互相作用区域;
生成主网格;
计算用于速率近似的第二代数多级基础函数;
使用所述可计算网格仿真所述碳氢化合物储层;以及
至少部分基于所述仿真的结果在非瞬态计算机可读介质内产生物理碳氢化合物储层的数据表示。
2.根据权利要求1所述的方法,进一步包括:
通过以下步骤在所述第二代数多级基础函数的构建中使用全局信息:
选择辅助网格;
在所述辅助网格近似求解;以及
使用提供的全局信息计算一个或多于一个速率基础函数。
3.根据权利要求1所述的方法,其中所述第一代数多级基础函数、第二代数多级基础函数、或其两者至少部分基于离散调和函数。
4.根据权利要求1所述的方法,其中推导所述可计算网格包括:
计算主网格和一个或多于一个互相作用区;
选择近似空间,其中所述近似空间包括P和U;
选择测试空间,其中所述测试空间包括Q和V;以及
选择离散梯度和散度算子。
5.根据权利要求1所述的方法,其中计算所述第一代数多级基础函数包括:
在所述主网格中粗糙可计算单元的中心点将多个边界条件设置为一;
在所述主网格中所述粗糙可计算单元的边界将所述多个边界条件设置为零;以及
使用所述多个边界条件求解基础函数。
6.根据权利要求1所述的方法,其中计算所述第一代数多级基础函数包括:
同时为可计算网格计算全部粗糙函数,以便最小化可计算网格的能量。
7.根据权利要求1所述的方法,其中计算所述第一代数多级基础函数包括:
选择一个或多于一个粗糙点;
选择属于每个粗糙点的一个或多于一个精细点;
计算粗糙基础;以及
评估所述粗糙基础的近似质量。
8.根据权利要求7所述的方法,进一步包括:
迭代直到所述近似质量可接受。
9.根据权利要求7所述的方法,其中计算所述近似基础包括:
在可计算网格∑h中用直线[ai,b]连接两点ai和b;
令最接近所述直线[ai,b]的∑h中的点为ai+1;生成从ai到ai+1的连接线;以及如果ai+1≠b,那么设置i=i+1,
选择另一连接并重复。
10.根据权利要求7所述的方法,其中计算所述粗糙基础包括:
选择所述互相作用区的中心点;
选择所述互相作用区的一个或多于一个边缘的中心点;
将所述互相作用区的所述中心点连接到边缘的所述中心点;以及
连接所述一个或多于一个边缘从而形成多边形的面。
11.根据权利要求1所述的方法,其中构造所述互相作用区包括:
通过以下方法构造粗糙点的三角测量:
通过以下方法构造所述三角测量的每个边缘:
在可计算网格∑h中用直线[ai,b]连接两个粗糙点ai和b;
令∑h中的点为ai+1,其中所述点最接近所述直线[ai,b];
生成从ai到ai+1的连接线;以及如果ai+1≠b,那么设置i=i+1,并重复直到ai+1=b;
选择另一连接并重复;以及
通过以下方法构造所述三角测量的一个或多于一个面:
选择互相作用区的中心点;
选择所述互相作用区的一个或多于一个边缘的中心点;
将所述互相作用区的所述中心点连接到边缘的所述中心点,以及
连接多边形的一个或多于一个面。
12.根据权利要求1所述的方法,进一步包括:
至少部分基于数据表示管理源自所述物理碳氢化合物储层的碳氢化合物的生产。
13.根据权利要求12所述的方法,其中管理所述生产包括以下方法中的一个或多于一个:
将注入井转变成生产井;
将生产井转变成注入井;
改变生产率;以及
钻探新井到所述储层。
14.根据权利要求1所述的方法,其中所述速率近似的质量通过以下方法来改善:
计算特殊向量基础函数;以及
求解粗糙单元的小局部系统。
15.一种用于从碳氢化合物储层生产碳氢化合物的方法,包括:
在非结构化网格上使用多级混合多尺度有限体积法仿真所述碳氢化合物储层,包括:
计算用于压力的第一代数多级基础函数;
构造互相作用区;
生成主网格;
计算用于速率近似的第二代数多尺度基础函数;以及
至少部分基于所述仿真的结果从所述碳氢化合物储层生产碳氢化合物。
16.根据权利要求15所述的方法,其中生产所述碳氢化合物包括以下方法中的一个或多于一个:
钻探一个或多于一个井到所述碳氢化合物储层,其中所述井包括生产井、注入井或所述两者;以及
设置源自所述碳氢化合物储层的生产率。
17.一种用于仿真多孔介质中流动的混合多尺度有限体积法,包括:
收集关于碳氢化合物储层的全局信息;
基于饱和度方程推导椭圆问题;
计算多个非结构化粗糙网格和对应于所述多个非结构化粗糙网格的多个压力基础函数;
求解所述多个基础函数从而为所述多个非结构化粗糙网格的每个重构速率向量场;以及
迭代仿真直到达到最终时间帧,其中所述仿真包括:
为所述多个非结构化粗糙网格的每个中的多个计算单元求解压力方程;
为所述多个粗糙网格的每个计算总速率;
为所述多个非结构化粗糙网格的每个求解所述椭圆问题;
为所述多个非结构化粗糙网格的每个计算相位速率;以及
为所述多个非结构化粗糙网格的每个计算成分运输。
18.根据权利要求17所述的混合多尺度有限体积法,进一步包括将为所述多个非结构化粗糙网格的每个计算的所述相位速率组合,从而获得所述碳氢化合物储层的相位速率。
19.根据权利要求17所述的混合多尺度有限体积法,将为所述多个粗糙网格的每个计算的所述成分运输进一步组合,从而获得所述碳氢化合物储层的相位速率。
20.一种用于仿真含碳氢化合物储层的系统,包括:
处理器;
非瞬时存储设备,其中所述存储设备包括所述碳氢化合物储层的数据表示,其中所述数据表示是由混合多尺度有限体积法确定的非结构化可计算网格;
内存设备,其中所述内存设备包括代码从而引导所述处理器:
计算用于压力的第一代数多级基础函数;
构造互相作用区;
生成主网格;
计算用于速率近似的第二代数多尺度基础函数;
使用所述主网格仿真所述碳氢化合物储层;以及
至少部分基于所述仿真的结果更新所述数据表示。
21.根据权利要求20所述的系统,其中所述处理器包括多处理器集群。
CN201180021829.4A 2010-04-30 2011-01-20 流体有限体积仿真的方法和系统 Expired - Fee Related CN102870087B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US33001210P 2010-04-30 2010-04-30
US61/330,012 2010-04-30
PCT/US2011/021869 WO2011136861A1 (en) 2010-04-30 2011-01-20 Method and system for finite volume simulation of flow

Publications (2)

Publication Number Publication Date
CN102870087A true CN102870087A (zh) 2013-01-09
CN102870087B CN102870087B (zh) 2016-11-09

Family

ID=44861861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180021829.4A Expired - Fee Related CN102870087B (zh) 2010-04-30 2011-01-20 流体有限体积仿真的方法和系统

Country Status (6)

Country Link
US (1) US9134454B2 (zh)
EP (1) EP2564309A4 (zh)
CN (1) CN102870087B (zh)
BR (1) BR112012025995A2 (zh)
CA (1) CA2795835C (zh)
WO (1) WO2011136861A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107463760A (zh) * 2017-09-26 2017-12-12 北京航空航天大学 基于超临界碳氢燃料的流通区域的评测方法和装置
CN108509741A (zh) * 2018-04-10 2018-09-07 西南科技大学 一种泥石流方程的有限元数值求解方法
WO2019052313A1 (zh) * 2017-09-13 2019-03-21 腾讯科技(深圳)有限公司 一种液体仿真方法、液体交互方法及装置
CN111859766A (zh) * 2020-07-28 2020-10-30 深圳拳石科技发展有限公司 可变计算域的拉格朗日积分点有限元数值仿真系统及方法

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2776487C (en) 2009-11-12 2017-02-14 Exxonmobil Upstream Research Company Method and apparatus for generating a three-dimentional simulation grid for a reservoir model
BR112012025995A2 (pt) 2010-04-30 2016-06-28 Exxonmobil Upstream Res Co método e sistema para simulação de fluxo de volume finito
WO2012015517A1 (en) 2010-07-29 2012-02-02 Exxonmobil Upstream Research Company Methods and systems for machine-learning based simulation of flow
AU2011283190A1 (en) 2010-07-29 2013-02-07 Exxonmobil Upstream Research Company Methods and systems for machine-learning based simulation of flow
AU2011283193B2 (en) 2010-07-29 2014-07-17 Exxonmobil Upstream Research Company Methods and systems for machine-learning based simulation of flow
CA2803068C (en) 2010-07-29 2016-10-11 Exxonmobil Upstream Research Company Method and system for reservoir modeling
BR112013002114A2 (pt) 2010-09-20 2016-05-17 Exxonmobil Upstream Res Co formulações flexíveis e adaptáveis para simulações de reservatório complexas
WO2012108917A1 (en) * 2011-02-09 2012-08-16 Exxonmobil Upstream Research Company Methods and systems for upscaling mechanical properties of geomaterials
BR112013025220A2 (pt) * 2011-04-12 2016-12-27 Landmark Graphics Corp método de simulação de fluxo em meios porosos, programa de computação armazenado em um meio de armazenamento legível por computador tangível não transitório
FR2976099B1 (fr) * 2011-06-01 2013-05-17 IFP Energies Nouvelles Methode pour construire un maillage d'un reseau de fractures a partir de diagramme de voronoi
EP2756382A4 (en) 2011-09-15 2015-07-29 Exxonmobil Upstream Res Co MATRIX AND VECTOR OPERATIONS OPTIMIZED IN LIMITED INSTRUCTION ALGORITHMS THAT COMPLETE EOS CALCULATIONS
BR112014021946A2 (pt) * 2012-03-08 2019-09-24 Geokinetics Acquisition Company divisão de espectro
WO2014051903A1 (en) 2012-09-28 2014-04-03 Exxonmobil Upstream Research Company Fault removal in geological models
RU2015123286A (ru) * 2012-11-20 2017-01-10 Сточастик Симюлэйшн Лимитед Способ и система для снятия характеристик подземных пластов
US11181662B2 (en) * 2013-08-28 2021-11-23 Landmark Graphics Corporation Static earth model grid cell scaling and property re-sampling methods and systems
RU2016107165A (ru) 2013-08-29 2017-08-31 Лэндмарк Графикс Корпорейшн Способ и система калибровки статической модели недр
GB2531976B (en) * 2013-08-30 2020-12-16 Logined Bv Stratigraphic function
US10866340B2 (en) * 2013-09-05 2020-12-15 Schlumberger Technology Corporation Integrated oilfield asset modeling using multiple resolutions of reservoir detail
US9797225B2 (en) * 2013-11-27 2017-10-24 Saudi Arabian Oil Company Data compression of hydrocarbon reservoir simulation grids
WO2016018723A1 (en) 2014-07-30 2016-02-04 Exxonmobil Upstream Research Company Method for volumetric grid generation in a domain with heterogeneous material properties
US10190395B2 (en) 2014-08-22 2019-01-29 Chevron U.S.A. Inc. Flooding analysis tool and method thereof
CA2963092C (en) 2014-10-31 2021-07-06 Exxonmobil Upstream Research Company Methods to handle discontinuity in constructing design space for faulted subsurface model using moving least squares
EP3213126A1 (en) * 2014-10-31 2017-09-06 Exxonmobil Upstream Research Company Handling domain discontinuity in a subsurface grid model with the help of grid optimization techniques
EP3020913B1 (en) * 2014-11-17 2017-06-14 Repsol, S.A. Method of managing petro-chemical reservoir production and program product therefor
GB2561470B (en) * 2015-10-09 2021-11-17 Geoquest Systems Bv Reservoir simulation using an adaptive deflated multiscale solver
AU2015414107A1 (en) 2015-11-10 2018-04-19 Landmark Graphics Corporation Fracture network triangle mesh adjustment
EP3374804B1 (en) * 2015-11-10 2022-08-24 Landmark Graphics Corporation Target object simulation using orbit propagation
AU2015414307B2 (en) 2015-11-10 2020-11-05 Landmark Graphics Corporation Target object simulation using undulating surfaces
WO2018064366A1 (en) * 2016-09-28 2018-04-05 Schlumberger Technology Corporation Enhanced two point flux approximation scheme for reservoir simulation
US10303711B2 (en) 2016-09-30 2019-05-28 Schlumberger Technology Corporation Unstructured volumetric grid simplification using sub-volume clustering
WO2018118374A1 (en) 2016-12-23 2018-06-28 Exxonmobil Upstream Research Company Method and system for stable and efficient reservoir simulation using stability proxies
CN109505591B (zh) * 2017-09-13 2021-10-29 中国石油化工股份有限公司 确定缝洞型油藏未充填溶洞渗透率界限的方法及系统
US10875176B2 (en) 2018-04-04 2020-12-29 Kuka Systems North America Llc Process control using deep learning training model
CN109241562B (zh) * 2018-08-02 2022-12-16 上海交通大学 基于多尺度有限元方法的微结构材料弹性性能测定方法
US11379640B2 (en) * 2019-01-16 2022-07-05 Saudi Arabian Oil Company Reservoir regions management with unstructured grid reservoir simuation model
US11899162B2 (en) * 2020-09-14 2024-02-13 Saudi Arabian Oil Company Method and system for reservoir simulations based on an area of interest
CN112417777B (zh) * 2020-11-13 2024-01-09 上海昊海生物科技股份有限公司 房水引流装置及其结构优化方法、系统、终端及介质
US20220308261A1 (en) * 2021-03-26 2022-09-29 Halliburton Energy Services, Inc. Visualizing fluid flow through porous media in virtual reality
CN113638721B (zh) * 2021-08-25 2023-07-25 北京中科鑫宇科技发展有限公司 一种基于图论的油气运移最优路径生成方法
CN113689473B (zh) * 2021-10-26 2022-01-04 武汉大学 基于变分原理的河道表面流速计算方法及装置
WO2024064657A1 (en) * 2022-09-19 2024-03-28 Schlumberger Technology Corporation Geologic modeling framework

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040176937A1 (en) * 2003-03-06 2004-09-09 Patrick Jenny Multi-scale finite-volume method for use in subsurface flow simulation
US20060235667A1 (en) * 2005-04-14 2006-10-19 Fung Larry S Solution method and apparatus for large-scale simulation of layered formations
US20070039732A1 (en) * 2005-08-18 2007-02-22 Bj Services Company Methods and compositions for improving hydrocarbon recovery by water flood intervention
US20100004908A1 (en) * 2008-07-03 2010-01-07 Chevron U.S.A. Inc. Multi-scale finite volume method for reservoir simulation

Family Cites Families (268)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537320A (en) 1994-10-31 1996-07-16 Landmark Graphics Corporation Method and apparatus for identifying fault curves in seismic data
US5706194A (en) 1995-06-01 1998-01-06 Phillips Petroleum Company Non-unique seismic lithologic inversion for subterranean modeling
FR2739446B1 (fr) 1995-09-28 1997-10-24 Inst Francais Du Petrole Methode pour mesurer avec une grande precision la variation de volume intervenant lors du melange de phases fluides, dans le but de determiner des caracteristiques physico-chimiques
US5710726A (en) 1995-10-10 1998-01-20 Atlantic Richfield Company Semi-compositional simulation of hydrocarbon reservoirs
US5671136A (en) 1995-12-11 1997-09-23 Willhoit, Jr.; Louis E. Process for seismic imaging measurement and evaluation of three-dimensional subterranean common-impedance objects
FR2744224B1 (fr) 1996-01-26 1998-04-17 Inst Francais Du Petrole Methode pour simuler le remplissage d'un bassin sedimentaire
US5838634A (en) 1996-04-04 1998-11-17 Exxon Production Research Company Method of generating 3-D geologic models incorporating geologic and geophysical constraints
FR2748516B1 (fr) 1996-05-07 1998-06-26 Inst Francais Du Petrole Methode pour realiser un modele cinematique en 2d de bassins geologiques affectes par des failles
US6014343A (en) 1996-10-31 2000-01-11 Geoquest Automatic non-artificially extended fault surface based horizon modeling system
US6128577A (en) 1996-12-19 2000-10-03 Schlumberger Technology Corporation Modeling geological structures and properties
US5924048A (en) 1997-03-14 1999-07-13 Mccormack; Michael D. Automated material balance system for hydrocarbon reservoirs using a genetic procedure
US6106561A (en) 1997-06-23 2000-08-22 Schlumberger Technology Corporation Simulation gridding method and apparatus including a structured areal gridder adapted for use by a reservoir simulator
US5992519A (en) 1997-09-29 1999-11-30 Schlumberger Technology Corporation Real time monitoring and control of downhole reservoirs
WO1999028767A1 (en) 1997-12-01 1999-06-10 Schlumberger Limited Method and apparatus for creating, testing, and modifying geological subsurface models
US6052520A (en) 1998-02-10 2000-04-18 Exxon Production Research Company Process for predicting behavior of a subterranean formation
GB2352036B (en) 1998-05-04 2002-11-27 Schlumberger Evaluation & Prod Near wellbore modelling method and apparatus
US6765570B1 (en) 1998-07-21 2004-07-20 Magic Earth, Inc. System and method for analyzing and imaging three-dimensional volume data sets using a three-dimensional sampling probe
US6018498A (en) 1998-09-02 2000-01-25 Phillips Petroleum Company Automated seismic fault detection and picking
US6662146B1 (en) 1998-11-25 2003-12-09 Landmark Graphics Corporation Methods for performing reservoir simulation
WO2000048022A1 (en) 1999-02-12 2000-08-17 Schlumberger Limited Uncertainty constrained subsurface modeling
US6230101B1 (en) 1999-06-03 2001-05-08 Schlumberger Technology Corporation Simulation method and apparatus
US6826520B1 (en) 1999-06-24 2004-11-30 Exxonmobil Upstream Research Company Method of upscaling permeability for unstructured grids
US6826483B1 (en) 1999-10-13 2004-11-30 The Trustees Of Columbia University In The City Of New York Petroleum reservoir simulation and characterization system and method
US6480790B1 (en) 1999-10-29 2002-11-12 Exxonmobil Upstream Research Company Process for constructing three-dimensional geologic models having adjustable geologic interfaces
FR2800881B1 (fr) 1999-11-05 2001-11-30 Inst Francais Du Petrole Methode pour realiser en 3d un modele cinematique de deformation d'un bassin sedimentaire
US6374185B1 (en) 2000-02-18 2002-04-16 Rdsp I, L.P. Method for generating an estimate of lithological characteristics of a region of the earth's subsurface
US6980940B1 (en) 2000-02-22 2005-12-27 Schlumberger Technology Corp. Intergrated reservoir optimization
US6370491B1 (en) 2000-04-04 2002-04-09 Conoco, Inc. Method of modeling of faulting and fracturing in the earth
US6826521B1 (en) 2000-04-06 2004-11-30 Abb Automation Inc. System and methodology and adaptive, linear model predictive control based on rigorous, nonlinear process model
GB0017227D0 (en) 2000-07-14 2000-08-30 Schlumberger Ind Ltd Fully coupled geomechanics in a commerical reservoir simulator
US7415401B2 (en) 2000-08-31 2008-08-19 Exxonmobil Upstream Research Company Method for constructing 3-D geologic models by combining multiple frequency passbands
US20020049575A1 (en) 2000-09-28 2002-04-25 Younes Jalali Well planning and design
GB2386811B (en) 2000-12-18 2005-06-08 Schlumberger Holdings Method and apparatus for visualization of 3D voxel data using lit opacity volumes with shading
US6664961B2 (en) 2000-12-20 2003-12-16 Rutgers, The State University Of Nj Resample and composite engine for real-time volume rendering
FR2818742B1 (fr) 2000-12-22 2003-02-14 Inst Francais Du Petrole Methode pour former un module a reseaux neuronaux optimise, destine a simuler le mode d'ecoulement d'une veine de fluides polyphasiques
US6690820B2 (en) 2001-01-31 2004-02-10 Magic Earth, Inc. System and method for analyzing and imaging and enhanced three-dimensional volume data set using one or more attributes
US6901391B2 (en) 2001-03-21 2005-05-31 Halliburton Energy Services, Inc. Field/reservoir optimization utilizing neural networks
US7286972B2 (en) 2001-04-17 2007-10-23 Livermore Software Technology Corporation Implicit-explicit switching for finite element analysis
EP2362346B1 (en) 2001-04-18 2013-07-10 Landmark Graphics Corporation Method and computer program product for volume rendering
EP1389259B1 (en) 2001-04-24 2005-11-23 ExxonMobil Upstream Research Company Method for enhancing production allocation in an integrated reservoir and surface flow system
CA2449286C (en) 2001-06-06 2007-08-21 Schlumberger Canada Limited Automated system for modeling faulted multi-valued horizons
US7248259B2 (en) 2001-12-12 2007-07-24 Technoguide As Three dimensional geological model construction
US7606691B2 (en) 2001-12-13 2009-10-20 Exxonmobil Upstream Research Company Method for locally controlling spatial continuity in geologic models
US7069149B2 (en) 2001-12-14 2006-06-27 Chevron U.S.A. Inc. Process for interpreting faults from a fault-enhanced 3-dimensional seismic attribute volume
US6694264B2 (en) 2001-12-19 2004-02-17 Earth Science Associates, Inc. Method and system for creating irregular three-dimensional polygonal volume models in a three-dimensional geographic information system
US7523024B2 (en) 2002-05-17 2009-04-21 Schlumberger Technology Corporation Modeling geologic objects in faulted formations
US7225324B2 (en) 2002-10-31 2007-05-29 Src Computers, Inc. Multi-adaptive processing systems and techniques for enhancing parallelism and performance of computational functions
US20060122780A1 (en) 2002-11-09 2006-06-08 Geoenergy, Inc Method and apparatus for seismic feature extraction
GB2410358A (en) 2002-11-23 2005-07-27 Schlumberger Technology Corp Method and system for integrated reservoir and surface facility networks simulations
FR2848320B1 (fr) 2002-12-10 2005-01-28 Inst Francais Du Petrole Methode pour modeliser des caracteristiques hydrodynamiques d'ecoulements polyphasiques par reseaux de neurones
US7379854B2 (en) 2002-12-19 2008-05-27 Exxonmobil Upstream Research Company Method of conditioning a random field to have directionally varying anisotropic continuity
FR2849211B1 (fr) 2002-12-20 2005-03-11 Inst Francais Du Petrole Methode de modelisation pour constituer un modele simulant le remplissage multilithologique d'un bassin sedimentaire
US8374974B2 (en) 2003-01-06 2013-02-12 Halliburton Energy Services, Inc. Neural network training data selection using memory reduced cluster analysis for field model development
US7280952B2 (en) 2003-01-28 2007-10-09 Conocophillips Company Well planning using seismic coherence
US7096172B2 (en) 2003-01-31 2006-08-22 Landmark Graphics Corporation, A Division Of Halliburton Energy Services, Inc. System and method for automated reservoir targeting
US7496488B2 (en) 2003-03-06 2009-02-24 Schlumberger Technology Company Multi-scale finite-volume method for use in subsurface flow simulation
NO322089B1 (no) 2003-04-09 2006-08-14 Norsar V Daglig Leder Fremgangsmate for simulering av lokale prestakk dypmigrerte seismiske bilder
US7835893B2 (en) 2003-04-30 2010-11-16 Landmark Graphics Corporation Method and system for scenario and case decision management
US7539625B2 (en) 2004-03-17 2009-05-26 Schlumberger Technology Corporation Method and apparatus and program storage device including an integrated well planning workflow control system with process dependencies
US7096122B2 (en) 2003-07-22 2006-08-22 Dianli Han Method for producing full field radial grid for hydrocarbon reservoir simulation
NL1024444C2 (nl) 2003-10-03 2005-04-08 J O A Beheer B V Werkwijze, inrichting, computerprogramma en gegevensdrager voor het met een digitale verwerkingseenheid modelleren van een meerdimensionale heterogene structuur.
FR2863052B1 (fr) 2003-12-02 2006-02-24 Inst Francais Du Petrole Methode pour determiner les composantes d'un tenseur de permeabilite effectif d'une roche poreuse
US20050171700A1 (en) 2004-01-30 2005-08-04 Chroma Energy, Inc. Device and system for calculating 3D seismic classification features and process for geoprospecting material seams
CA2543801C (en) 2004-01-30 2014-03-04 Exxonmobil Upstream Research Company Reservoir model building methods
US7783462B2 (en) 2004-01-30 2010-08-24 Exxonmobil Upstream Research Co. Reservoir evaluation methods
EP1733330A1 (en) 2004-03-31 2006-12-20 ExxonMobil Upstream Research Company Method for constructing a geologic model of a subsurface reservoir
FR2869116B1 (fr) 2004-04-14 2006-06-09 Inst Francais Du Petrole Methode pour construire un modele geomecanique d'une zone souterraine destine a etre couple a un modele de reservoir
FR2870621B1 (fr) * 2004-05-21 2006-10-27 Inst Francais Du Petrole Methode pour generer un maillage hybride conforme en trois dimensions d'une formation heterogene traversee par une ou plusieurs discontinuites geometriques dans le but de realiser des simulations
EP1751585B1 (en) 2004-06-02 2009-11-18 Paradigm France Method for building a three dimensional cellular partition of a geological domain
CN1973110A (zh) 2004-06-25 2007-05-30 国际壳牌研究有限公司 从地下地层控制生产碳氢化合物流体用的闭环控制系统
US7526418B2 (en) 2004-08-12 2009-04-28 Saudi Arabian Oil Company Highly-parallel, implicit compositional reservoir simulator for multi-million-cell models
US20060047429A1 (en) 2004-08-24 2006-03-02 Adams Steven L Method of estimating geological formation depths by converting interpreted seismic horizons from the time domain to the depth domain
AU2005285360B2 (en) 2004-09-10 2011-02-03 Exxonmobil Upstream Research Company A method for constructing geologic models of subsurface sedimentary volumes
US7809537B2 (en) 2004-10-15 2010-10-05 Saudi Arabian Oil Company Generalized well management in parallel reservoir simulation
DE602004015297D1 (de) 2004-10-26 2008-09-04 Total Sa Verfahren und Computerprogramm zur Fehleroberflächenkonstruktion
US7617082B2 (en) 2004-11-29 2009-11-10 Chevron U.S.A. Inc. Method, system and program storage device for simulating fluid flow in a physical system using a dynamic composition based extensible object-oriented architecture
CA2590767C (en) 2004-12-14 2011-04-19 Schlumberger Canada Limited Geometrical optimization of multi-well trajectories
US7640149B2 (en) 2004-12-15 2009-12-29 Schlumberger Technology Corporation Method system and program storage device for optimization of valve settings in instrumented wells using adjoint gradient technology and reservoir simulation
US7788037B2 (en) 2005-01-08 2010-08-31 Halliburton Energy Services, Inc. Method and system for determining formation properties based on fracture treatment
EP1707993B1 (fr) 2005-03-29 2009-08-19 Total S.A. Procédé et programme de recherche de discontinuites géologiques
US7480205B2 (en) 2005-04-20 2009-01-20 Landmark Graphics Corporation 3D fast fault restoration
US7516056B2 (en) 2005-04-26 2009-04-07 Schlumberger Technology Corporation Apparatus, method and system for improved reservoir simulation using a multiplicative overlapping Schwarz preconditioning for adaptive implicit linear systems
US7277796B2 (en) 2005-04-26 2007-10-02 Schlumberger Technology Corporation System and methods of characterizing a hydrocarbon reservoir
US8209202B2 (en) 2005-04-29 2012-06-26 Landmark Graphics Corporation Analysis of multiple assets in view of uncertainties
US20070016389A1 (en) 2005-06-24 2007-01-18 Cetin Ozgen Method and system for accelerating and improving the history matching of a reservoir simulation model
AU2006279437A1 (en) 2005-08-15 2007-02-22 University Of Southern California Method and system for integrated asset management utilizing multi-level modeling of oil field assets
AU2006279464B2 (en) 2005-08-15 2011-11-10 University Of Southern California Modeling application development in the petroleum industry
FR2890453B1 (fr) 2005-09-05 2007-10-19 Inst Francais Du Petrole Methode pour mettre a jour un modele geologique de reservoir a l'aide de donnees dynamiques
US7406878B2 (en) 2005-09-27 2008-08-05 Endress + Hauser Flowtec Ag Method for measuring a medium flowing in a pipeline and measurement system therefor
WO2007142670A1 (en) 2005-10-06 2007-12-13 Schlumberger Technology Corporation Method, system and apparatus for numerical black oil delumping
US7584081B2 (en) 2005-11-21 2009-09-01 Chevron U.S.A. Inc. Method, system and apparatus for real-time reservoir model updating using ensemble kalman filter
US7809538B2 (en) 2006-01-13 2010-10-05 Halliburton Energy Services, Inc. Real time monitoring and control of thermal recovery operations for heavy oil reservoirs
BRPI0706580A2 (pt) 2006-01-20 2011-03-29 Landmark Graphics Corp gerenciamento dinámico de sistema de produção
US8504341B2 (en) 2006-01-31 2013-08-06 Landmark Graphics Corporation Methods, systems, and computer readable media for fast updating of oil and gas field production models with physical and proxy simulators
US7486589B2 (en) 2006-02-09 2009-02-03 Schlumberger Technology Corporation Methods and apparatus for predicting the hydrocarbon production of a well location
US8812334B2 (en) 2006-02-27 2014-08-19 Schlumberger Technology Corporation Well planning system and method
CA2643911C (en) 2006-03-02 2015-03-24 Exxonmobil Upstream Research Company Method for quantifying reservoir connectivity using fluid travel times
EP2004953B1 (en) 2006-04-07 2009-10-07 Shell Internationale Research Maatschappij B.V. Method for optimising the production of a cluster of wells
US7716029B2 (en) 2006-05-15 2010-05-11 Schlumberger Technology Corporation Method for optimal gridding in reservoir simulation
US20070277115A1 (en) 2006-05-23 2007-11-29 Bhp Billiton Innovation Pty Ltd. Method and system for providing a graphical workbench environment with intelligent plug-ins for processing and/or analyzing sub-surface data
US7756694B2 (en) 2006-05-31 2010-07-13 Schlumberger Technology Corporation Method for interactive automation of fault modeling including a method for intelligently sensing fault-fault relationships
US20070279429A1 (en) 2006-06-02 2007-12-06 Leonhard Ganzer System and method for rendering graphics
US7548840B2 (en) 2006-06-06 2009-06-16 Chevron U.S.A. Inc. Efficient application of reduced variable transformation and conditional stability testing in reservoir simulation flash calculations
US7254091B1 (en) 2006-06-08 2007-08-07 Bhp Billiton Innovation Pty Ltd. Method for estimating and/or reducing uncertainty in reservoir models of potential petroleum reservoirs
WO2007149766A2 (en) 2006-06-18 2007-12-27 Chevron U.S.A. Inc. Reservoir simulation using a multi-scale finite volume including black oil modeling
EP2038810A4 (en) 2006-07-07 2018-05-09 Exxonmobil Upstream Research Company Upscaling of reservoir models by reusing flow solutions from geologic models
WO2008028122A2 (en) 2006-09-01 2008-03-06 Chevron U.S.A. Inc. History matching and forecasting in the production of hydrocarbons
US9043188B2 (en) 2006-09-01 2015-05-26 Chevron U.S.A. Inc. System and method for forecasting production from a hydrocarbon reservoir
US7657494B2 (en) 2006-09-20 2010-02-02 Chevron U.S.A. Inc. Method for forecasting the production of a petroleum reservoir utilizing genetic programming
US7877246B2 (en) 2006-09-22 2011-01-25 Schlumberger Technology Corporation System and method for performing oilfield simulation operations
US20080144903A1 (en) 2006-10-25 2008-06-19 Bai Wang Real-time hardware accelerated contour generation based on VOI mask
CN102772212A (zh) 2006-10-26 2012-11-14 雅培糖尿病护理公司 检测被分析物传感器中的信号衰减的方法、设备和系统
US8145464B2 (en) 2006-11-02 2012-03-27 Schlumberger Technology Corporation Oilfield operational system and method
US20080126168A1 (en) 2006-11-15 2008-05-29 Schlumberger Technology Corporation Oilfield management system
US7577527B2 (en) 2006-12-29 2009-08-18 Schlumberger Technology Corporation Bayesian production analysis technique for multistage fracture wells
MX2009007229A (es) 2007-01-05 2010-02-18 Landmark Graphics Corp Sistemas y metodos para visualizar multiples grupos de datos volumetricos en tiempo real.
US7467044B2 (en) 2007-01-15 2008-12-16 Chevron U.S.A. Inc Method and system for assessing exploration prospect risk and uncertainty
US7706981B2 (en) 2007-02-08 2010-04-27 Chevron U.S.A. Inc. Method for generating reservoir models utilizing synthetic stratigraphic columns
US9110193B2 (en) 2007-02-25 2015-08-18 Chevron U.S.A. Inc. Upscaling multiple geological models for flow simulation
FR2914434B1 (fr) 2007-03-30 2009-05-22 Inst Francais Du Petrole Methode de calage d'historique d'un modele geologique par modification graduelle des proportions des facies lithologiques
US8005658B2 (en) 2007-05-31 2011-08-23 Schlumberger Technology Corporation Automated field development planning of well and drainage locations
WO2008150325A1 (en) 2007-06-01 2008-12-11 Exxonmobil Upstream Research Company Generation of constrained voronoi grid in a plane
US9175547B2 (en) 2007-06-05 2015-11-03 Schlumberger Technology Corporation System and method for performing oilfield production operations
US8775141B2 (en) 2007-07-02 2014-07-08 Schlumberger Technology Corporation System and method for performing oilfield simulation operations
FR2918776B1 (fr) 2007-07-09 2009-09-25 Total Sa Procede, programme et systeme informatique de mise a l'echelle de donnees de modele de reservoir d'hydrocarbure.
US7986319B2 (en) 2007-08-01 2011-07-26 Austin Gemodeling, Inc. Method and system for dynamic, three-dimensional geological interpretation and modeling
US8612194B2 (en) 2007-08-08 2013-12-17 Westerngeco L.L.C. Updating a subterranean model using at least electromagnetic data
EP2198121A1 (en) 2007-08-31 2010-06-23 Saudi Arabian Oil Company Artificial neural network models for determining relative permeability of hydrocarbon reservoirs
US20100191516A1 (en) 2007-09-07 2010-07-29 Benish Timothy G Well Performance Modeling In A Collaborative Well Planning Environment
US20100132450A1 (en) 2007-09-13 2010-06-03 Pomerantz Andrew E Methods for optimizing petroleum reservoir analysis
US20090071239A1 (en) 2007-09-13 2009-03-19 Schlumberger Technology Corp. Methods for optimizing petroleum reservoir analysis
US20110161133A1 (en) 2007-09-29 2011-06-30 Schlumberger Technology Corporation Planning and Performing Drilling Operations
GB2466412B (en) 2007-10-22 2012-03-21 Schlumberger Holdings Formation modeling while drilling for enhanced high angle or horizontal well placement
CA2703955C (en) 2007-10-30 2018-05-29 University Of Utah Research Foundation Fast iterative method for processing hamilton-jacobi equations
CN103278847A (zh) 2007-11-14 2013-09-04 特拉斯帕克地球科学有限责任公司 地震数据处理
FR2923930B1 (fr) 2007-11-19 2009-11-20 Inst Francais Du Petrole Methode de modelisation d'un milieu geologique poreux traverse par un reseau de fractures.
GB2455077A (en) 2007-11-27 2009-06-03 Polyhedron Software Ltd Estimating the state of a physical system using generalized nested factorisation
US7878268B2 (en) 2007-12-17 2011-02-01 Schlumberger Technology Corporation Oilfield well planning and operation
US8577660B2 (en) 2008-01-23 2013-11-05 Schlumberger Technology Corporation Three-dimensional mechanical earth modeling
US7822554B2 (en) 2008-01-24 2010-10-26 Schlumberger Technology Corporation Methods and apparatus for analysis of downhole compositional gradients and applications thereof
US7920970B2 (en) 2008-01-24 2011-04-05 Schlumberger Technology Corporation Methods and apparatus for characterization of petroleum fluid and applications thereof
CA2714731C (en) 2008-02-11 2016-11-15 Gary Schottle Systems and methods for improved positioning of pads
US8285532B2 (en) 2008-03-14 2012-10-09 Schlumberger Technology Corporation Providing a simplified subterranean model
US7996154B2 (en) 2008-03-27 2011-08-09 Schlumberger Technology Corporation Methods and apparatus for analysis of downhole asphaltene gradients and applications thereof
WO2009120409A1 (en) 2008-03-28 2009-10-01 Exxonmobil Upstream Research Company Computing a consistent velocity vector field from a set of fluxes
US8803878B2 (en) 2008-03-28 2014-08-12 Schlumberger Technology Corporation Visualizing region growing in three dimensional voxel volumes
US9529110B2 (en) 2008-03-31 2016-12-27 Westerngeco L. L. C. Constructing a reduced order model of an electromagnetic response in a subterranean structure
US7933750B2 (en) 2008-04-02 2011-04-26 Schlumberger Technology Corp Method for defining regions in reservoir simulation
US20110115787A1 (en) 2008-04-11 2011-05-19 Terraspark Geosciences, Llc Visulation of geologic features using data representations thereof
US8793111B2 (en) 2009-01-20 2014-07-29 Schlumberger Technology Corporation Automated field development planning
US8898017B2 (en) 2008-05-05 2014-11-25 Bp Corporation North America Inc. Automated hydrocarbon reservoir pressure estimation
US9372943B2 (en) 2008-05-05 2016-06-21 Exxonmobil Upstream Research Company Modeling dynamic systems by visualizing and narrowing a parameter space
MX2010012483A (es) * 2008-05-16 2011-04-26 Chevron Usa Inc Metodo de escalas multiples para el flujo de fases multiples en un medio poroso.
WO2009138290A2 (en) 2008-05-16 2009-11-19 Ephesia Consult Sa Multi-point reservoir modelling
US8095349B2 (en) 2008-05-30 2012-01-10 Kelkar And Associates, Inc. Dynamic updating of simulation models
US8630831B2 (en) 2008-06-16 2014-01-14 Schlumberger Technology Corporation Streamline flow simulation of a model that provides a representation of fracture corridors
FR2935177B1 (fr) 2008-08-19 2010-10-29 Inst Francais Du Petrole Methode de calage d'historique de reservoir petrolier au moyen de parametrisations locales
US8255195B2 (en) 2008-09-18 2012-08-28 Geoscape Analytics, Inc N-phasic element method for calculating a fully coupled response of multiphase compositional fluid flow and a system for uncertainty estimation
AU2009293209B2 (en) 2008-09-19 2015-07-09 Chevron U.S.A. Inc. Computer-implemented systems and methods for use in modeling a geomechanical reservoir system
US8543364B2 (en) 2008-09-19 2013-09-24 Chevron U.S.A. Inc. Method for optimizing well production in reservoirs having flow barriers
US8280709B2 (en) 2008-10-03 2012-10-02 Schlumberger Technology Corporation Fully coupled simulation for fluid flow and geomechanical properties in oilfield simulation operations
US8301429B2 (en) 2008-10-09 2012-10-30 Chevron U.S.A. Inc. Iterative multi-scale method for flow in porous media
CA2743479C (en) 2008-11-14 2016-06-28 Exxonmobil Upstream Research Company Forming a model of a subsurface region
US8301426B2 (en) 2008-11-17 2012-10-30 Landmark Graphics Corporation Systems and methods for dynamically developing wellbore plans with a reservoir simulator
WO2010065774A2 (en) 2008-12-03 2010-06-10 Chevron U.S.A. Inc. System and method for predicting fluid flow characteristics within fractured subsurface reservoirs
CA2689341A1 (en) 2008-12-31 2010-06-30 Shell Internationale Research Maatschappij B.V. Method and system for simulating fluid flow in an underground formation with uncertain properties
US10060245B2 (en) 2009-01-09 2018-08-28 Halliburton Energy Services, Inc. Systems and methods for planning well locations with dynamic production criteria
US8095345B2 (en) 2009-01-20 2012-01-10 Chevron U.S.A. Inc Stochastic inversion of geophysical data for estimating earth model parameters
US8275589B2 (en) 2009-02-25 2012-09-25 Schlumberger Technology Corporation Modeling a reservoir using a compartment model and a geomechanical model
US8339396B2 (en) 2009-03-05 2012-12-25 Schlumberger Technology Corporation Coarsening and splitting techniques
US8350851B2 (en) 2009-03-05 2013-01-08 Schlumberger Technology Corporation Right sizing reservoir models
US20110004447A1 (en) 2009-07-01 2011-01-06 Schlumberger Technology Corporation Method to build 3D digital models of porous media using transmitted laser scanning confocal mircoscopy and multi-point statistics
RU2549147C2 (ru) 2009-05-07 2015-04-20 Сауди Арабиан Ойл Компани Системы, компьютерно-реализуемые способы и компьютерно-считываемые программные продукты для расчета приближенного давления дренирования скважины для имитатора коллектора
US8498852B2 (en) 2009-06-05 2013-07-30 Schlumberger Tehcnology Corporation Method and apparatus for efficient real-time characterization of hydraulic fractures and fracturing optimization based thereon
US20100312535A1 (en) 2009-06-08 2010-12-09 Chevron U.S.A. Inc. Upscaling of flow and transport parameters for simulation of fluid flow in subsurface reservoirs
GB2471139A (en) 2009-06-19 2010-12-22 Kongsberg Maritime As Oil And Gas Method for providing reconciled estimates of three phase flow for individual wells and at individual locations in a hydrocarbon production process facility
FR2947345B1 (fr) 2009-06-26 2011-07-15 Inst Francais Du Petrole Methode pour modifier des proportions de facies lors du calage d'historique d'un modele geologique
US8996346B2 (en) 2009-07-13 2015-03-31 Schlumberger Technology Corporation Methods for characterization of petroleum fluid and application thereof
US8275593B2 (en) 2009-07-16 2012-09-25 University Of Regina Reservoir modeling method
FR2948215B1 (fr) 2009-07-16 2011-06-24 Inst Francais Du Petrole Methode pour generer un maillage hexa-dominant d'un milieu souterrain faille
US8532967B2 (en) 2009-08-14 2013-09-10 Schlumberger Technology Corporation Executing a utility in a distributed computing system based on an integrated model
FR2949586B1 (fr) 2009-08-26 2011-09-23 Inst Francais Du Petrole Methode pour exploiter un reservoir petrolier a partir d'un calage d'historique optimise
US8655632B2 (en) 2009-09-03 2014-02-18 Schlumberger Technology Corporation Gridless geological modeling
CA2772506A1 (en) 2009-09-11 2011-03-17 Schlumberger Canada Limited Methods and apparatus for characterization of petroleum fluid employing analysis of high molecular weight components
US8818778B2 (en) 2009-09-16 2014-08-26 Chevron U.S.A. Inc. Method for creating a 3D rock representation using petrophysical data
WO2011037580A1 (en) 2009-09-25 2011-03-31 Landmark Graphics Corporation Systems and methods for the quantitative estimate of production-forecast uncertainty
US8515721B2 (en) 2009-10-01 2013-08-20 Schlumberger Technology Corporation Method for integrated inversion determination of rock and fluid properties of earth formations
US8429671B2 (en) 2009-10-21 2013-04-23 Exxonmobil Upstream Research Company Integrated workflow builder for disparate computer programs
EP2317348B1 (en) 2009-10-30 2014-05-21 Services Pétroliers Schlumberger Method for building a depositional space corresponding to a geological domain
CA2776487C (en) 2009-11-12 2017-02-14 Exxonmobil Upstream Research Company Method and apparatus for generating a three-dimentional simulation grid for a reservoir model
CA2774182C (en) 2009-11-12 2019-08-06 Exxonmobil Upstream Research Company Method and system for rapid model evaluation using multilevel surrogates
EP3450679A1 (en) 2009-11-30 2019-03-06 Exxonmobil Upstream Research Company Adaptive newton's method for reservoir simulation
PL400383A1 (pl) 2009-12-15 2013-01-21 Schlumberger Technology B.V. Sposób modelowania basenu zbiornikowego
AU2011213261B2 (en) 2010-02-02 2015-04-02 Conocophillips Company Multilevel percolation aggregation solver for petroleum reservoir simulations
US8452580B2 (en) 2010-02-26 2013-05-28 Chevron U.S.A. Inc. Method and system for using multiple-point statistics simulation to model reservoir property trends
US8694261B1 (en) 2010-03-12 2014-04-08 Mark C. Robinson 3D-well log invention
EP2539744A4 (en) 2010-03-19 2017-11-22 Schlumberger Technology B.V. Uncertainty estimation for large-scale nonlinear inverse problems using geometric sampling and covariance-free model compression
US8271248B2 (en) 2010-04-01 2012-09-18 Schlumberger Technology Corporation Methods and apparatus for characterization of petroleum fluids and applications thereof
US8515720B2 (en) 2010-04-06 2013-08-20 Schlumberger Technology Corporation Determine field fractures using geomechanical forward modeling
US8731887B2 (en) 2010-04-12 2014-05-20 Exxonmobile Upstream Research Company System and method for obtaining a model of data describing a physical structure
WO2011132095A2 (en) 2010-04-21 2011-10-27 Schlumberger Canada Limited Methods for characterization of petroleum reservoirs employing property gradient analysis of reservoir fluids
BR112012025995A2 (pt) 2010-04-30 2016-06-28 Exxonmobil Upstream Res Co método e sistema para simulação de fluxo de volume finito
US9255475B2 (en) 2010-05-07 2016-02-09 Schlumberger Technology Corporation Methods for characterizing asphaltene instability in reservoir fluids
US8412501B2 (en) 2010-06-16 2013-04-02 Foroil Production simulator for simulating a mature hydrocarbon field
US8463586B2 (en) 2010-06-22 2013-06-11 Saudi Arabian Oil Company Machine, program product, and computer-implemented method to simulate reservoirs as 2.5D unstructured grids
US20110310101A1 (en) 2010-06-22 2011-12-22 Schlumberger Technology Corporation Pillar grid conversion
US9754056B2 (en) 2010-06-29 2017-09-05 Exxonmobil Upstream Research Company Method and system for parallel simulation models
US8359185B2 (en) 2010-06-30 2013-01-22 Saudi Arabian Oil Company Reservoir simulation of giant subsurface reservoirs with accelerated phase equilibrium determination
FR2962835B1 (fr) 2010-07-16 2013-07-12 IFP Energies Nouvelles Methode pour generer un maillage hexa-dominant d'un bassin geometriquement complexe
CA2801387A1 (en) 2010-07-26 2012-02-02 Exxonmobil Upstream Research Company Method and system for parallel multilevel simulation
US8599643B2 (en) 2010-07-27 2013-12-03 Schlumberger Technology Corporation Joint structural dip removal
WO2012015516A1 (en) 2010-07-29 2012-02-02 Exxonmobil Upstream Research Company Methods and systems for machine-learning based simulation of flow
US8457940B2 (en) 2010-07-29 2013-06-04 Schlumberger Technology Corporation Model-consistent structural restoration for geomechanical and petroleum systems modeling
CA2803068C (en) 2010-07-29 2016-10-11 Exxonmobil Upstream Research Company Method and system for reservoir modeling
AU2011283193B2 (en) 2010-07-29 2014-07-17 Exxonmobil Upstream Research Company Methods and systems for machine-learning based simulation of flow
US8515678B2 (en) 2010-07-29 2013-08-20 Schlumberger Technology Corporation Chrono-stratigraphic and tectono-stratigraphic interpretation on seismic volumes
US8447525B2 (en) 2010-07-29 2013-05-21 Schlumberger Technology Corporation Interactive structural restoration while interpreting seismic volumes for structure and stratigraphy
WO2012015517A1 (en) 2010-07-29 2012-02-02 Exxonmobil Upstream Research Company Methods and systems for machine-learning based simulation of flow
AU2011283190A1 (en) 2010-07-29 2013-02-07 Exxonmobil Upstream Research Company Methods and systems for machine-learning based simulation of flow
WO2012021119A1 (en) 2010-08-09 2012-02-16 Landmark Graphics Corporation Systems and methods for creating a surface in a faulted space
US9194974B2 (en) 2010-09-02 2015-11-24 Schlumberger Technology Corporation Method to predict dense hydrocarbon saturations for high pressure high temperature
WO2012031016A2 (en) 2010-09-02 2012-03-08 Schlumberger Canada Limited Thermodynamic modeling for optimized recovery in sagd
WO2012031089A2 (en) 2010-09-03 2012-03-08 Chevron U.S.A. Inc. Iterative method and system to construct robust proxy models for reservoir simulation
US8635026B2 (en) 2010-09-07 2014-01-21 Saudi Arabian Oil Company Determination of rock mechanics from applied force to area measures while slabbing core samples
US8386227B2 (en) 2010-09-07 2013-02-26 Saudi Arabian Oil Company Machine, computer program product and method to generate unstructured grids and carry out parallel reservoir simulation
US8433551B2 (en) 2010-11-29 2013-04-30 Saudi Arabian Oil Company Machine, computer program product and method to carry out parallel reservoir simulation
US8798974B1 (en) 2010-09-15 2014-08-05 Alan Gordon Nunns Method and system for interactive geological interpretation, modeling and restoration
WO2012040210A2 (en) 2010-09-20 2012-03-29 Schlumberger Canada Limited Methods for producing fluids from geological formation
BR112013002114A2 (pt) 2010-09-20 2016-05-17 Exxonmobil Upstream Res Co formulações flexíveis e adaptáveis para simulações de reservatório complexas
AU2011310635B2 (en) 2010-09-28 2014-09-18 Shell Internationale Research Maatschappij B.V. Earth model estimation through an acoustic Full Waveform Inversion of seismic data
GB201017898D0 (en) 2010-10-22 2010-12-01 Internat Res Inst Of Stavanger Earth model
CN103180866A (zh) 2010-10-22 2013-06-26 埃克森美孚上游研究公司 资产控制与管理系统
FR2966865B1 (fr) 2010-10-28 2015-05-15 IFP Energies Nouvelles Procede d'exploitation d'un gisement petrolier a partir d'un calage d'historique des donnees de production et de donnees sismiques.
WO2012071090A1 (en) 2010-11-23 2012-05-31 Exxonmobil Upstream Research Company Variable discretization method for flow simulation on complex geological models
EA201390784A1 (ru) 2010-11-30 2013-12-30 Лэндмарк Графикс Корпорейшн Способ уменьшения времени моделирования природного резервуара углеводородов
US20120143577A1 (en) 2010-12-02 2012-06-07 Matthew Szyndel Prioritizing well drilling propositions
WO2012078217A1 (en) 2010-12-08 2012-06-14 Exxonmobil Upstream Research Company Constructing geologic models from geologic concepts
BR112013014023B1 (pt) 2010-12-08 2021-02-02 Halliburton Energy Services, Inc. método para calibrar um sensor óptico
GB2499768A (en) 2010-12-13 2013-08-28 Chevron Usa Inc Improved constrained pressure residual preconditioner for efficient solution of the adjoint equation
GB2503578A (en) 2010-12-13 2014-01-01 Chevron Usa Method and system for coupling reservoir and surface facility simulations
US20120159124A1 (en) 2010-12-15 2012-06-21 Chevron U.S.A. Inc. Method and system for computational acceleration of seismic data processing
US8798977B2 (en) 2010-12-16 2014-08-05 Chevron U.S.A. Inc. System and method for simulating fluid flow in a fractured reservoir
EP2652669B1 (en) 2010-12-16 2020-03-04 Landmark Graphics Corporation Systems and methods for two-dimensional domain decomposition during parallel reservoir simulation
CN102110183B (zh) 2010-12-30 2011-09-28 中国石油化工股份有限公司胜利油田分公司地质科学研究院 一种反映流体沿储层大裂缝窜流的数值模拟方法
US8583411B2 (en) 2011-01-10 2013-11-12 Saudi Arabian Oil Company Scalable simulation of multiphase flow in a fractured subterranean reservoir as multiple interacting continua
US10055684B2 (en) 2011-01-31 2018-08-21 Landmark Graphics Corporation System and method for using an artificial neural network to simulate pipe hydraulics in a reservoir simulator
US8437999B2 (en) 2011-02-08 2013-05-07 Saudi Arabian Oil Company Seismic-scale reservoir simulation of giant subsurface reservoirs using GPU-accelerated linear equation systems
US8805659B2 (en) 2011-02-17 2014-08-12 Chevron U.S.A. Inc. System and method for uncertainty quantification in reservoir simulation
WO2012116296A2 (en) 2011-02-24 2012-08-30 Chevron U.S.A. Inc. System and method for performing reservoir simulation using preconditioning
US10534871B2 (en) 2011-03-09 2020-01-14 Schlumberger Technology Corporation Method and systems for reservoir modeling, evaluation and simulation
US10545260B2 (en) 2011-04-15 2020-01-28 Conocophillips Company Updating geological facies models using the Ensemble Kalman filter
US20120271609A1 (en) 2011-04-20 2012-10-25 Westerngeco L.L.C. Methods and computing systems for hydrocarbon exploration
US20140236558A1 (en) 2011-05-17 2014-08-21 Serguei Maliassov Method For Partitioning Parallel Reservoir Simulations In the Presence of Wells
US8731891B2 (en) 2011-07-28 2014-05-20 Saudi Arabian Oil Company Cluster 3D petrophysical uncertainty modeling
US9279314B2 (en) 2011-08-11 2016-03-08 Conocophillips Company Heat front capture in thermal recovery simulations of hydrocarbon reservoirs
US8843353B2 (en) 2011-08-25 2014-09-23 Chevron U.S.A. Inc. Hybrid deterministic-geostatistical earth model
EP2756382A4 (en) 2011-09-15 2015-07-29 Exxonmobil Upstream Res Co MATRIX AND VECTOR OPERATIONS OPTIMIZED IN LIMITED INSTRUCTION ALGORITHMS THAT COMPLETE EOS CALCULATIONS
US10260317B2 (en) 2011-09-20 2019-04-16 Bp Corporation North America Inc. Automated generation of local grid refinement at hydraulic fractures for simulation of tight gas reservoirs
US20130085730A1 (en) 2011-10-04 2013-04-04 Gareth J. Shaw Preconditioner for reservoir simulation
EP2766746B1 (en) 2011-10-11 2017-08-30 Saudi Arabian Oil Company High performance and grid computing with quality of service control
US9378310B2 (en) 2011-10-13 2016-06-28 Los Alamos National Security, Llc Material point method modeling in oil and gas reservoirs
US10519766B2 (en) 2011-10-26 2019-12-31 Conocophillips Company Reservoir modelling with multiple point statistics from a non-stationary training image
MX2014005012A (es) 2011-10-28 2014-07-09 Landmark Graphics Corp Metodos y sistemas para planeacion de pozo basada en un modelo de fractura compleja.
US9201164B2 (en) 2011-11-15 2015-12-01 Chevron U.S.A. Inc. System and method of using spatially independent subsets of data to calculate property distribution uncertainty of spatially correlated reservoir data
US9429678B2 (en) 2011-12-31 2016-08-30 Saudi Arabian Oil Company Apparatus, computer readable media, and computer programs for estimating missing real-time data for intelligent fields
US8700549B2 (en) 2012-05-23 2014-04-15 King Fahd University Of Petroleum And Minerals Method of predicting gas composition
WO2013180709A1 (en) 2012-05-30 2013-12-05 Landmark Graphics Corporation Oil or gas production using computer simulation of oil or gas fields and production facilities
WO2014051903A1 (en) 2012-09-28 2014-04-03 Exxonmobil Upstream Research Company Fault removal in geological models

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040176937A1 (en) * 2003-03-06 2004-09-09 Patrick Jenny Multi-scale finite-volume method for use in subsurface flow simulation
US20060235667A1 (en) * 2005-04-14 2006-10-19 Fung Larry S Solution method and apparatus for large-scale simulation of layered formations
US20070039732A1 (en) * 2005-08-18 2007-02-22 Bj Services Company Methods and compositions for improving hydrocarbon recovery by water flood intervention
US20100004908A1 (en) * 2008-07-03 2010-01-07 Chevron U.S.A. Inc. Multi-scale finite volume method for reservoir simulation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019052313A1 (zh) * 2017-09-13 2019-03-21 腾讯科技(深圳)有限公司 一种液体仿真方法、液体交互方法及装置
US11062513B2 (en) 2017-09-13 2021-07-13 Tencent Technology (Shenzhen) Company Limited Liquid simulation method, liquid interaction method and apparatuses
CN107463760A (zh) * 2017-09-26 2017-12-12 北京航空航天大学 基于超临界碳氢燃料的流通区域的评测方法和装置
CN108509741A (zh) * 2018-04-10 2018-09-07 西南科技大学 一种泥石流方程的有限元数值求解方法
CN108509741B (zh) * 2018-04-10 2022-07-29 西南科技大学 一种泥石流方程的有限元数值求解方法
CN111859766A (zh) * 2020-07-28 2020-10-30 深圳拳石科技发展有限公司 可变计算域的拉格朗日积分点有限元数值仿真系统及方法
CN111859766B (zh) * 2020-07-28 2024-01-23 福建省拳石科技发展有限公司 可变计算域的拉格朗日积分点有限元数值仿真系统及方法

Also Published As

Publication number Publication date
CA2795835C (en) 2016-10-04
CN102870087B (zh) 2016-11-09
US9134454B2 (en) 2015-09-15
EP2564309A4 (en) 2017-12-20
EP2564309A1 (en) 2013-03-06
WO2011136861A1 (en) 2011-11-03
CA2795835A1 (en) 2011-11-03
US20130035913A1 (en) 2013-02-07
BR112012025995A2 (pt) 2016-06-28
WO2011136861A8 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
CN102870087A (zh) 流体有限体积仿真的方法和系统
CA2803068C (en) Method and system for reservoir modeling
EP2599023B1 (en) Methods and systems for machine-learning based simulation of flow
US10087721B2 (en) Methods and systems for machine—learning based simulation of flow
US10198535B2 (en) Methods and systems for machine-learning based simulation of flow
Vasco et al. Integrating dynamic data into high-resolution reservoir models using streamline-based analytic sensitivity coefficients
US20130096899A1 (en) Methods And Systems For Machine - Learning Based Simulation of Flow
Wang et al. Fast history matching and optimization using a novel physics-based data-driven model: an application to a diatomite reservoir
Wang et al. Fast History Matching and Robust Optimization Using a Novel Physics-Based Data-Driven Flow Network Model: An Application to a Steamflood Sector Model
Tian et al. Discrete well affinity data-driven proxy model for production forecast
Hastings et al. A new streamline method for evaluating uncertainty in small-scale, two-phase flow properties
Zhang et al. Robust waterflood optimization under geological uncertainties using streamline-based well pair efficiencies and assimilated models
Saidu Integrated evaluation of wet gas reservoir: minimizing volumetric uncertainties using dynamic analysis
Kumar et al. Modeling Effect of Permeability Heterogeneities on SAGD Performance Using Improved Upscaling Schemes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161109

Termination date: 20210120