CN102869811A - 用于飞灰的表面改性的方法及其工业应用 - Google Patents

用于飞灰的表面改性的方法及其工业应用 Download PDF

Info

Publication number
CN102869811A
CN102869811A CN2010800665787A CN201080066578A CN102869811A CN 102869811 A CN102869811 A CN 102869811A CN 2010800665787 A CN2010800665787 A CN 2010800665787A CN 201080066578 A CN201080066578 A CN 201080066578A CN 102869811 A CN102869811 A CN 102869811A
Authority
CN
China
Prior art keywords
fly ash
ash particle
particle
metal
flying dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800665787A
Other languages
English (en)
Inventor
萨蒂亚吉特·维什努·舒克拉
克里希纳·戈帕库马尔·沃里涅
拜尤·维贾延·基扎克基利库达希尔
撒昌·希吉塔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Council of Scientific and Industrial Research CSIR
Original Assignee
Council of Scientific and Industrial Research CSIR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Council of Scientific and Industrial Research CSIR filed Critical Council of Scientific and Industrial Research CSIR
Publication of CN102869811A publication Critical patent/CN102869811A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1862Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by radiant energy
    • C23C18/1868Radiation, e.g. UV, laser
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • C04B18/082Cenospheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/12Multiple coating or impregnating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1642Substrates other than metallic, e.g. inorganic or organic or non-conductive semiconductor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1658Process features with two steps starting with metal deposition followed by addition of reducing agent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1875Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment only one step pretreatment
    • C23C18/1879Use of metal, e.g. activation, sensitisation with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1889Multistep pretreatment with use of metal first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • C23C18/405Formaldehyde
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Chemically Coating (AREA)

Abstract

本发明描述了用于飞灰的表面改性的方法及其工业应用,它包括新型表面敏化、新型表面活化和后续的在常规化学镀浴中对原样飞灰粒子的Cu或Ag涂覆。这些新型表面改性方法提供对于常规方法的高效和节省成本的备选方案,该常规方法用较昂贵的Sn-Pd催化剂体系对飞灰粒子的表面进行改性。相对于用较昂贵的Sn-Pd催化剂体系处理的飞灰,用所述新型表面改性方法处理的飞灰还适用于更大量的工业应用。原样飞灰粒子,经由新型表面改性方法处理,发现了工业应用如用于制备用于电子器件的EMI屏蔽的导电聚合物、油漆、粘合剂、密封物和树脂的导电填料,用于汽车工业中使用的铅系复合材料以及作为通过将有机分子的较长链分解成较小的链而净化工业废水的催化剂。

Description

用于飞灰的表面改性的方法及其工业应用
发明领域
本发明涉及用于飞灰(flyash)的表面改性的方法及其工业应用。更具体地,本发明涉及用于飞灰的表面改性的方法及其在导电聚合物、油漆、粘合剂、密封剂和树脂、用于汽车工业的铅系复合材料(lead-based composite)和催化中的工业应用。
发明背景
飞灰(实心和中空的,也称为空心微珠),热电厂的废副产物,包含二氧化硅(SiO2)、氧化铝(Al2O3)、和铁、钙(CaO)、镁,及有毒重金属如砷、铅和钴的氧化物,已成为环境有害的并在世界范围内造成严重的处理问题。在利用这种废料中的第一个主要缺点在于,目前缺乏用于工业应用的基于飞灰的创造性增值产品。在利用这种废料中的第二个主要缺点在于,用于飞灰粒子的表面改性以使它们适用于工业应用的新方法有限-(http://edugreen.teri.res.in/explore/air/flyash.htm)。
已经描述了一种用于在飞灰粒子的表面沉积导电金属如铜(Cu)和银(Ag)的新型化学镀方法(无电镀法,electroless method)。现有技术包括通过在氯化锡(II)(SnCl2)的酸性水浴(常规表面敏化浴)中搅拌飞灰粒子而在它们的表面上吸附锡(II)离子(Sn2+)。
SnCl2→Sn2++2Cl-            (1)
然后将表面敏化的飞灰粒子在氯化钯(II)(PdCl2)的酸性水溶液(常规表面活化浴)中搅拌,以用Pd簇活化飞灰粒子的表面。
Sn2++Pd2+→Pd0+Sn4+         (2)
然后将表面活化的飞灰粒子在由碱性水溶液构成的常规化学镀浴中搅拌以涂覆(涂布,coat)Cu或Ag,从而制备用于工业应用的表面改性的基于飞灰的产物,该碱性水溶液中溶解有金属前体(如金属的硝酸盐、硫酸盐或氯化物)、稳定剂(如酒石酸钠钾(NaKC4H4O6))、pH控制剂(如氢氧化钠(NaOH))和还原剂(如甲醛(HCHO))。
Cu2++2e-→Cu0           (3)
可以参考经由常规化学镀工艺在云母、石墨、Al2O3、SiO2和二氧化钛(TiO2)粒子上沉积Cu,该化学镀工艺利用常规Sn-Pd催化剂体系以及作为自活化剂的Cu(S.Shukla和S.Seal,“Electroless Copper Coating ofZirconia utilizing Palladium Catalyst(利用钯催化剂对氧化锆的化学镀覆铜)”,J.Am.Ceram.Soc.86(2)279-285(2003);S.Shukla,S.Seal,Z.Rahman,和K.Scammon,“Electroless Copper Coating of Cenospheres using SilverNitrate Activator(利用硝酸银活化剂对空心微珠的化学镀覆铜)”,Mater.Lett.57,151-156(2002);J.Akesson,S.Seal,S.Shukla,和Z.Rahman,“Copper Plating Process Control by SEM(通过SEM的镀铜工艺控制)”,Adv.Mater.Processes(AMP)160(2),33-35(2002);S.Shukla,S.Seal,S.Schwarz,和D.Zhou,“Synthesis and Characterization of Nanocrystalline Silver Coatingof Flyash Cenosphere Particles by Electroless Process(通过化学镀工艺的飞灰空心微珠粒子的纳米晶体银涂层的合成和表征)”,J.Nanosci.Nanotech.1,417-424(2001);S.Shukla,S.Seal,J.Akesson,R.Oder,R.Carter,和Z.Rahman,“Study of Mechanism of Electroless Copper Coating of Fly-AshCenosphere Particles(对飞灰空心微珠粒子的化学镀覆铜的机制的研究)”,App.Surf.Sci.181(1-2)35-50(2001)。
现有技术的第三个主要缺点在于,常规的Sn-Pd催化剂体系非常昂贵。现有技术的第四个主要缺点在于,没有用来敏化飞灰粒子的表面以用金属如Cu和Ag来涂覆它们的备选机制。现有技术的第五个主要缺点在于,没有用来活化飞灰粒子的表面以用金属如Cu和Ag来涂覆它们的备选机制。(D.Deonath和P.K.Rohatgi,“Cast Aluminium Alloy CompositesContaining Copper-Coated Ground Mica Particles(含有覆铜的粉碎云母粒子的铸铝合金复合材料)”,J.Mater.Sci.16(6),1599-1606(1981);W. Lu,VS.Donepudi,J.Prakash,J.Liu,和K.Amine,“Electrochemical and ThermalBehavior of Copper Coated Type MAG-20Natural Graphite(覆铜型MAG-20天然石墨的电化学和热行为)”,Electrochim.Acta 47(10),1601-1606(2002);J.F.Silvain,J.L.Bobet,和J.M.Heintz,“Electroless Deposition of Copperonto Alumina Sub-Micronic Powders and Sintering(铜在氧化铝亚微粉末上的化学沉积和烧结)”,Composites A 33(10),1387-1390(2002);Y.Kobayashi,Y.Tadaki,D.Nagao,和M.Konno,“Deposition of Gold Nanoparticles onSilica Spheres by Electroless Metal Plating Technique(通过化学镀金属技术在二氧化硅球上沉积金纳米粒子)”,J.Colloid Interface Sci.283(2),601-604(2005);K.Gopakumar,C.Pavithran,和P.K.Rohatgi,“Preparation of CopperCoated Titania Particles for Composites(用于复合材料的覆铜的二氧化钛粒子的制备)”,J.Mater.Sci.15(6),1588-1592(1980);K.Gopakumar,T.P.Murali,和P.K.Rohatgi,“Metal-Shell Char Particulate Composites usingCopper Coated Particles(使用覆铜粒子的金属壳炭微粒复合物)”,J.Mater.Sci.17(4),1041-1048(1982);K.G.K.Warrier和P.K.Rohatgi,“Mechanical,Electrical and Electrical Contact Properties of Copper Titania Composites(铜二氧化钛复合材料的力学、电学和电接触性质)”,J.Powder Metall.29(1),65(1986)。
发明目的
本发明的主要目的是提供用于飞灰的表面改性的方法及其工业应用。
本发明的另一个目的是,经由新型表面敏化方法,通过TiO2光催化剂的溶胶-凝胶涂覆对飞灰粒子的表面进行改性,其可以用于工业应用,如飞灰的Cu和Ag涂覆,和作为通过将有机分子的较长链分解成较短的链以纯化工业废水的催化剂。
本发明的另一个目的是,经由新型表面敏化方法,通过沉积金属簇如Cu(自活化剂)、Ag、Pd、金(Au)、铂(Pt)或任何其它贵金属对TiO2涂覆的飞灰粒子的表面进行改性。
本发明的另一个目的是,通过使用经由新型表面改性方法被表面敏化和表面活化的飞灰粒子,经由常规化学镀方法,用Cu或Ag来涂覆飞灰粒子的表面,其可以用于各种工业应用,如制备用于汽车工业的铅系复合材料,以及制备用于电子器件的电磁干扰屏蔽(EMI)的导电聚合物、油漆、粘合剂、密封剂和树脂。
发明内容
因此,本发明提供一种用于飞灰的表面改性的方法及其工业应用。在本发明中,经由利用溶解在无水醇介质中的醇化物前体的溶胶-凝胶,原样(原始样品的,as-received)飞灰粒子首先通过用TiO2涂覆这些粒子进行表面敏化。然后,经由在连续紫外(UV)辐射曝光下搅拌在含有金属离子的碱性水溶液中的表面敏化的飞灰粒子,该表面敏化的飞灰粒子通过沉积金属簇(‘M’)进行表面活化,其中‘M’可以是Cu、Ag、Pd、Au、Pt或任何其它贵金属。接着使用常规化学镀浴(electroless bath)在表面活化的飞灰粒子上涂覆Cu或Ag。
在本发明的一个实施方案中,一种用于飞灰的表面改性的方法,其中所述方法包括以下步骤:
i.在表面敏化浴(surface-sensitization bath)中,在丙醇钛(IV)(Ti(OC3H7)4)的无水2-丙醇溶液(100-500ml)(0.01-1.0M)中搅拌飞灰粒子(10-50g.L-1);
ii同时地制备无水2-丙醇(100-500ml)和水的溶液,其中水的摩尔浓度与Ti(OC3H7)4的摩尔浓度的最终比率在2至15的范围内;
iii.向步骤(i)中制备的悬浮液中逐滴加入步骤(ii)中制备的溶液,其中2-丙醇与飞灰的最终比率在25-100ml.g-1的范围内;
iv将在步骤(iii)中所获得的悬浮液搅拌2-6h;
v.经由过滤,从在步骤(iv)中所获得的溶液中分离粒子,并且在80-90℃的烘箱中干燥10-12小时,以获得非晶态-TiO2涂覆的飞灰粒子;
vi.在范围为400-600℃的温度下将在步骤(v)中所获得的非晶态-TiO2涂覆的飞灰粒子煅烧范围在1-4小时的时间,以获得晶态-TiO2涂覆的飞灰粒子;
vii在表面活化浴中,在使用NH4OH水溶液(25-28重量%)获得的ph~10-12下的金属盐的水溶液中,搅拌在步骤(vi)中所获得的表面敏化的飞灰粒子;
viii.在UV、可见光或日光辐射下,将在步骤(vii)中所获得的悬浮液连续搅拌范围在4-6小时的时间,以使金属簇沉积在该表面敏化的飞灰粒子上;
ix.经由过滤,分离在步骤(viii)中所获得的表面活化的飞灰粒子,接着用蒸馏水多次洗涤以从所述表面除去不想要的离子;
x.在常规化学镀覆浴中,搅拌在步骤(ix)中所获得的表面活化的飞灰粒子,该常规化学镀覆浴(electroless coating bath)含有氢氧化钠(NaOH)(5-15g.L-1)、酒石酸钠钾(NaKC4H4O6)(30-60g.L-1)和金属盐(1-10g.L-1)的水溶液;
xi.将作为还原剂的30-40重量%甲醛(HCHO)(5-20ml.L-1)缓慢加入到在步骤(x)中所获得的溶液中;
xii连续搅拌在步骤(xi)中所获得的悬浮液,直到初始的深蓝色溶液的颜色褪去或变得完全透明;
xiii.经由过滤,从在步骤(xii)中所获得的悬浮液中分离金属涂覆的飞灰粒子,并且在80-100℃的烘箱中干燥10-12小时以获得表面改性的飞灰。
在本发明的另一个实施方案中,在飞灰粒子的表面上沉积TiO2以进行表面敏化的方法选自由下列各项组成的组:湿化学法,包括共沉淀法、溶胶-凝胶法、水热法和微乳液法;或任何物理方法,包括溅射法、化学气相沉积法和热蒸发法。
在本发明的另一个实施方案中,其中溶胶-凝胶法优选用于在飞灰粒子的表面上沉积TiO2
在本发明的另一个实施方案中,TiO2涂层在飞灰粒子表面上的存在通过测量和比较原样和表面敏化的飞灰粒子的光催化活性进行确认,包括在UV辐射曝光下亚甲基蓝(MB)染料在水溶液中的降解速率,将其作为经由溶胶-凝胶法沉积的TiO2的量的量度。
在本发明的另一个实施方案中,用于表面活化方法的金属盐选自由下列各项组成的组:Cu、Ag、Pd、Au、Pt和任何其它贵金属的硝酸盐、氯化物或硫酸盐。
在本发明的另一个实施方案中,Cu和Ag金属盐优选用于表面活化。
在本发明的另一个实施方案中,Cu和Ag的金属盐(CuSO4和AgNO3)优选用于在常规化学镀浴中的Cu和Ag涂覆。
在本发明的另一个实施方案中,步骤(vii)中的金属盐的浓度在0.1-1.0g.L-1的范围内。
在本发明的另一个实施方案中,其中步骤(viii)中使用的辐射是UV(λ=200-400nm)、可见光(λ=400-800nm)或日光(λ=200-800nm)。
在本发明的另一个实施方案中,在步骤(xiii)中所获得的表面改性的飞灰包含:(a)飞灰粒子;(b)用于表面敏化的光催化剂(10-40重量%),其选自由氧化锌(ZnO)、氧化锡(SnO2)、二氧化钛(TiO2)、硫化锌(ZnS)、硫化镉(CdS)或任何其它半导体材料组成的组;(c)用于表面活化的金属簇(0.1-3.0重量%),其沉积在表面敏化的飞灰粒子上,选自由Cu、Ag、Pd、Au、Pt或任何其它贵金属组成的组;和(d)选自由Cu和Ag组成的组中的金属涂层(1.0-10重量%)。
在本发明的另一个实施方案中,表面改性的飞灰,其中,飞灰粒子由SiO2(40-50重量%)、Al2O3(40-50重量%)、CaO(1-3重量%)和TiO2(2-4重量%)的混合物构成。
在本发明的另一个实施方案中,表面改性的飞灰,其中,飞灰粒子是实心的或是中空的(空心微珠)。
在本发明的另一个实施方案中,表面改性的飞灰,其中,TiO2优选作为用于表面敏化的光催化剂。
在本发明的另一个实施方案中,表面改性的飞灰用作通过将有机分子的长链分解成较小的链来净化工业废水的催化剂。
在本发明的另一个实施方案中,表面改性的飞灰用于工业应用,如制备用于电子器件EMI屏蔽的导电聚合物、油漆、粘合剂、密封剂和树脂;以及制备用于汽车工业的铅系复合材料。
在本发明的另一个实施方案中,经过所述新型表面改性方法的飞灰粒子的表面形态、表面化学和表面结构的变化经由扫描电子显微镜(SEM)、X射线能量色散分析(EDX)、X射线光电子光谱法(XPS)和X射线衍射(XRD)进行监测。
在本发明的另一个实施方案中,表面改性的飞灰是导电的,而原样飞灰是不导电的。
附图简述
图1表示描述了所述新型表面改性方法的框图,该新型表面改性方法包括新型表面敏化方法和表面活化方法,以在常规化学镀浴中用金属如Cu或Ag涂覆飞灰粒子的表面。‘R’定义为水的摩尔浓度与Ti(OC3H7)4的摩尔浓度的比率。
图2表示原样飞灰粒子的典型SEM图像(a)和EDX分析(b)。飞灰粒子由氧化物如SiO2(40-50重量%)、Al2O3(40-50重量%)、CaO(1-3重量%)和TiO2(2-4重量%)的混合物组成。
图3表示在化学镀浴中搅拌表面敏化的(R=2且T=400℃)和表面活化的(Cu作为自活化剂)的飞灰离子之后,在较低放大倍率(a)和较高放大倍率(b)下的Cu涂覆的飞灰粒子的典型SEM图像。在(b)中,观察到Cu物种的棒状生长。
图4表示对于原样(□)和表面敏化的(■)(R=2且T=400℃)的飞灰粒子,作为UV辐射曝光时间的函数的归一化残余MB染料浓度的典型变化(a),以及用于确定表观一级反应速度常数(kapp)的图(b)。
图5表示经过新型表面敏化和表面活化步骤的飞灰粒子的表面的宽扫描XPS分析。(a)原样;(b)表面敏化的(R=2且T=400℃);(c)表面活化的(Cu作为自活化剂);和(d)Cu涂覆的飞灰粒子。
图6表示利用经过新型表面敏化和表面活化步骤的飞灰粒子获得的解卷积XPS窄扫描Ti(2p)光谱。(a)原样;(b)表面敏化的(R=2且T=400℃);(c)表面活化的(Cu作为自活化剂);和(d)Cu涂覆的飞灰粒子。
图7表示利用经过新型表面敏化和表面活化步骤的飞灰粒子获得的解卷积XPS窄扫描Cu 2p3/2光谱。(a)表面活化的(Cu作为自活化剂)和(b)Cu涂覆的飞灰粒子。在(a)和(b)中,(i)Cu0;(ii)CuO;和(iii)Cu(OH)2
图8表示在UV-辐射曝光下使用半导体TiO2的光催化机制(a)和使用溶胶-凝胶法处理的TiO2作为用于飞灰粒子的后续表面活化和Cu涂覆的新型表面敏化剂的提出机制(b)。
图9表示给出了新型表面改性方法的图示表示的示意图,该表面改性方法包括新型表面敏化和表面活化方法,以在化学镀浴中用Cu或Ag涂覆飞灰粒子的表面。(i)原样飞灰粒子表面;(ii)溶胶-凝胶TiO2涂覆的飞灰粒子表面(新型表面敏化方法);(iii)UV-辐射;(iv)在连续UV-辐射曝光下沉积金属簇(‘M’,其中‘M’可以是Cu、Ag、Pd、Au、Pd或任何其它贵金属)(新型表面活化方法);(v)在常规化学镀浴中搅拌表面活化的飞灰粒子之后,作为Cu物种沉积的结果形成的铜涂层。
图10表示使用Ag作为表面活化剂获得的原样(在600℃煅烧后)(a)和Cu涂覆的(b,c)飞灰粒子的XRD分析。在(b)和(c)中,在600℃的煅烧温度下2和5的R-值已经用于飞灰粒子的新型表面敏化。在(a)中,由‘■’标记的峰表示了对应于飞灰粒子(基础陶瓷)中的二氧化硅(石英)的衍射峰。
图11(a)和(b)表示球形原样和Cu涂覆的飞灰粒子中的一个的典型SEM图像。Cu涂覆的飞灰粒子是在常规化学镀浴中搅拌表面敏化(R=2且T=600℃)和表面活化(使用Ag)的飞灰粒子之后获得的。(c)在(b)中所示的Cu涂覆的飞灰粒子的典型EDX分析。
图12表示使用Ag作为表面活化剂获得的Cu涂覆的飞灰粒子的XRD分析。600℃的煅烧温度已被用于使用R-值为15获得的飞灰的新型表面敏化。
发明详述
本发明提供了一种用于飞灰的表面改性方法,如在图1所示的框图中描述的,以及它的工业应用。该方法包括经由在表面敏化浴中搅拌10-50g.L-1的飞灰粒子而使其表面敏化,在所述表面敏化浴中,逐滴混合0.01-1.0M异丙醇钛(IV)的100-500ml无水2-丙醇溶液和100-500ml的2-丙醇-水溶液逐滴混合(R 2-15,其中水的摩尔浓度与Ti(OC3H7)4的摩尔浓度的比率通过‘R’表示)。将所得悬浮液搅拌2-6h。然后经由过滤从该溶液中分离粒子,并在烘箱中在80-90℃干燥10-12h。接着将非晶态-TiO2涂覆的飞灰粒子在400-600℃煅烧1-4h,以获得晶态-TiO2涂覆的飞灰粒子,如图9b中所示。
然后,将表面敏化的飞灰粒子经由在表面活化浴中搅拌而进行表面活化,所述表面活化浴含有0.1-1.0g.L-1硝酸铜(II)三水合物(Cu(NO3)2.3H2O)或硝酸银根(AgNO3)的水溶液,其处于使用NH4OH水溶液而获得的pH~10-12。该悬浮液在UV(λ=200-400nm)、可见光(λ=400-800nm)或日光辐射(λ=200-800nm)曝光下连续搅拌4-6h,以在飞灰粒子的表面上沉积Cu或Ag的簇。,表面活化的飞灰粒子经由过滤分离,并用水多次洗涤以从表面除去不想要的离子,如图9c所示。
为了涂覆Cu(或Ag),将经新型表面活化的飞灰粒子在常规化学镀浴中搅拌,所述化学镀浴含有NaOH(5-15g.L-1)、NaKC4H4O6(30-60g.L-1)和硫酸铜(II)五水合物(CuSO4.5H2O,1-10g.L-1)的水溶液。向该悬浮液中,缓慢加入5-20ml.L-1作为还原剂的30-40重量%的HCHO。所得悬浮液连续搅拌,直到初始的深蓝色溶液的颜色褪去或变得完全透明。随后经由过滤分离Cu涂覆的飞灰粒子,接着在80-100℃的烘箱中干燥过夜,如图9d中所示。
以下实施例提供用于举例说明本发明的方法,并且不被解释为限制本发明的范围。
实施例-1
在本实施例中,Ti(OC3H7)4和无水2-丙醇购自Alfa Aesar,India;NH4OH(分析,25-28重量%)、NaKC4H4O6和硝酸银(AgNO3)购自S.D.FineChemicals Ltd.,India;Cu(NO3)2.3H2O购自CDH Analytical Reagent,India;NaOH(分析,97%)购自Hi Media Laboratories,India;CuSO4.5H2O(分析,98.5%)购自Nice Laboratory Reagent,India;以及HCHO(37-41w/v%)购自Nice Chemicals,India。粉末形式的飞灰粒子获自Unicorn ThermalPower Plant,Tamil Nadu,India。所有化学品和粉末均以原样使用,而未经进一步的纯化。
在新型表面敏化浴中搅拌5.0g飞灰粒子,该新型表面敏化浴由125ml的0.1M(最终浓度)的Ti(OC3H7)4的无水2-丙醇溶液构成。向该悬浮液中,逐滴加入125ml的2-丙醇和水(R=2)溶液,并将所得悬浮液搅拌4h。随后,经由过滤从该溶液中分离粒子,并且在烘箱中在80℃干燥12h。随后该非晶态-TiO2涂覆的飞灰粒子在400℃煅烧2h,以获得晶态-TiO2涂覆的飞灰粒子。接着经由在新型表面活化浴中搅拌,将表面敏化的飞灰粒子精心表面活化,该新型表面敏化浴含有0.48g.L-1Cu(NO3)2.3H2O的水溶液,其处于使用NH4OH水溶液获得的pH~10.5。该悬浮液在UV-辐射(λ=200-400nm)曝光下连续搅拌4h,以在飞灰粒子的表面上沉积作为自活化剂的Cu。表面活化的粒子经由过滤分离,并用蒸馏水多次洗涤以从所述表面除去不想要的离子。随后表面活化的飞灰粒子在常规化学镀覆浴中搅拌,该常规化学镀覆浴含有NaOH(10g.L-1)、NaKC4H4O6(50g.L-1)和CuSO4.5H2O(4.0g.L-1)的水溶液。向该悬浮液中,缓慢加入12ml.L-1作为还原剂的HCHO,并且所得悬浮液连续搅拌,直到初始的深蓝色溶液的颜色褪去或变得完全透明。随后Cu涂覆的飞灰粒子经由过滤分离,然后在80℃的烘箱中干燥过夜。
使用在15kV操作的SEM(JEOL JSM-5600LV,Japan)来确定原样和Cu涂覆的飞灰粒子的表面形态和尺寸分布;同时,使用EDX分析确定体相化学成分。使用XRD(Phillips,Japan)来鉴定在原样和Cu涂覆的飞灰粒子中存在的各种相。宽扫描XRD分析通常使用Cu KαX-辐射
Figure BDA00002349745000101
Figure BDA00002349745000102
在10-80°的2-θ范围内进行。经过新型表面敏化和表面活化方法的飞灰粒子的表面化学的改变使用在10-9Torr的底压的XPS(VG Micro TechESCA 3000,United Kingdom),使用以200W的功率的Mg KαX-辐射(1253.6eV,谱线宽度0.7eV)进行,监测。在各个步骤之后取出少量飞灰粒子用于XPS分析,以理解飞灰粒子的Cu涂覆的过程。用50eV的电子通能和55°的离源角(take-offangle),记录观测和高分辨率窄光谱,以获得最大光谱分辨率。对Ti(2p)和Cu 2p3/2进行窄和高分辨率扫描,以了解这些元素在新型表面改性方法过程中的氧化态的变化。使用峰拟合软件(XPSPEAK 41)将窄扫描解卷积,以揭示在飞灰粒子表面上存在的Ti和Cu的不同物种。使用在84.0±0.1eV的Au 4f7/2的结合能(BE)来校准分光计的BE标度。使用参照在284.6eV处的外来碳线的烃部分的C(1s)BE的BE标度,小心地除去由样品产生的任何电荷位移。在去除背景之后,使用高斯/洛伦兹峰形(Gaussian/Lorentzian peak shape)进行非线性最小二乘法曲线拟合。
为了证实在飞灰粒子的表面敏化之后TiO2涂层的存在,在连续搅拌和在UV-辐射(λ=200-400nm)曝光下,通过监测含有不同粉末粒子的水溶液中的MB染料的降解,来研究原样和表面敏化的飞灰粒子的光催化活性。在75ml蒸馏水中,7.5μmol.L-1的MB染料完全溶解蒸馏水。随后,将0.4g.L-1原样和表面敏化的飞灰粒子分散,以制备两种不同的悬浮液。通过在黑暗中(没有暴露于任何辐射下)搅拌1小时,使悬浮液平衡,从而使MB染料的表面吸附稳定。
在连续磁搅拌下,使用容纳15W灯管(Philips G15 T8)作为UV源(其发射波长范围在200-400nm的UV辐射,对应于3.07-6.14eV的光子能量范围)的Rayonet光反应器(荷兰),用UV光照射稳定的水性悬浮液。在U V辐射曝光之后,对总共150min的UV辐射曝光,每30min的时间间隔,从UV室中取出3ml水性悬浮液,以获得UV-可见吸收光谱。
使用离心机(R23,Remi Instruments India Ltd.)将粒子从样品悬浮液中滤出,并且用UV-可见光分光计(Shimadzu,UV-2401 PC,Japan)检查滤液,以研究MB染料的降解。作为UV辐射曝光时间的函数,在200-800nm的范围获得MB染料溶液的吸收光谱。将位于656nm处的MB染料溶液的吸光度峰(A)的强度作为MB染料的残余浓度(C)的量度。在UV辐射曝光之前,还记录未添加粉末粒子的MB染料溶液的UV-可见光吸收光谱,作为对应于初始MB染料浓度(Co)的参照光谱。随后,使用下式的关系得到归一化的残余MB染料浓度,
Figure BDA00002349745000111
还在没有添加任何粉末粒子的情况下,进行光催化实验,以确认MB染料在没有飞灰粒子存在下在UV辐射曝光下的稳定性。在这种条件下,即使在样品照射达总共150min之后,初始MB染料浓度(Co)仍保持不变。
在图2(a)中示出了原样飞灰粒子的典型SEM图像。在该SEM图像中,可以同时观察到非球形和球形粒子。球形粒子的尺寸估算在5-40μm的范围内。一个球形粒子的EDX分析表示在图2(b)中。看起来,原样飞灰粒子主要含有Al2O3(48.0重量%)和SiO2(48.0重量%),具有痕量的CaO(1.4重量%)和TiO2(2.6重量%)。Cu涂覆的飞灰粒子的SEM图像示于图3(a)中。在较高的放大倍率下(图3(b)),清楚地观察到Cu涂层的棒状形态(长度~2μm且宽度~100-200nm),这对于原样飞灰粒子没有观察到。
如对于原样和表面敏化的飞灰粒子所获得的,在图4(a)中示出了作为UV辐射曝光时间的函数的归一化残余MB染料浓度的变化;同时,在图4(b)中,已示出了用于确定kapp获得的对应图。观察到,在UV辐射曝光下,原样飞灰粒子对于水溶液中的MB染料的分解显示出光催化活性。注意到表面敏化的飞灰粒子的光催化活性比原样飞灰粒子的光催化活性更高。对于原样和表面敏化的飞灰粒子,kapp已估算为0.005min-1和0.008min-1。因此,在原样飞灰粒子的表面上溶胶-凝胶法涂布TiO2增强了它的光催化活性。因此,光催化实验证实,在新型表面敏化浴中搅拌飞灰粒子以后,在它们的表面上的成功TiO2涂覆。
在图5中示出了在新型表面敏化、表面活化和化学镀覆Cu方法之后,飞灰粒子的表面的宽扫描XPS分析。在图5(a)中,从原样飞灰粒子的表面获得的宽扫描光谱显示了Al、Si、Ca和O物种的存在,相应的Al(2p)、Si(2p)、Ca(2p)和O(1s)峰分别位于74.6、103.4、347.5和532.0eV的BE水平。这表明,原样飞灰的表面主要由Al2O3、SiO2和CaO的混合氧化物构成。在新型表面敏化步骤之后(图5(b)),在459eV的BE水平处,可以看到对应于Ti(2p)的另外的峰。这表明,在新型表面敏化浴中搅拌所述粒子之后,飞灰粒子被TiO2涂覆,这与光催化实验(图4)一致。
表面敏化的飞灰粒子,当在新型表面活化浴中搅拌时,显示出存在在935eV处的Cu(2p)峰(图5(C)),这表明在飞灰粒子的表面上存在Cu物种。图5(b)和5(c)的比较显示,在伴随着Cu在飞灰粒子表面沉积的新型表面活化步骤之后,Ti(2p)峰的强度降低。表面活化的飞灰粒子,在化学镀浴中搅拌之后,显示Cu(2p)峰的强度增加,同时Ti(2p)峰的强度降低(图5(d))。
对于经过新型表面敏化和表面活化方法的飞灰粒子,在452-471eV的BE间隔内,对Ti(2p)的窄扫描XPS分析示于图6中。对于原样、表面敏化的、表面活化的和Cu涂覆的飞灰粒子,观察到Ti 2p3/2BE水平分别在459.1、458.5、458.3和457.9eV,这表明在飞灰粒子的表面上存在TiO2。在图6中还注意到Ti 2p3/2峰强度在不同处理步骤之后的变化。看起来,尽管在宽扫描分析中没有检测到Ti(2p)峰(图5(a)),但窄扫描分析确实表明在原样飞灰粒子的表面上存在痕量的TiO2(图6(a))。然而,Ti 2p3/2峰的强度在原样新型表面敏化浴中搅拌原样飞灰粒子后增加(图6(b)),这与宽扫描分析(图5(b))和光催化试验(图4)相一致。在UV辐射曝光下在新型表面活化浴中(图6(c)),以及随后在常规化学镀浴中(图6(d))搅拌表面敏化的飞灰粒子之后,注意到Ti 2p3/2峰渐渐降低,这也与宽扫描分析(图5(c)和5(d))一致。
如在UV辐射曝光的新型表面活性浴中和在常规化学镀浴中搅拌表面敏化的飞灰粒子之后获得的,在图7(a)和7(b)中示出了在927-940 eV的BE间隔内的对于Cu 2p3/2峰的窄扫描XPS分析。Cu 2p3/2光谱的解卷积显示了存在位于932.7、933.8和935.1eV的BE水平的三个子峰,它们可能与存在于飞灰粒子表面上的Cu0、CuO和Cu(OH)2物种相关。对于表面活化的飞灰粒子(图7(a)),CuO的相对量看起来大于Cu0和Cu(OH)2的相对量。然而,在常规化学镀浴中搅拌表面活化粒子之后,Cu0的量相对于CuO和Cu(OH)2的量增加。因此,宽扫描和窄扫描XPS分析证实,经由新型表面敏化和表面活化方法,原样飞灰粒子的成功Cu涂覆。
TiO2,是具有宽带隙(~3.0-3.2 eV)的半导体,需要适当波长的UV辐射曝光,以产生电子-空穴对。如果UV产生的电子-空穴对的寿命高,那么它们可以逃逸至粒子表面并且参与氧化还原反应。这种机制传统上用于使用TiO2的光催化中,用于经由OH根的形成和后续攻击,将存在于空气或水中的有机分子的较长链降解成较小的链,如图8(a)示意性描述的。相反,在本发明的这个实施例中,在UV辐射曝光下,在半导体TiO2中产生的电子-空穴对已被用于通过还原中间体Cu复合物如[Cu(NH3)2]+,而用Cu簇对飞灰粒子进行表面活化(图8(b))。
[Cu(NH3)2]++e-→Cu0 (ads)+2NH3(aq)         (5)
因此,在这种新型表面活化方法中,在UV辐射曝光下,溶胶-凝胶涂覆的TiO2光催化剂有效地用作新型表面敏化剂,并且Cu0作为自活化剂,用于在常规化学镀浴中获得飞灰粒子的Cu涂层。
经由新型表面敏化和表面活化方法,原样飞灰粒子的Cu涂覆的总体机制概括在图9中。原样飞灰粒子首先在新型表面敏化浴中进行表面敏化,以获得溶胶-凝胶涂覆的晶态-TiO2(图9(a)和9(b)),其中R-值为2且煅烧温度为400℃。作为结果,当在UV辐射曝光下在新型表面活化浴中搅拌表面敏化的飞灰粒子时,它们经由在图8中描述的机制在溶胶-凝胶涂覆的半导体-TiO2中产生电子-空穴对。产生的电子随后有效地用于将中间体Cu复合物还原为Cu0(式5),它们随后沉积在飞灰粒子的表面上。在新型表面活化步骤过程中,与Cu0一起,CuO和Cu(OH)2也在飞灰粒子的表面上形成。该Cu物种在表面活化步骤过程中可能以簇的形式沉积(图9(c)),因为位于该层之下的TiO2可以在宽扫描XPS分析(图5(c))中检测到。在常规化学镀浴中,更多的Cu0沉积在飞灰粒子的表面上,以棒状形态(图3(b)),使得Cu涂层更连续(图9(d)),这又降低了在XPS分析中检测到的TiO2的量(图5(d))。
总之,在本实施例中,已经成功地证实,新型表面敏化和表面活化方法,使用Cu作为自活化剂,经由常规化学镀方法,用Cu涂覆了飞灰粒子的表面。
实施例-2
在本实施例中,在0.1M(最终浓度)Ti(OC3H7)4的125ml无水2-丙醇溶液中搅拌5.0g的原样飞灰粒子。向该悬浮液中,逐滴加入125ml的2-丙醇和水的溶液。两种不同的悬浮液用不同的R-值(2和5)制备以进行比较。将所得悬浮液搅拌4h,随后经由过滤从溶液中分离粒子并在80℃干燥12h。然后非晶态-TiO2涂覆的飞灰粒子在600℃煅烧2h,以获得晶态-TiO2涂覆的飞灰粒子。随后,经由在新型表面活化浴中搅拌,对表面敏化的飞灰粒子进行表面活化,所述新型表面活化浴含有0.48g.L-1AgNO3水溶液,其处于使用NH4OH水溶液获得的pH~10.5。在UV-辐射(λ=200-400nm)曝光下,连续搅拌悬浮液4h,以将作为活化剂的Ag沉积在飞灰粒子的表面上。将表面活化的飞灰粒子经由过滤分离,并用水多次洗涤以从表面除去不想要的离子。随后在常规化学镀浴中搅拌表面活化的飞灰粒子,该常规化学镀浴含有NaOH(10g.L-1)、NaKC4H4O6(50g.L-1)和CuSO4.5H2O(4.0g.L-1)的水溶液。向该悬浮液中,缓慢加入12ml.L-1HCHO作为还原剂,并且连续搅拌所得的悬浮液,直至初始的深蓝色溶液的颜色褪去或变得完全透明。随后经由过滤分离Cu涂覆的飞灰粒子,接着在80℃的烘箱中干燥过夜。
在本实施例中,在新型表面敏化步骤过程中,非晶态-TiO2涂覆的飞灰粒子在600℃煅烧,这稍微高于实施例-1中所用的温度(400℃)。此外,使用Ag簇代替如实施例1中证实的Cu簇(自活化剂),对飞灰粒子进行表面活化。
[Ag(NH3)2]+e-→Ag0 (ads)+2NH3(aq)(6)
如对原样飞灰粒子(在600℃煅烧2h之后)和Cu涂覆的飞灰粒子所获得的,在图10中示出了使用Cu KαX-辐射
Figure BDA00002349745000151
在10-80°的2-θ范围内进行的宽扫描XRD图。在图10(a)中,观察到原样飞灰粒子(在600℃煅烧之后)性质上是晶体。通过比较衍射图案与JCPDS卡片#83-0539,鉴定了对应于二氧化硅(石英)的衍射峰。在图10(b)和10(c)中的衍射图案,其是使用利用两个不同R-值(2和5)进行表面敏化的Cu涂覆的飞灰粒子得到的,显示了对应于(111)Cu和(220)Cu的另外的峰,这通过将所获得的衍射图案与JCPDS卡片#04-0836比较而鉴定(图10(d))。因此,XRD分析清楚地显示使用用Ag作为表面活化剂对原样飞灰粒子的成功Cu涂覆。由于主(111)Cu峰的更高强度,所以与对于用R-值为2进行表面敏化的飞灰粒子(图10(b))相比,用R-值为5进行表面敏化的飞灰粒子(图10(c))可能表现出更大的Cu涂层的厚度。
球形原样和Cu涂覆的飞灰粒子(R=2)之一的典型SEM图像示于图11(a)和11(b)中,其中可以清楚地看到由于Cu涂层导致的飞灰粒子无特色表面形态的变化。Cu涂层看起来由球形亚微米尺寸(~100-200nm)的Cu粒子组成。Cu涂覆的飞灰粒子的EDX分析示于图11(c)中,当与对应于按来样飞灰粒子的图2(b)中所观察到的峰相比时,其显示另外的Cu峰。
因此,通过用两个不同的R-值2和5对原样飞灰粒子进行表面敏化,并且用Ag作为表面活化剂使用600℃的煅烧温度,使原样飞灰粒子成功地用Cu涂覆。
实施例-3
在本实施例中,对原样飞灰粒子进行表面敏化,其中R-值为15,在600℃煅烧,并且使用银进行表面活化。所有其它处理参数保持类似于实施例2中描述的那些。在这些处理条件下,观察到对原样飞灰粒子的成功Cu涂覆,这通过常规化学镀浴在几分钟内从初始的深蓝色变成完全透明的颜色变化指示。还经由XRD分析证实了Cu涂层的存在(图12)。观察到衍射图案类似于在图10(b)和10(c)中示出的那些。
实施例-4
还用在30-150之间的更高R-值对原样飞灰粒子进行表面敏化。然而,在这些处理条件下,注意到形成游离TiO2粉末,并且由于TiO2粉末的均匀沉淀,而不能经由溶胶-凝胶法,在飞灰粒子的表面上获得成功的TiO2涂覆。
总之,经由如上所述的实施例-1、2和3,成功地证实了,通过使用本发明的新型表面敏化和表面活化方法,Cu能够涂覆在原样飞灰粒子的表面上。还注意到,如果原样飞灰本身在其表面上含有足量的TiO2(或任何其它半导体氧化物),所述新型敏化方法可以被跳过。
本发明的主要优点为:
1 它提供了对飞灰粒子进行表面敏化以获得金属涂层(具体地,Cu或Ag的涂层)的新机制。
2 它提供了对飞灰粒子进行表面活化以获得金属涂层(具体地,Cu或Ag的涂层)的新机制。
3 它提供了溶胶-凝胶法处理的TiO2的新应用,作为用于将飞灰用作增值产品的表面敏化剂。
4 它提供了一种以飞灰粒子形式的新基材(衬底),用于将TiO2薄膜用作光催化剂,以通过将有机分子的较长链分解成较小的链来净化工业废水。
5 它提供了一种通过使用经济上可行的和环境友好的用于飞灰的新型表面改性方法,来制备用于EMI屏蔽应用的导电聚合物、油漆、粘合剂、密封剂和树脂的增加的可能性。
6 它提供了一种将环境危害性飞灰作为增值产品再利用的增加的可能性。

Claims (13)

1.一种用于飞灰的表面改性的方法,其中所述方法包括以下步骤:
i.在表面敏化浴中,在Ti(OC3H7)4的无水2-丙醇溶液(100-500ml)(0.01-1.0M)中,搅拌飞灰粒子(10-50g.L-1);
ii同时地制备无水2-丙醇(100-500ml)和水的溶液,其中水的摩尔浓度与Ti(OC3H7)4的摩尔浓度的比率(‘R’)在2至15的范围内;
iii.向在步骤(i)中制备的悬浮液中逐滴加入在步骤(ii)中制备的溶液,其中2-丙醇与飞灰的最终比率在25-100ml.g-1的范围内;
iv将在步骤(iii)中所获得的悬浮液搅拌2-6小时;
v.经由过滤,从在步骤(iv)中所获得的溶液中分离所述粒子,并且在80-90℃的烘箱中干燥10-12小时,以获得非晶态-TiO2涂覆的飞灰粒子;
vi.在范围为400-600℃的温度下,将在步骤(v)中所获得的所述非晶态-TiO2涂覆的飞灰粒子煅烧范围在1-4小时的时间,以获得晶态-TiO2涂覆的飞灰粒子;
vii在表面活化浴中,在使用NH4OH水溶液(25-28重量%)获得的pH~10-12下的金属盐的水溶液中,搅拌在步骤(vi)中所获得的表面敏化的飞灰粒子;
viii.在UV、可见光或日光辐射下,将在步骤(vii)中所获得的悬浮液连续搅拌范围在4-6小时的时间,以在所述表面敏化的飞灰粒子上沉积金属簇;
ix.经由过滤,分离在步骤(viii)中所获得的表面活化的飞灰粒子,接着用蒸馏水多次洗涤以从所述表面除去不想要的离子;
x.在含有NaOH(5-15g.L-1)、NaKC4H4O6(30-60g.L-1)和金属盐(1-10g.L-1)的水溶液的常规化学镀覆浴中,搅拌在步骤(ix)中所获得的表面活化的飞灰粒子;
xi.将作为还原剂的30-40重量%HCHO(5-20ml.L-1)缓慢加入到在步骤(x)中所获得的悬浮液中;
xii连续地搅拌在步骤(xi)中所获得的悬浮液,直到初始的深蓝色溶液的颜色褪去或变得完全透明;
xiii.经由过滤,从在步骤(xii)中所获得的悬浮液中分离金属涂覆的飞灰粒子,并且在80-100℃的烘箱中干燥10-12小时,以获得表面改性的飞灰。
2.根据权利要求1所述的方法,其中在飞灰粒子的表面上沉积TiO2以进行所述表面敏化的方法选自由下列各项组成的组:湿化学法,包括共沉淀法、溶胶-凝胶法、水热法和微乳液法;或任何物理方法,包括溅射法、化学气相沉积法和热蒸发法。
3.根据权利要求1所述的方法,其中所述溶胶-凝胶法优选用于在飞灰粒子的表面上沉积TiO2
4.根据权利要求1所述的方法,其中在步骤(vii)中使用的金属盐选自由Cu、Ag、Pd、Au、Pt或任何其它贵金属的硝酸盐、氯化物、硫酸盐组成的组。
5.根据权利要求1所述的方法,其中在步骤(vii)中的金属盐的浓度在0.1-1.0g.L-1的范围内。
6.根据权利要求1的步骤(vii)中所述的方法,其中Cu和Ag金属盐优选用于表面活化。
7.根据权利要求1的步骤(x)中所述的方法,其中Cu和Ag金属盐(CuSO4和AgNO3)优选用于在常规化学镀浴中的Cu和Ag涂覆。
8.一种通过根据权利要求1所述的方法获得的表面改性的飞灰,所述表面改性的飞灰包含:(a)飞灰粒子;(b)用于表面敏化的光催化剂(10-40重量%),所述光催化剂选自由ZnO、SnO2、TiO2、ZnS、CdS或任何其它半导体材料组成的组;(c)用于表面活化的金属簇(0.1-3.0重量%),所述金属簇沉积在表面敏化的飞灰粒子上,选自由Cu、Ag、Pd、Au、Pt或任何其它贵金属组成的组;和(d)选自由Cu和Ag组成的组中的金属涂层(1.0-10重量%)。
9.根据权利要求8所述的表面改性的飞灰,其中所述飞灰粒子由SiO2(40-50重量%)、Al2O3(40-50重量%)、CaO(1-3重量%)和TiO2(2-4重量%)的混合物构成。
10.根据权利要求8所述的表面改性的飞灰,其中所述飞灰粒子是实心或中空的(空心微珠)。
11.根据权利要求8所述的表面改性的飞灰,其中TiO2优选作为用于表面敏化的光催化剂。
12.根据权利要求8所述的表面改性的飞灰,其中所述产物能够被用作通过将有机分子的较长链分解成较小的链而净化工业废水的催化剂。
13.根据权利要求8所述的表面改性的飞灰,其中所述产物能够在制备导电聚合物中被用作导电填料。
CN2010800665787A 2010-03-12 2010-11-11 用于飞灰的表面改性的方法及其工业应用 Pending CN102869811A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN571/DEL/2010 2010-03-12
IN571DE2010 2010-03-12
PCT/IN2010/000735 WO2011111057A1 (en) 2010-03-12 2010-11-11 Process for the surface-modification of flyash and industrial applications thereof

Publications (1)

Publication Number Publication Date
CN102869811A true CN102869811A (zh) 2013-01-09

Family

ID=44350608

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800665787A Pending CN102869811A (zh) 2010-03-12 2010-11-11 用于飞灰的表面改性的方法及其工业应用

Country Status (6)

Country Link
US (1) US9080234B2 (zh)
CN (1) CN102869811A (zh)
AR (1) AR080573A1 (zh)
AU (1) AU2010348068B2 (zh)
TW (1) TW201136664A (zh)
WO (1) WO2011111057A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103403224A (zh) * 2011-02-17 2013-11-20 丰田自动车株式会社 制造置换镀前体的方法
CN107429398A (zh) * 2014-12-22 2017-12-01 斯马特高科技有限公司 多官能化的碳纳米管
CN112495994A (zh) * 2020-11-13 2021-03-16 陈一同 垃圾焚烧飞灰处理方法
CN113680314A (zh) * 2021-08-18 2021-11-23 太原理工大学 一种粉煤灰负载纳米球状氢氧化镁复合材料及其制备方法和应用
CN114940507A (zh) * 2022-06-22 2022-08-26 神华准能资源综合开发有限公司 从粉煤灰中提取氧化铝的方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8609187B1 (en) * 2011-12-27 2013-12-17 U.S. Department Of Energy Method of producing an oxide dispersion strengthened coating and micro-channels
CN103007931B (zh) * 2012-11-22 2014-05-21 嘉兴学院 在空心玻璃微珠表面制备纳米银和二氧化钛薄膜的方法
US9993814B2 (en) * 2013-05-24 2018-06-12 Council Of Scientific & Industrial Research Semiconductor-oxides nanotubes-based composite particles useful for dye-removal and process thereof
US10458117B2 (en) * 2015-07-30 2019-10-29 The Board Of Trustees Of The University Of Alabama Microencapsulation of materials using cenospheres
CN108315691B (zh) * 2018-01-30 2019-11-08 陕西科技大学 一种光激发二氧化钛/四氧化三钴湿敏薄膜的制备方法
CN113088943A (zh) * 2020-01-08 2021-07-09 国家能源投资集团有限责任公司 镀银粉煤灰复合材料及其制备方法和应用
CN113398980B (zh) * 2021-06-15 2022-07-15 东北大学 一种粉煤灰基X沸石-TiO2复合光催化剂的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1586743A (zh) * 2004-09-07 2005-03-02 上海大学 城市生活垃圾焚烧飞灰的处理方法
CN101328035A (zh) * 2007-06-20 2008-12-24 中国矿业大学(北京) 一种粉煤灰空心微珠表面改性增白的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5456840A (en) * 1993-03-01 1995-10-10 The Board Of Regents Of The University Of Oklahoma Method for removing anions from water
US6261986B1 (en) * 1998-04-22 2001-07-17 New Mexico Tech Research Foundation Production and article of iron/surfactant-modified zeolite pellets to retain and destroy water pollutants
US7309676B2 (en) * 2002-03-22 2007-12-18 Japan Envirochemicals, Ltd. Remover for heavy metals contained in water
US7056583B2 (en) * 2003-06-04 2006-06-06 International Pozzlan Coating Corp. Flyash coating
US7510659B2 (en) * 2006-03-10 2009-03-31 Council Of Scientific & Industrial Research Surface-modified zeolite and process for synthesis thereof for sequestration of anions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1586743A (zh) * 2004-09-07 2005-03-02 上海大学 城市生活垃圾焚烧飞灰的处理方法
CN101328035A (zh) * 2007-06-20 2008-12-24 中国矿业大学(北京) 一种粉煤灰空心微珠表面改性增白的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
K.V.BAIJU ET AL.: "Photocatalytic activity of sol-gel-derived nanocrystalline titania", 《JOURNAL OF PHYSICAL CHEMISTRY C》, vol. 111, no. 21, 5 May 2007 (2007-05-05), XP055004479, DOI: 10.1021/jp070452z *
S.SHUKLA ET AL.: "Study of mechanism of electroless copper coating of fly-ash cenosphere particles", 《APPLIED SURFACE SCIENCE》, vol. 181, no. 12, 1 September 2001 (2001-09-01) *
T.SHIJITHA ET AL.: "Novel electroless process for copper coating of flyash using titania /ultraviolet-radiation/metal catalyst-system", 《APPLIED SURFACE SCIENCE》, vol. 255, no. 1314, 4 March 2009 (2009-03-04) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103403224A (zh) * 2011-02-17 2013-11-20 丰田自动车株式会社 制造置换镀前体的方法
CN103403224B (zh) * 2011-02-17 2016-03-30 丰田自动车株式会社 制造置换镀前体的方法
CN107429398A (zh) * 2014-12-22 2017-12-01 斯马特高科技有限公司 多官能化的碳纳米管
CN112495994A (zh) * 2020-11-13 2021-03-16 陈一同 垃圾焚烧飞灰处理方法
CN112495994B (zh) * 2020-11-13 2021-12-07 福建碳力方环保科技有限公司 垃圾焚烧飞灰处理方法
CN113680314A (zh) * 2021-08-18 2021-11-23 太原理工大学 一种粉煤灰负载纳米球状氢氧化镁复合材料及其制备方法和应用
CN114940507A (zh) * 2022-06-22 2022-08-26 神华准能资源综合开发有限公司 从粉煤灰中提取氧化铝的方法
CN114940507B (zh) * 2022-06-22 2023-11-14 神华准能资源综合开发有限公司 从粉煤灰中提取氧化铝的方法

Also Published As

Publication number Publication date
TW201136664A (en) 2011-11-01
WO2011111057A1 (en) 2011-09-15
AR080573A1 (es) 2012-04-18
US20130095995A1 (en) 2013-04-18
AU2010348068B2 (en) 2014-08-07
US9080234B2 (en) 2015-07-14
AU2010348068A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
CN102869811A (zh) 用于飞灰的表面改性的方法及其工业应用
Dong et al. Highly enhanced photocatalytic activity of WO 3 thin films loaded with Pt–Ag bimetallic alloy nanoparticles
Chen et al. Exposed facet dependent stability of ZnO micro/nano crystals as a photocatalyst
Weng et al. Facile in situ synthesis of a Bi/BiOCl nanocomposite with high photocatalytic activity
Jiang et al. Visible-light-driven Ag/Bi 3 O 4 Cl nanocomposite photocatalyst with enhanced photocatalytic activity for degradation of tetracycline
Siuleiman et al. Photodegradation of Orange II by ZnO and TiO2 powders and nanowire ZnO and ZnO/TiO2 thin films
Liu et al. In-situ preparation of double Z-scheme Bi2S3/BiVO4/TiO2 ternary photocatalysts for enhanced photoelectrochemical and photocatalytic performance
Zhang et al. Construction of a high-performance photocatalytic fuel cell (PFC) based on plasmonic silver modified Cr-BiOCl nanosheets for simultaneous electricity production and pollutant removal
Xie et al. Tip-grafted Ag-ZnO nanorod arrays decorated with Au clusters for enhanced photocatalysis
Thirumalai et al. Hydrothermal fabrication of natural sun light active Dy 2 WO 6 doped ZnO and its enhanced photo-electrocatalytic activity and self-cleaning properties
US20230226524A1 (en) Photocatalytically active particulate material based on zns, method for the production and use thereof
Lv et al. Visible-light-induced reduction of hexavalent chromium utilizing cobalt phosphate (Co-Pi) sensitized inverse opal TiO 2 as a photocatalyst
Ragsdale et al. Photocatalytic activity of Fe-modified bismuth titanate pyrochlores: insights into its stability, photoelectrochemical, and optical responses
Joseita dos Santos Costa et al. Photocurrent response and progesterone degradation by employing WO3 films modified with platinum and silver nanoparticles
Mansoor et al. Iron–manganese–titanium (1: 1: 2) oxide composite thin films for improved photocurrent efficiency
Kim et al. Fabrication of branched-TiO2 microrods on the FTO glass for photocatalytic reduction of Cr (VI) under visible-light irradiation
Wang et al. Improving photocatalytic Rhodamine B degrading activity with Pt quantum dots on TiO2 nanotube arrays
Guo et al. Efficient green photocatalyst of Ag/ZnO nanoparticles for methylene blue photodegradation
Weng et al. Screening and characterization for the optimization of CdS-based photocatalysts
Bagheri et al. Performance evaluation of a novel visible-driven CNT/TiO2/WO3/CdS heterojunction in photocatalytic fuel cell: Photodegradation of Reactive Blue 19 and electricity production
Aguilera-Ruiz et al. Photocatalytic performance of binary and ternary Pt–Cu2O–BiVO4 catalysts under visible-light irradiation
Sassi et al. Synergistic effect of CuxOy-NPs/TiO2-NTs heterostructure on the photodegradation of amido black staining
Kunthakudee et al. Photocatalytic recovery of gold from a non-cyanide gold plating solution as Au nanoparticle-decorated semiconductors
Stojadinović et al. TiO2/Bi2O3 coatings formed by plasma electrolytic oxidation of titanium for photocatalytic applications
Kunthakudee et al. Photosynthesis of Au/TiO2 nanoparticles for photocatalytic gold recovery from industrial gold-cyanide plating wastewater

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20130109

RJ01 Rejection of invention patent application after publication