CN102830642B - 五轴中低速点胶机器人伺服控制系统 - Google Patents

五轴中低速点胶机器人伺服控制系统 Download PDF

Info

Publication number
CN102830642B
CN102830642B CN201210361937.2A CN201210361937A CN102830642B CN 102830642 B CN102830642 B CN 102830642B CN 201210361937 A CN201210361937 A CN 201210361937A CN 102830642 B CN102830642 B CN 102830642B
Authority
CN
China
Prior art keywords
chip
speed
motor
adhesive dispensing
dispensing robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210361937.2A
Other languages
English (en)
Other versions
CN102830642A (zh
Inventor
张好明
王应海
袁丽娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Robobor Bobot Technology Co Ltd
Original Assignee
Suzhou Industrial Park Institute of Vocational Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Industrial Park Institute of Vocational Technology filed Critical Suzhou Industrial Park Institute of Vocational Technology
Priority to CN201210361937.2A priority Critical patent/CN102830642B/zh
Publication of CN102830642A publication Critical patent/CN102830642A/zh
Application granted granted Critical
Publication of CN102830642B publication Critical patent/CN102830642B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Direct Current Motors (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本发明在单片的单片机中引入LM629芯片,形成基于单片机+LM629的双核处理器,充分考虑电池在这个系统的作用,把五轴中低速点胶机器人伺服控制系统中工作量最大的五轴伺服系统交给LM629芯片控制,充分发挥LM629芯片数据处理速度较快的特点,而人机界面模块、路径读取模块、轨迹参数预设模块、在线输出模块、数据存储模块以及I/O控制模块等功能交给单片机控制,这样就实现了单片机与LM629芯片的分工,把单片机从繁重的工作量中解脱出来,防止点胶机器人失控,抗干扰能力大大增强。

Description

五轴中低速点胶机器人伺服控制系统
技术领域
本发明是有关于点胶机器人的技术领域,且特别是有关于五轴中低速点胶机器人伺服控制系统。
 背景技术
在高技术迅猛发展的今天,传统的生产方式已日趋落后,新型的自动化生产将成为新世纪接受市场挑战的重要方式。自动化不仅是提高劳动生产率的手段,对企业未来的长远发展战略起着重要的作用。由于机器人是新型的自动化的主要工具,工业机器人及其应用工程的开发,将机器人变为直接生产力,它在改变传统的生产模式,提高生产率及对市场的适应能力方面显示出极大的优越性。同时它将人从恶劣危险的工作环境中替换出来,进行文明生产,这对促进经济发展和社会进步都具有重大意义。随着手机、电脑外壳、光碟机、印表机、,墨水夹、PC板、LCD、LED、DVD、数位相机、开关、连接器、继电器、散热器、半导体等电子业、玩具业、医疗器材等制造业对机器人装备的需求及绿色环保和改善劳动者的工作环境要求越来越高,专门对流体进行控制,并将流体点滴、涂覆于产品表面或产品内部的自动化机器点胶机器人随即产生。
点胶机器人主要用于产品工艺中的胶水、油漆以及其他液体精确点、注、涂、点滴到每个产品精确位置,可以用来实现打点、画线、圆型或弧型。“点胶机器人”的研究开发将对我国PCB板绑定封胶、 IC 封胶、PDA 封胶、 LCD 封胶、IC 封装、IC 粘接等行业产生巨大的经济效益和社会效益。一个精度相对较高的点胶机器人需要在一个三维的XYZ空间里进行一条直线上、圆弧或点对点的位置上按照一定的胶量信息进行涂胶,如果采用一个三轴的点胶机器人可以简单地模拟上述动作,但是对于一些特殊的点胶系统来说,点胶位置有的时候垂直,有的时候刚好成镜面对称,有的时候成一定的角度,一般的三轴点胶机器人则完成不了上述工作,这个时候需要增加一轴U使得点胶阀可以倾斜一定角度满足侧面焊接的要求,另外再增加一轴R使得点胶阀可以正向旋转180度或反向旋转180度,完成一个360度的运动,这样就形成了一台简易的五轴点胶机器人。一台完整的五轴点胶机器人大致分为以下几个部分:
1)电机:执行电机是点胶机器人的动力源,它根据微处理器的指令来执行点胶机器人在五维空间里执行加工部件的相关动作;
2)算法:算法是点胶机器人的灵魂,点胶机器人必须采用一定的智能算法才能准确快速的从一点到达另外一点,形成点对点,或曲线轨迹的运动;
3)微处理器:微处理器是点胶机器人的核心部分,是点胶机器人的大脑。点胶机器人所有的信息,包括胶点大小,位置信息,和电机状态信息等都需要经过微处理器处理并做出相应的判断。
点胶机器人结合了多学科知识,对于提升在校学生的动手能力、团队协作能力和创新能力,促进学生课堂知识的消化和扩展学生的知识面都非常有帮助,点胶机器人技术的开展可以培养大批相关领域的人才,进而促进相关领域的技术发展和产业化进程。但是由于国内研发此机器人的单位较少,相对研发水平比较落后,研发的五轴点胶机器人伺服控制系统,如图1,长时间运行发现存在着很多安全问题,即:
(1)作为点胶机器人的电源采用的是一般交流电源整流后的直流电源,当突然停电时会使整个点胶运动失败;
(2)作为点胶机器人的执行机构采用的多是步进电机,经常会遇到丢失脉冲造成电机失步现象发生,导致对位置的记忆出现错误;
(3)由于采用步进电机,使得机体发热比较严重,有的时候需要进行散热;
(4)由于采用步进电机,使得系统运转的机械噪声大大增加,不利于环境保护;
(5)由于采用步进电机,其电机本体一般都是多相结构,控制电路需要采用多个功率管,使得控制电路相对比较复杂,并且增加了控制器价格;
(6)由于采用步进电机,使得系统一般不适合在速度较高的场合运行,高速运动时容易产生振动,导致点胶失败;
(7)由于采用步进电机,使得系统的力矩相对较小。
(8)由于控制不当的原因,导致有的时候步进电机产生共振;
(9)由于点胶机器人要频繁的关闭和启动,加重了单片机的工作量,单一的单片机无法满足点胶机器人快速启动和停止的要求;
(10)相对采用的都是一些体积比较大的插件元器件,使得点胶机器人控制系统占用较大的空间,重量相对都比较重;
(11)由于受周围环境不稳定因素干扰,单片机控制器经常会出现异常,引起点胶机器人失控,抗干扰能力较差;
(12)对于五轴点胶机器人的点胶过程来说,一般要求其五个电机的PWM控制信号要同步,由于受单片机计算能力的限制,单一单片机伺服系统很难满足这一条件,使得点胶机器人点胶量不一致,特别是对于快速行走时情况更糟糕;
(13)由于受单片机容量和算法影响,点胶机器人对已经点胶的胶点信息没有存储,当遇到掉电情况或故障重启时所有的信息将消失,这使得整个点胶过程要重新开始;
(14)点胶系统一旦开始,就要完成整个点胶运动,中间没有任何暂停或缓冲的点。
因此,需要对现有的基于单片机控制的五轴点胶机器人控制系统进行重新设计,寻求一种经济适用的中低速五轴点胶伺服系统。
发明内容
针对上述问题,本发明的目的是提供一种五轴中低速点胶机器人伺服控制系统,解决了现有技术中点胶机器人失控和抗干扰能力较差的问题。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种五轴中低速点胶机器人伺服控制系统,包括电池、交流电源、第一信号处理器、第二信号处理器、处理器单元、第一高速直流电机、第二高速直流电机、第三高速直流电机、第四高速直流电机、第五高速直流电机以及点胶机器人,所述的第一信号处理器通过交流电源或者电池单独提供电流驱动所述的处理器单元,所述的处理器单元分别发出第一控制信号、第二控制信号、第三控制信号、第四控制信号和第五控制信号,所述的第一控制信号、第二控制信号、第三控制信号、第四控制信号和第五控制信号分别控制所述的第二高速直流电机、第一高速直流电机、第三高速直流电机、第四高速直流电机和第五高速直流电机,通过所述的第一高速直流电机的第二控制信号、通过所述的第二高速直流电机的第一控制信号、通过所述的第三高速直流电机的第三控制信号、通过所述的第四高速直流电机的第四控制信号和通过所述的第五高速直流电机的第五控制信号经过第二信号处理器合成之后,控制点胶机器人的运动,其中,所述的处理器单元为一双核处理器,包括单片机和LM629芯片,且单片机和LM629芯片之间实时进行数据交换和调用,所述的LM629芯片包括第一LM629芯片、第二LM629芯片、第三LM629芯片、第四LM629芯片和第五LM629芯片。
在本发明一个较佳实施例中,所述的处理器单元还包括设于单片机和LM629芯片的上位机系统和运动控制系统,所述的上位机系统包括人机界面模块、路径读取模块、轨迹参数预设模块以及在线输出模块,所述的运动控制系统包括五轴伺服控制模块、数据存储模块以及I/O控制模块,其中,单片机用于控制人机界面模块、路径读取模块、轨迹参数预设模块、在线输出模块、数据存储模块以及I/O控制模块,LM629芯片用于控制伺服控制模块。
在本发明一个较佳实施例中,所述的LM629芯片内部还包括运动梯形图发生器,所述的运动梯形图发生器用于生成速度运动梯形图,其包含的面积就是点胶机器人五个马达要运行的距离。
在本发明一个较佳实施例中,所述的LM629芯片内部还包括电机位置解码器,所述的电机位置解码器用于解读点胶机器人的位置数据。
在本发明一个较佳实施例中,所述的LM629芯片内部还包括闭环PID调节器,所述的闭环PID调节器用于调节点胶机器人的驱动功率。
在本发明一个较佳实施例中,所述的高速直流电机上还安装有光码盘,所述的光码盘用于输出点胶机器人的位置信号。
在本发明一个较佳实施例中,所述的单片机为工业级的C8051F120单片机。
本发明的五轴中低速点胶机器人伺服控制系统,为了提高运算速度,保证五轴中低速点胶机器人伺服控制系统的稳定性和可靠性,本发明在单片的单片机中引入LM629芯片,形成基于单片机+LM629的双核处理器,充分考虑电池在这个系统的作用,把五轴中低速点胶机器人伺服控制系统中工作量最大的五轴伺服系统交给LM629芯片控制,充分发挥LM629芯片数据处理速度较快的特点,而人机界面模块、路径读取模块、轨迹参数预设模块、在线输出模块、数据存储模块以及I/O控制模块等功能交给单片机控制,这样就实现了单片机与LM629芯片的分工,把单片机从繁重的工作量中解脱出来,防止点胶机器人失控,抗干扰能力大大增强。
附图说明
图1为现有技术中五轴点胶机器人伺服控制系统的原理图;
图2为本发明较佳实施例的五轴中低速点胶机器人伺服控制系统的原理图;
图3为图2中处理器单元的的方框图;
图4为本发明较佳实施例的五轴中低速点胶机器人伺服控制系统的结构框图;
图5为点胶机器人的速度运动曲线。
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
单片机自20世纪70年代末诞生至今,经历了单片微型计算机SCM、微控制器MCU及片上系统SOC三大阶段,前两个阶段分别以MCS-51和80C51为代表。随着在嵌入式领域中对单片机的性能和功能要求越来越高,以往的单片机无论是运行速度还是系统集成度等多方面都不能满足新的设计需要,这时Silicon  Labs 公司推出了C8051F系列单片机,成为SOC的典型代表。 C8051F具有上手快(全兼容8051指令集)、研发快(开发工具易用,可缩短研发周期)和见效快(调试手段灵活)的特点,其性能优势具体体现在以下方面:
1)高速、流水线结构的8051 兼容的CIP-51 内核(100MIPS 或50MIPS);
2)全速、非侵入式的在系统调试接口(片内);
3)真正12 位或10 位、100 ksps 的ADC,带PGA 和8 通道模拟多路开关;
4)真正8 位500 ksps 的ADC,带PGA 和8 通道模拟多路开关;
5)两个12 位DAC,具有可编程数据更新方式(仅C8051F12x);
6)2 周期的16 x 16 乘法和累加引擎;
7)128KK 或64KB 可在系统编程的FLASH 存储器;
8) 8448(8K+256)字节的片内RAM;
9) 可寻址64KB 地址空间的外部数据存储器接口;
10)硬件实现的SPI、SMBus/ I2C 和两个UART 串行接口;
11)5 个通用的16 位定时器;
12) 具有6 个捕捉/比较模块的可编程计数器/定时器阵列;
13)片内看门狗定时器、VDD 监视器和温度传感器。
LM629芯片是National semiconductor生产的一款用于精密运动控制的专用芯片,有24脚和28脚二种表面安装式封装,在一个芯片内集成了数字式运动控制的全部功能,使得设计一个快速、准确的运动控制系统的任务变得轻松、容易,它有以下特性:
1)工作频率为6MHz和8MHz,工作温度范围为-40℃~+85℃ ,使用5V电源;
2)32位的位置、速度和加速度存器;
3)8位分辨率的PWM脉宽调制输出;
4)16位可编程数字PID控制器;
5)内部的梯形速度发生器;
6)该芯片可实时修改速度、目标位置和PID控制参数;
7)实时可编程中断;可编程微分项采样间隔;
8)对增量码盘信号进行四倍频;
9)可设置于速度或位置伺服两种工作状态。
上述特点使得LM629芯片特别适合伺服控制系统中。
如图2所示,为本发明较佳实施例的五轴中低速点胶机器人伺服控制系统的原理图。本实施例中,五轴中低速点胶机器人伺服控制系统包括电池、交流电源、第一信号处理器、第二信号处理器、处理器单元、第一高速直流电机、第二高速直流电机、第三高速直流电机、第四高速直流电机、第五高速直流电机以及点胶机器人。其中,所述电池为锂离子电池,是一种供电装置,为整个系统的工作提供工作电压。
本发明中,所述的第一信号处理器通过交流电源或者电池单独提供电流驱动所述的处理器单元,所述的处理器单元分别发出第一控制信号、第二控制信号、第三控制信号、第四控制信号和第五控制信号,所述的第一控制信号、第二控制信号、第三控制信号、第四控制信号和第五控制信号分别控制所述的第二高速直流电机、第一高速直流电机、第三高速直流电机、第四高速直流电机和第五高速直流电机,通过所述的第一高速直流电机的第二控制信号、通过所述的第二高速直流电机的第一控制信号、通过所述的第三高速直流电机的第三控制信号、通过所述的第四高速直流电机的第四控制信号和通过所述的第五高速直流电机的第五控制信号经过第二信号处理器合成之后,控制点胶机器人的运动,其中,所述的处理器单元为一双核处理器,包括单片机和LM629芯片,且单片机和LM629芯片之间实时进行数据交换和调用,所述的LM629芯片包括第一LM629芯片、第二LM629芯片、第三LM629芯片、第四LM629芯片和第五LM629芯片。
本发明为克服单一的单片机不能满足五轴点胶机器人行走的稳定性和快速性的要求,舍弃了国产点胶机器人所采用的单片的单片机的工作模式,提供了单片机+LM629芯片的全新控制模式,控制板以LM629芯片为处理核心,实现数字信号的实时处理,把单片机从复杂的工作当中解脱出来,实现部分的信号处理算法和LM629芯片的控制逻辑,并响应中断,实现数据通信和存储实时信号。
请参阅图3,所述处理器单元为一双核处理器,其包括单片机以及LM629芯片,二者可相互通讯,实时进行数据交换和调用。所述的处理器单元还包括设于单片机和LM629芯片的上位机系统和运动控制系统,所述的上位机系统包括人机界面模块、路径读取模块、轨迹参数预设模块以及在线输出模块,所述的运动控制系统包括五轴伺服控制模块、数据存储模块以及I/O控制模块。其中,单片机用于控制人机界面模块、路径读取模块、轨迹参数预设模块、在线输出模块、数据存储模块以及I/O控制模块,LM629芯片用于控制五轴伺服控制模块。
上位机系统包括人机界面模块、路径读取模块、轨迹参数预设模以及在线输出模块。人机界面模块包括开始/重启按键及功能选择键;路径读取模块用于读书已经已经预设好的速度,加速度,位置等参数设置;轨迹参数预设模块用于预先设置点胶机器人的路径轨迹;在线输出模块用于提示点胶机器人的工作状态,比如是点胶机器人工作过程中或到站状态提示。
运动控制系统包括五轴伺服控制模块、数据存储模块以及I/O控制模块。其中,数据存储模块模块为一存储器;I/O控制模块包括RS-232串行接口、ICE端口等。
对于处理器单元为一双核处理器,在电源打开状态下,点胶机器人先进入自锁状态,然后把点胶机器人的点胶阀放在废胶回收装置处,打开点胶阀门然后胶体自动流出,等均匀后开始移动到起始点,点胶机器人把储存的实际路径传输参数给控制器中的单片机,单片机把这些环境参数转化为点胶机器人在指定运动轨迹下第一高速直流电机、第二高速直流电机、第三高速直流电机、第四高速直流电机和第五高速直流电机要运行的距离(或角度)、速度和加速度,然后与LM629芯片通讯,LM629芯片根据这些参数转处理五个独立电机的伺服控制,并把处理数据通讯给单片机,由单片机继续处理后续的运行状态。
结合以上描述,上位机系统包括人机界面模块、路径读取模块、轨迹参数预设模块、在线输出模块等功能;运动控制系统包括五轴伺服控制模块、数据存储模块、I/O控制模块等功能。其中工作量最大的五轴伺服控制模块交给LM629芯片控制,其余的包括上位机系统交给单片机控制,这样就实现了单片机与LM629芯片的分工,同时二者之间也可以进行通讯,实时进行数据交换和调用。
请参阅图4,为本发明较佳实施例的五轴中低速点胶机器人伺服控制系统的结构框图。包括单片机、第一LM629芯片、第二LM629芯片、第三LM629芯片、第四LM629芯片、第五LM629芯片、第一电机驱动器、第二电机驱动器、第三电机驱动器、第四电机驱动器、第五电机驱动器、第一高速直流电机、第二高速直流电机、第三高速直流电机、第四高速直流电机和第五高速直流电机,所述的单片机与第一LM629芯片、第二LM629芯片、第三LM629芯片、第四LM629芯片和第五LM629芯片通讯,所述的第一LM629芯片、第二LM629芯片、第三LM629芯片、第四LM629芯片和第五LM629芯片通讯分别发出控制信号至第一电机驱动器、第二电机驱动器、第三电机驱动器、第四电机驱动器和第五电机驱动器,由所述的第一电机驱动器控制第一高速直流电机,所述的第二电机驱动器控制第二高速直流电机、所述的第三电机驱动器控制第三高速直流电机、所述的第四电机驱动器控制第四高速直流电机和所述的第五电机驱动器控制第五高速直流电机。
上述中,所述的第一LM629芯片和第一高速直流电机之间还连接有第一编码器,所述的第二LM629芯片和第二高速直流电机之间还连接有第二编码器,所述的第三LM629芯片和第三高速直流电机之间还连接有第三编码器,所述的第四LM629芯片和第四高速直流电机之间还连接有第四编码器,所述的第五LM629芯片和第五高速直流电机之间还连接有第五编码器;所述的单片机通过数据总线分别与第二LM629芯片、第三LM629芯片、第四LM629芯片和第五LM629芯片进行通讯,所述的单片机通过控制总线与第一LM629芯片进行通讯。
本发明中,所述的第一LM629芯片、第二LM629芯片、第三LM629芯片、第四LM629芯片和第五LM629芯片内部均包括接口、运动梯形图发生器、电机位置解码器和闭环PID调节器。所述的接口为I/O口,用于连接数据总线和控制总线;所述的运动梯形图发生器用于生成速度运动梯形图,其包含的面积就是点胶机器人五个马达要运行的距离;所述的电机位置解码器用于解读点胶机器人的位置数据;所述的闭环PID调节器用于调节点胶机器人的驱动功率。
本发明中五轴中低速点胶机器人伺服控制系统具体的功能实现如下:
1)操作人员把加工部件安装在夹具上;
2)打开电源,在打开电源瞬间单片机会对电源电压来源进行判断,当确定是电池供电时,如果电池电压低压的话,将禁止LM629芯片工作,电机不能工作,同时电压传感器将工作,控制器会通过信号灯塔发出低压报警信号;
3)启动点胶机器人自动控制程序,通过控制器232串口输入任务或者从硬盘装载任务;
4)将执行机构(包括胶刷和出胶头)移动到起始点上方,调整好位姿;
5)出胶信号有效,延时一段时间准备点胶;
6)为了能够驱动五轴点胶机器人进行运动,本控制系统引入了五片LM629芯片,为了减少数据总线占用的口地址,第三高速直流电机和第四高速直流电机采用相同的数据总线,第二高速直流电机和第五高速直流电机采用相同的数据总线,通过不同的命令采用分步骤的方式启动各个第三高速直流电机、第四高速直流电机、第二高速直流电机和第五高速直流电机,分别来完成点胶阀的垂直距离、倾斜角度、水平距离和旋转角度的设定;
7)对于基于LM629芯片的系统来说,“忙”状态的检测是整个伺服系统设计的首要部分,在处理器向LM629芯片写命令或者读写数字后,“忙”状态位会被立刻置位,此时,会忽略一切命令数据传输,直至“忙”状态被复位,所以在每次运动之前先检测此状态位,判断是否为“忙”,如果是“忙”要进行软件复位,使系统可以进行数据通讯;
8)对于基于LM629芯片的系统来说,复位也是LM629芯片伺服系统操作中重要的一个环节,复位后,查看LM629芯片的状态字,如果不等于84H或者C4H,说明硬件复位失败,必须重新复位,否则LM629芯片不可以正常工作;
9)在点胶机器人运动过程中,单片机会时刻储存所经过的距离或者是经过的点胶点,并根据这些距离信息计算确定对下一个点胶机器人第一高速直流电机和第二高速直流电机要运行的距离、速度和加速度,单片机然后与LM629芯片通讯,传输这些参数给LM629芯片,然后由LM629芯片生成速度运动梯形图,如图5所示,这个梯形包含的面积就是点胶机器人第一高速直流电机和第二高速直流电机要运行的距离;
10)在点胶机器人第一高速直流电机和第二高速直流电机在二维平面上运动过程中,单片机根据胶点需要倾斜的角度,使控制第四高速直流电机的LM629芯片工作,单片机把点胶阀倾斜角度需要运行的距离、速度和加速度送给LM629芯片,然后LM629生成第四高速直流电机速度运动梯形图,这个梯形包含的面积就是点胶机器人第四高速直流电机和要运行的角度,然后第四高速直流电机自锁,保持点胶阀倾斜的角度,设置第四高速直流电机的LM629芯片状态为“忙”,使其不能和总线进行数据通讯,达到释放数据总线的目的,然后对第三高速直流电机的LM629芯片“忙”进行复位,使得其可以与数据总线通讯,控制器把决定点胶点胶量大小的第三高速直流电机运动的距离、速度、加速度信号传输给LM629芯片,然后由LM629芯片生成速度运动梯形图,这个梯形包含的面积就是自动点胶机器人第三高速直流电机和要运行的距离;
11)在点胶阀到达预设高度和倾斜角度后,第二高速直流电机的LM629芯片状态为“忙”,使其不能和总线进行数据通讯,达到释放数据总线的目的,然后对第五高速直流电机的LM629芯片“忙”进行复位,使得其可以与数据总线通讯,单片机把点胶阀需要旋转的角度、角速度和角加速度信号传输给LM629芯片,然后由LM629芯片生成第五高速直流电机运动的速度运动梯形图,这个梯形包含的面积就是自动点胶机器人第五高速直流电机需要旋转的角度;
12)在运动过程中如果点胶机器人控制器发现无论第一高速直流电机、第二高速直流电机、第三高速直流电机、第四高速直流电机和第五高速直流电机胶点距离求解出现死循环将向单片机发出中断请求,单片机会对中断做第一时间响应,如果单片机的中断响应没有来得及处理,自动点胶机器人的第一高速直流电机、第二高速直流电机、第三高速直流电机、第四高速直流电机和第五高速直流电机将原地自锁,并储存当前信息,等待故障排除后,二次开启时重新调取点胶信息,继续执行未完成的任务;
13)装在第一高速直流电机、第二高速直流电机、第三高速直流电机、第四高速直流电机和第五高速直流电机上的光码盘会输出其位置信号A和位置信号B,光码盘的位置信号A脉冲和B脉冲逻辑状态每变化一次,LM629芯片内的位置寄存器会根据第一高速直流电机、第二高速直流电机、第三高速直流电机、第四高速直流电机和第五高速直流电机的运行方向加1或者是减1;
14)光码盘的位置信号A脉冲和B脉冲和Z脉冲同时为低电平时,就产生一个INDEX信号给LM629芯片,记录电机的绝对位置,然后换算成自动点胶机器人在XYZUR五维空间中的具体位置;
15)单片机根据点胶机器人在XYZUR五维空间中的具体位置与设定位置相比,计算得到并送相应的加速度、速度和位置数据等给相应的LM629芯片的梯形图发生器作为参考值,由梯形图此计算出自动点胶机器人需要更新的第一高速直流电机、第二高速直流电机、第三高速直流电机、第四高速直流电机和第五高速直流电机实际加速度、速度和位置信号;
16)如果点胶机器人在运行过程中遇到突然断电时,蓄电池会自动开启立即对点胶机器人进行供电,当第一高速直流电机、第二高速直流电机、第三高速直流电机、第四高速直流电机和第五高速直流电机中的任何一个运动电流超过设定值时,LM629芯片的中断命令LPES将会向控制器发出中断请求,此时控制器会立即控制所有LM629芯片停止工作,既防止了电池大电流放电的发生,又防止了点胶过程中故障发生对点胶点胶量的影响;
17)如果在点胶过程中读到了人机界面上输入的自动暂停点,单片机会控制LM629芯片以最大的加速度停车使第一高速直流电机、第二高速直流电机和第三高速直流电机电机暂停在设置点,并存储当前坐标信息,直到控制器读到再次按下“开始”按钮信息才可以使LM629芯片重新工作,并调取存储信息使点胶机器人从自动暂停点可以继续工作;
18)在运动过程中,如果检测到任何一个电机的转矩出现脉动,控制器会自动补偿,减少了电机转矩对点胶过程的影响;
19)点胶机器人在运行过程会时刻检测电池电压,当系统出现低压时,传感器会通知控制器开启并发出报警提示,有效地保护了电池;
20)当完成整个加工部件的点胶运动后,点胶阀会停止出胶,经过一定延时,然后走出运动轨迹;
21)点胶机器人重新设定位置零点,等待下一周期。
本发明五轴中低速点胶机器人伺服控制系统具有的有益效果是:
1:在运动过程中,充分考虑了电池在这个系统中的作用,基于单片机+LM629控制器时刻都在对自动点胶机器人的运行状态进行监测和运算,当遇到交流电源断电时,电池会立即提供能源,避免了自动点胶系统伺服系统运动的失败,并且在电池提供电源的过程中,时刻对电池的电流进行观测并保护,避免了大电流的产生,所以从根本上解决了大电流对电池的冲击,避免了由于大电流放电而引起的电池过度老化现象的发生;
2:由LM629芯片处理自动点胶机器人的五只高速直流电机的独立伺服控制,使得控制比较简单,大大提高了运算速度,解决了现有技术中单片机运行较慢的瓶颈,缩短了开发周期短,并且程序可移植能力强;
3:基本实现全贴片元器件材料,实现了单板控制,不仅节省了控制板占用空间,而且有利于点胶机器人体积和重量的减轻;
4:为了提高运算速度和精度,本点胶机器人采用了高速直流电机替代了传统系统中常用的步进电机,使得运算精度大大提高;
5:由于本控制器采用LM629芯片处理大量的数据与算法,把单片机从繁重的工作量中解脱出来,有效地防止了点胶机器人失控,抗干扰能力大大增强;
6:由LM629芯片输出PWM调制信号和方向信号,通过驱动电路可以直接驱动电机,不仅减轻了单片机的负担,简化了接口电路,而且省去了单片机内部编写位置、速度控制程序,以及各种PID算法的麻烦,使得系统的调试简单;
7:在点胶机器人运行过程中,控制器会对电机的转矩进行在线辨识并利用电机力矩与电流的关系进行补偿,减少了电机转矩抖动对点胶机器人快速行走的影响;
8:在控制中,单片机可以根据机器人外围运行情况适时调整LM629芯片内部的PID参数,实现分段P、PD、PID控制和非线性PID控制,使系统满足中低速运行时速度的切换;
9:由于具有存储功能,这使得点胶机器人掉电后可以轻易的调取已经涂胶好的路径信息,即使出现故障后也可以轻易的二次点胶;
10:LM629芯片的PID控制及运动控制类指令采用双缓冲结构,数据首先写入主寄存器,只有在写入相关命令后主寄存器的数据才能进一步装入工作寄存器,这样很容易实现多轴伺服运动的同步;
11:由于采用的单片机是工业级的C8051F120单片机,在满足实用性的同时,其内核就是传统的8051的内核,使得编程者可以很好的二次开发;
12:由于采用单独的五轴控制点胶的胶量和方向,这样胶量大小粗细、涂胶速度、点胶时间、停胶时间以及焊接方向皆可任意设定,可以满足任何胶点不一致的要求。
13:在整个点胶过程中,加入了暂停点设定,这样有利于在运动过程中目测已经点胶好的位置,提前发现点胶问题。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (6)

1.一种五轴中低速点胶机器人伺服控制系统,其特征在于,包括电池、交流电源、第一信号处理器、第二信号处理器、处理器单元、第一高速直流电机、第二高速直流电机、第三高速直流电机、第四高速直流电机、第五高速直流电机以及点胶机器人,所述的第一信号处理器通过交流电源或者电池单独提供电流驱动所述的处理器单元,所述的处理器单元分别发出第一控制信号、第二控制信号、第三控制信号、第四控制信号和第五控制信号,所述的第一控制信号、第二控制信号、第三控制信号、第四控制信号和第五控制信号分别控制所述的第二高速直流电机、第一高速直流电机、第三高速直流电机、第四高速直流电机和第五高速直流电机,通过所述的第一高速直流电机的第二控制信号、通过所述的第二高速直流电机的第一控制信号、通过所述的第三高速直流电机的第三控制信号、通过所述的第四高速直流电机的第四控制信号和通过所述的第五高速直流电机的第五控制信号经过第二信号处理器合成之后,控制点胶机器人的运动,所述的处理器单元为一双核处理器,包括单片机和LM629芯片,所述的LM629芯片包括第一LM629芯片、第二LM629芯片、第三LM629芯片、第四LM629芯片和第五LM629芯片,
其中,所述的第一 LM629 芯片和第一高速直流电机之间还连接有第一编码器,所述的第二 LM629 芯片和第二高速直流电机之间还连接有第二编码器,所述的第三 LM629芯片和第三高速直流电机之间还连接有第三编码器,所述的第四 LM629 芯片和第四高速直流电机之间还连接有第四编码器,所述的第五 LM629 芯片和第五高速直流电机之间还连接有第五编码器;所述的单片机通过数据总线分别与第二 LM629 芯片、第三 LM629 芯片、第四LM629芯片和第五LM629芯片进行通讯,所述的单片机通过控制总线与第一LM629芯片进行通讯,
上述中,所述的处理器单元还包括设于单片机和LM629芯片的上位机系统和运动控制系统,所述的上位机系统包括人机界面模块、路径读取模块、轨迹参数预设模块以及在线输出模块,所述的运动控制系统包括五轴伺服控制模块、数据存储模块以及I/O控制模块,其中,单片机用于控制人机界面模块、路径读取模块、轨迹参数预设模块、在线输出模块、数据存储模块以及I/O控制模块,LM629芯片用于控制伺服控制模块。
2.根据权利要求1所述的五轴中低速点胶机器人伺服控制系统,其特征在于,所述的LM629芯片内部还包括运动梯形图发生器,所述的运动梯形图发生器用于生成速度运动梯形图,其包含的面积就是点胶机器人五个马达要运行的距离。
3.根据权利要求1所述的五轴中低速点胶机器人伺服控制系统,其特征在于,所述的LM629芯片内部还包括电机位置解码器,所述的电机位置解码器用于解读点胶机器人的位置数据。
4.根据权利要求1所述的五轴中低速点胶机器人伺服控制系统,其特征在于,所述的LM629芯片内部还包括闭环PID调节器,所述的闭环PID调节器用于调节点胶机器人的驱动功率。
5.根据权利要求1所述的五轴中低速点胶机器人伺服控制系统,其特征在于,所述的高速直流电机上还安装有光码盘,所述的光码盘用于输出点胶机器人的位置信号。
6.根据权利要求1所述的五轴中低速点胶机器人伺服控制系统,其特征在于,所述的单片机为工业级的C8051F120单片机。
CN201210361937.2A 2012-09-26 2012-09-26 五轴中低速点胶机器人伺服控制系统 Active CN102830642B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210361937.2A CN102830642B (zh) 2012-09-26 2012-09-26 五轴中低速点胶机器人伺服控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210361937.2A CN102830642B (zh) 2012-09-26 2012-09-26 五轴中低速点胶机器人伺服控制系统

Publications (2)

Publication Number Publication Date
CN102830642A CN102830642A (zh) 2012-12-19
CN102830642B true CN102830642B (zh) 2015-08-26

Family

ID=47333816

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210361937.2A Active CN102830642B (zh) 2012-09-26 2012-09-26 五轴中低速点胶机器人伺服控制系统

Country Status (1)

Country Link
CN (1) CN102830642B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107450466A (zh) * 2017-09-26 2017-12-08 广东顺德西安交通大学研究院 一种冲压机器人控制器及其高速平稳控制方法
CN109318216B (zh) * 2018-12-17 2024-09-20 珠海格力电器股份有限公司 多轴伺服驱控系统及机器人系统
CN110533991A (zh) * 2019-08-27 2019-12-03 南京蓝宙科技有限公司 一种基于双核mcu的图形化编程教育机器人

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2131238Y (zh) * 1992-09-11 1993-04-28 北京铁路局计量管理所 一种新型在线式不间断电源
US5229952A (en) * 1991-01-18 1993-07-20 Cincinnati Milacron Inc. Control for injection molding machine
CN202123038U (zh) * 2011-05-08 2012-01-25 钟潘霄 一种数控点胶机器人
CN202129196U (zh) * 2011-05-08 2012-02-01 钟潘霄 一种智能数控双组份分配装置
CN202837907U (zh) * 2012-09-26 2013-03-27 苏州工业园区职业技术学院 五轴中低速点胶机器人伺服控制系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030079564A (ko) * 2002-04-04 2003-10-10 화천기공 주식회사 공작기계의 제어장치
US20060177922A1 (en) * 2005-02-10 2006-08-10 Velocity 11 Environmental control incubator with removable drawer and robot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229952A (en) * 1991-01-18 1993-07-20 Cincinnati Milacron Inc. Control for injection molding machine
CN2131238Y (zh) * 1992-09-11 1993-04-28 北京铁路局计量管理所 一种新型在线式不间断电源
CN202123038U (zh) * 2011-05-08 2012-01-25 钟潘霄 一种数控点胶机器人
CN202129196U (zh) * 2011-05-08 2012-02-01 钟潘霄 一种智能数控双组份分配装置
CN202837907U (zh) * 2012-09-26 2013-03-27 苏州工业园区职业技术学院 五轴中低速点胶机器人伺服控制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JJR-1型教学机器人控制系统的研究;王华;《中国优秀硕士学位论文全文数据库信息科技辑》;20081015(第10期);论文第2-6章 *

Also Published As

Publication number Publication date
CN102830642A (zh) 2012-12-19

Similar Documents

Publication Publication Date Title
CN102837311B (zh) 一种五轴中低速全自动点胶机器人伺服控制器
CN202837916U (zh) 单轴中低速点胶机器人伺服控制系统
CN102830641B (zh) 三轴全自动高速点胶机器人伺服控制系统
CN102841561B (zh) 两轴高速点胶机器人伺服控制系统
CN102830644B (zh) 五轴高速点胶机器人伺服控制系统
CN102830645B (zh) 单轴全自动高速点胶机器人伺服控制系统
CN102830642B (zh) 五轴中低速点胶机器人伺服控制系统
CN102841558B (zh) 五轴全自动高速点胶机器人伺服控制系统
CN102830643A (zh) 单轴中低速点胶机器人伺服控制系统
CN202837912U (zh) 一种四轴中低速全自动点胶机器人伺服控制器
CN202837907U (zh) 五轴中低速点胶机器人伺服控制系统
CN202929504U (zh) 新型微电脑鼠快速探索自动控制系统
CN202837919U (zh) 五轴高速点胶机器人伺服控制系统
CN102841559B (zh) 四轴中低速点胶机器人伺服控制系统
CN202837911U (zh) 三轴高速点胶机器人伺服控制系统
CN202837918U (zh) 三轴全自动高速点胶机器人伺服控制系统
CN102841556B (zh) 一种两轴中低速全自动点胶机器人伺服控制器
CN202837921U (zh) 一种三轴中低速全自动点胶机器人伺服控制器
CN202837908U (zh) 四轴中低速点胶机器人伺服控制系统
CN202837914U (zh) 一种五轴中低速全自动点胶机器人伺服控制器
CN202837920U (zh) 三轴中低速点胶机器人伺服控制系统
CN202837910U (zh) 两轴中低速点胶机器人伺服控制系统
CN202929400U (zh) 五轴全自动高速点胶机器人伺服控制系统
CN202837924U (zh) 四轴高速点胶机器人伺服控制系统
CN102837312B (zh) 一种三轴中低速全自动点胶机器人伺服控制器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
CB03 Change of inventor or designer information

Inventor after: Zhang Haoming

Inventor before: Zhang Haoming

Inventor before: Wang Yinghai

Inventor before: Yuan Lijuan

COR Change of bibliographic data
TR01 Transfer of patent right

Effective date of registration: 20160322

Address after: 215021 Suzhou Industrial Park, Jiangsu, if waterway No. 1

Patentee after: Zhang Haoming

Address before: 215000 Suzhou Industrial Park, Jiangsu, if waterway No. 1

Patentee before: Suzhou Industrial Park Institute of Vocational Technology

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160629

Address after: 211106, Jiangsu, Nanjing, Jiangning economic and Technological Development Zone, No. 19 Su source Avenue, Kowloon lake international enterprise headquarters park, block C4, first floor

Patentee after: Jiangsu Robobor Bobot Technology Co., Ltd.

Address before: 215021 Suzhou Industrial Park, Jiangsu, if waterway No. 1

Patentee before: Zhang Haoming