CN102829903A - Mems扫描式激光外差干涉仪及其测量玻璃应力的方法 - Google Patents

Mems扫描式激光外差干涉仪及其测量玻璃应力的方法 Download PDF

Info

Publication number
CN102829903A
CN102829903A CN2012103150209A CN201210315020A CN102829903A CN 102829903 A CN102829903 A CN 102829903A CN 2012103150209 A CN2012103150209 A CN 2012103150209A CN 201210315020 A CN201210315020 A CN 201210315020A CN 102829903 A CN102829903 A CN 102829903A
Authority
CN
China
Prior art keywords
light
incident
signal
mems
scanning type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012103150209A
Other languages
English (en)
Other versions
CN102829903B (zh
Inventor
王春晖
庞亚军
曲杨
李小宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201210315020.9A priority Critical patent/CN102829903B/zh
Publication of CN102829903A publication Critical patent/CN102829903A/zh
Application granted granted Critical
Publication of CN102829903B publication Critical patent/CN102829903B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

MEMS扫描式激光外差干涉仪及其测量玻璃应力的方法,涉及一种干涉仪及其测量玻璃应力的方法。为了解决玻璃应力的测量对于红外材料具有局限性问题。激光器发出的光经声光移频器后为频率为f的1级光和f'的0级光;1级光为信号光,0级光为本振光,1级光经过λ/2波片,进入偏振分束棱镜;再透过部件后,经MEMS振镜7对样品进行扫描后被反射镜反射按原光路返回;光束再次通过部件后,被偏振分束棱镜反射出水平分量,再与0级光拍频,通过改变部件与其入射光偏振方向分别为0°和45°,信号处理系统对探测器测得两个电流进行处理,得到样品的玻璃应力,所述部件为λ/4波片或45°方向加电极的克尔效应晶体。用于测量玻璃应力。

Description

MEMS扫描式激光外差干涉仪及其测量玻璃应力的方法
技术领域
本发明涉及一种干涉仪及其测量玻璃应力的方法,特别涉及一种MEMS扫描式激光外差干涉仪及其测量玻璃应力的方法。
背景技术
光学材料内存在应力时,加工好的光学元件表面会随时间而慢慢变形,严重影响成像质量,大大减少了光学元件的寿命。应力分布不均匀还会引起光学均匀性质量降低,使折射率分布不一致。这些都会使经过光学元件的波面发生变形,使像质变坏。所以应力的大小是光学材料光学性能的重要指标之一,在高精度的光学元件如角锥棱镜、直角棱镜、五角棱镜等的加工过程中,如果选择应力小的光学材料,可以大大提高光学元件的光学性能和加工质量。控制应力是光学材料制备工艺中极其重要的一环,应用适当热处理来控制应力的方法已成为技术人员所熟知。然而,如何准确测定光学材料应力仍是困扰广大光学材料生产厂家的难题之一,传统的经验估计和简单粗略的测量方法已越来越不适应当今社会对光学材料要求,因此研究更加合理,更加准确、快速、全面的对玻璃的应力进行测量就显得尤为重要。本文就是想在研制红外干涉仪来对红外材料的均匀性进行测量的同时,进一步研究红外干涉仪对应力进行测量的方法。
光学材料应力分布的测量一直是困扰研究者们的一个难题,虽然也有一些方法出现,但效果都不理想,多是一些定性或半定性的测量。早期,许多国家都采用的是苏联提出的八点法,或者是用偏光颜色粗略的估计双折射两束光的程差的方法。1966年F.W.Rosberry指出采用偏振光干涉图形确定材料的应力状态。1972年A.S.DeVany则更进一步指出,采用Williams干涉仪可确定应力分布。后来又陆续有人提出了单1/4波片定量应力测定法、双1/4波片定量应力测定法和巴比涅补偿器法等。进入21世纪以后,随着电子信息技术的快速发展,国内外许多科学工作者又对这一难题展开研究。2001年TakenoriKato提出计算机合成干涉色的方法。2002年Carole C.Montorou等提出基于色度学的光程差测量法。2009年Jenq Shyong Chen和Yung Kuo Huang用偏振短相干干涉显微镜对光学材料的应力进行了测量。
2004年提出基于移相法的光学玻璃应力等倾角全场数字化测量方法。2005年提出了采用l/4波片法测试玻璃样品的应力,应力双折射光程差测量精度达0.2nm/cm,重复性为0.1nm/cm。2008年提出了用干涉法测量了铝薄膜的轴向应力。2011年提出了基于白光干涉色的光学材料应力定量测量的方法,应力测量精度达0.5nm/cm。
目前广泛使用的激光外差干涉仪基本都处于可见光波段,精密测量红外光学材料的参数如光学厚度、内应力等,这一直是影响红外薄膜光学发展的科学难题之一。而且都是基于CCD相机对投射光干涉图像进行成像的原理来测量的,由于CCD相机的价格和尺寸的限制无法实现低成本和大口径的测量。总结起来主要存在着以下几方面的问题:
(1)工作波长都是采用可见光的波段激光或者白光,因此对于红外材料的测量就具有局限性;
(2)对待测物的测量采用全视场的光束照射,对全视场进行成像来获取测量参数信息。
(3)光学材料应力分布的测量过程中,一直依靠人为或者机械旋转偏振片来进行椭圆光的检测,控制困难,检测精度不高,。
发明内容
本发明的目的是为了解决目前的玻璃应力的测量对于红外材料的测量具有局限性问题,本发明提供一种MEMS扫描式激光外差干涉仪及其测量玻璃应力的方法。
本发明的MEMS扫描式激光外差干涉仪,它包括激光器、声光移频器、第一光纤耦合器、λ/2波片、偏振分束棱镜、λ/4波片、MEMS振镜、F-θ透镜、反射镜、第二光纤耦合器、光纤合束器、探测器和信号处理系统;
激光器发射的光束入射至声光移频器,经声光移频器后出射的光分别为频率f的1级光和频率f'的0级光,频率f'的0级光入射至第一光纤耦合器,
经第一光纤耦合器耦合后的光束入射至λ/2波片,经λ/2波片透射的光束入射至偏振分束棱镜,经偏振分束棱镜透射的光束入射至λ/4波片,经λ/4波片透射的光束入射至MEMS振镜;
经MEMS振镜反射的光束入射至F-θ透镜,经F-θ透镜的光束入射至平面反射镜,经平面反射镜的反射的光束沿入射光路返回并入射至偏振分束棱镜,经偏振分束棱镜反射的光束入射至第二光纤耦合器,经第二光纤耦合器耦合后的光束和声光移频器后出射的频率f的1级光均入射至光纤合束器,经光纤合束器整合后的光束入射至探测器,经探测器输出的交变电流信号发送给信号处理系统。
应用上述干涉仪测量玻璃应力的方法,它包括如下步骤:
步骤一:将被测样品放置在所述MEMS扫描式激光外差干涉仪的F-θ透镜与平面反射镜中间;
步骤二:在MEMS振镜扫描的一个周期内,进行如下步骤:
步骤1:调整MEMS扫描式激光外差干涉仪中的λ/4波片与其入射光偏振方向的夹角为0°,探测器测得交变电流信号I1
步骤2:调整所述MEMS扫描式激光外差干涉仪中的λ/4波片与其入射光偏振方向的夹角为45°,探测器测得交变电流信号I2
步骤三:信号处理系统将步骤1和步骤2获得的两个交变电流信号I1和I2进行处理,得到被测玻璃样品的玻璃应力。
本发明还提供一种MEMS扫描式激光外差干涉仪,它包括激光器、声光移频器、第一光纤耦合器、λ/2波片、偏振分束棱镜、MEMS振镜、F-θ透镜、反射镜、第二光纤耦合器、光纤合束器、探测器、信号处理系统、克尔效应晶体和电极驱动电路;
经第一光纤耦合器耦合后的光束入射至λ/2波片,经λ/2波片透射的光束入射至偏振分束棱镜,经偏振分束棱镜透射的光束入射至克尔效应晶体,经克尔效应晶体透射的光束入射至MEMS振镜;
经MEMS振镜反射的光束入射至F-θ透镜,经F-θ透镜的光束入射至平面反射镜,经平面反射镜的反射的光束沿入射光路返回并入射至偏振分束棱镜,经偏振分束棱镜反射的光束入射至第二光纤耦合器,经第二光纤耦合器耦合后的光束和声光移频器后出射的频率f的1级光均入射至光纤合束器,经光纤合束器整合后的光束入射至探测器,经探测器输出的交变电流信号发送给信号处理系统;
电极驱动电路用于给克尔效应晶体施加电压使其沿指定方向产生双折射效应,所述指定方向与克尔效应晶体入射光偏振方向之间的夹角为45°。
应用上述干涉仪测量玻璃应力的方法,它包括如下步骤:
步骤一:将被测样品放置在所述MEMS扫描式激光外差干涉仪的F-θ透镜与平面反射镜中间;
步骤二:在MEMS振镜扫描的一个周期内,进行如下步骤:
步骤1:通过探测器测得交变电流信号I1
步骤2:驱动电极驱动电路,使克尔效应晶体产生双折射效应的o光和e光相位延迟π/4,然后通过探测器测得交变电流信号I2
步骤三:信号处理系统将步骤1和步骤2获得的两个交变电流信号I1和交变电流信号I2进行处理,得到被测玻璃样品的玻璃应力。
本发明还提供一种MEMS扫描式激光外差干涉仪,它包括激光器、声光移频器、第一光纤耦合器、λ/2波片、偏振分束棱镜、MEMS振镜、F-θ透镜、反射镜、第二光纤耦合器、光纤合束器、探测器、信号处理系统、“克尔”效应晶体和电极驱动电路;
经第一光纤耦合器耦合后的光束入射至λ/2波片,经λ/2波片透射的光束入射至偏振分束棱镜,经偏振分束棱镜透射的光束入射至克尔效应晶体,经克尔效应晶体透射的光束入射至MEMS振镜;
经MEMS振镜反射的光束入射至F-θ透镜,经F-θ透镜的光束入射至平面反射镜,经平面反射镜的反射的光束沿入射光路返回并入射至偏振分束棱镜,经偏振分束棱镜反射的光束入射至第二光纤耦合器,经第二光纤耦合器耦合后的光束和声光移频器后出射的频率f的1级光均入射至光纤合束器,经光纤合束器整合后的光束入射至探测器,经探测器输出的交变电流信号发送给信号处理系统;
电极驱动电路用于给克尔效应晶体施加电压使其沿指定方向产生双折射效应,所述指定方向与克尔效应晶体入射光偏振方向之间的夹角为45°。
电极驱动电路的驱动信号周期与MEMS振镜扫描的周期相同,且电极驱动电路的驱动信号周期内设置半个周期的延迟。
应用上述干涉仪测量玻璃应力的方法,它包括如下步骤:
步骤一:将被测样品放置在所述MEMS扫描式激光外差干涉仪的F-θ透镜与平面反射镜中间;
步骤二:驱动电极驱动电路给克尔效应晶体施加电压信号,通过探测器连续两次测得交变电流信号信号,分别获得I1和I2;所述两次测量的时间间隔大于电极驱动电路的驱动信号的半个周期且小于1个周期;
步骤三:信号处理系统将步骤二获得的两个交变电流信号I1和I2进行处理,得到被测玻璃样品的玻璃应力。
本发明的有益效果为:利用激光外差干涉系统来测量样品的玻璃应力分布时需进行至少两次完整的系统测量。测量某一点的应力信息时,第一次需要获取λ/4波片与其入射光偏振方向的夹角为0°时的测量信号,第二次需要获取λ/4波片与其入射光偏振方向的夹角为45°时的测量信号,最后对这两次获取的信号进行处理就可以获得应力的方向和大小的分布情况。本发明对红外材料的测量具有很好的效果,同时本发明还设置了驱动电极驱动电路和克尔效应晶体控制两次测量时的时间间隔和精度,使测量玻璃应力时便于控制。
附图说明
图1为本发明具体实施方式一所述的MEMS扫描式激光外差干涉仪的光路原理示意图。
图2为本发明具体实施方式二所述的MEMS扫描式激光外差干涉仪的光路原理示意图。
图3为本发明具体实施方式五所述的应用MEMS扫描式激光外差干涉仪测量玻璃应力方法的入射至偏振分束棱镜的椭圆偏振光的夹角θ的示意图,在二维坐标系中直线o表示椭圆偏振光的o光,即玻璃应力主轴光分量,直线e表示椭圆偏振光的e光,即应力主轴垂直方向光分量,y轴表示空间坐标的垂直方向,x轴为空间坐标的水平方向。
图4为本发明具体实施方式五所述的应用MEMS扫描式激光外差干涉仪测量玻璃应力方法的探测器测得的交变电流信号I1的仿真波形图。
图5为本发明具体实施方式五所述的应用MEMS扫描式激光外差干涉仪测量玻璃应力方法的探测器测得的交变电流信号I2的仿真波形图。
图6为本发明具体实施方式五所述的应用MEMS扫描式激光外差干涉仪测量玻璃应力方法的探测器测得的交变电流信号I1和探测器测得的交变电流信号I2的二维关系图。
图7为本发明具体实施方式五所述的应用MEMS扫描式激光外差干涉仪测量玻璃应力方法的探测器测得的交变电流信号I1和探测器测得的交变电流信号I2的时空分布图。
具体实施方式
具体实施方式一:结合图1说明本实施方式,本实施方式所述的MEMS扫描式激光外差干涉仪,它包括激光器1、声光移频器2、第一光纤耦合器3、λ/2波片4、偏振分束棱镜5、λ/4波片6、MEMS振镜7、F-θ透镜8、反射镜9、第二光纤耦合器10、光纤合束器11、探测器12和信号处理系统13;
激光器1发射的光束入射至声光移频器2,经声光移频器2后出射的光分别为频率f的1级光和频率f'的0级光,频率f'的0级光入射至第一光纤耦合器3,
经第一光纤耦合器3耦合后的光束入射至λ/2波片4,经λ/2波片4透射的光束入射至偏振分束棱镜5,经偏振分束棱镜5透射的光束入射至λ/4波片6,经λ/4波片6透射的光束入射至MEMS振镜7;
经MEMS振镜7反射的光束入射至F-θ透镜8,经F-θ透镜8的光束入射至平面反射镜9,经平面反射镜9的反射的光束沿入射光路返回并入射至偏振分束棱镜5,经偏振分束棱镜5反射的光束入射至第二光纤耦合器10,经第二光纤耦合器10耦合后的光束和声光移频器2后出射的频率f的1级光均入射至光纤合束器11,经光纤合束器11整合后的光束入射至探测器12,经探测器12输出的交变电流信号发送给信号处理系统13。
具体实施方式二:结合图2说明本实施方式,本实施方式还提供一种MEMS扫描式激光外差干涉仪,它包括激光器1、声光移频器2、第一光纤耦合器3、λ/2波片4、偏振分束棱镜5、MEMS振镜7、F-θ透镜8、反射镜9、第二光纤耦合器10、光纤合束器11、探测器12、信号处理系统13、克尔效应晶体14和电极驱动电路15;
激光器1发射的光束入射至声光移频器2,经声光移频器2后出射的光分别为频率f的1级光和频率f'的0级光,频率f'的0级光入射至第一光纤耦合器3,
经第一光纤耦合器3耦合后的光束入射至λ/2波片4,经λ/2波片4透射的光束入射至偏振分束棱镜5,经偏振分束棱镜5透射的光束入射至克尔效应晶体14,经克尔效应晶体14透射的光束入射至MEMS振镜7;
经MEMS振镜7反射的光束入射至F-θ透镜8,经F-θ透镜8的光束入射至平面反射镜9,经平面反射镜9的反射的光束沿入射光路返回并入射至偏振分束棱镜5,经偏振分束棱镜5反射的光束入射至第二光纤耦合器10,经第二光纤耦合器10耦合后的光束和声光移频器2后出射的频率f的1级光均入射至光纤合束器11,经光纤合束器11整合后的光束入射至探测器12,经探测器12输出的交变电流信号发送给信号处理系统13;
电极驱动电路15用于给克尔效应晶体施加电压使其沿指定方向产生双折射效应,所述指定方向与克尔效应晶体14入射光偏振方向之间的夹角为45°。
具体实施方式三:本实施方式是对具体实施方式二所述的MEMS扫描式激光外差干涉仪的进一步说明,电极驱动电路15的驱动信号周期与MEMS振镜7扫描的周期相同,且电极驱动电路15的驱动信号周期内设置半个周期的延迟。
具体实施方式四:本实施方式所述的旋转体无线信号传输装置是对具体实施方式一、二和三的进一步说明,所述激光器1发射的激光为红外激光。
具体实施方式五:应用具体实施方式一所述的MEMS扫描式激光外差干涉仪测量玻璃应力的方法,它包括如下步骤:
步骤一:将被测样品放置在所述MEMS扫描式激光外差干涉仪的F-θ透镜8与平面反射镜9中间;
步骤二:在MEMS振镜7扫描的一个周期内,进行如下步骤:
步骤1:调整MEMS扫描式激光外差干涉仪中的λ/4波片6与其入射光偏振方向的夹角为0°,探测器12测得交变电流信号I1
步骤2:调整所述MEMS扫描式激光外差干涉仪中的λ/4波片6与其入射光偏振方向的夹角为45°,探测器12测得交变电流信号I2
步骤三:信号处理系统13将步骤1和步骤2获得的两个交变电流信号I1和I2进行处理,得到被测玻璃样品的玻璃应力。
利用激光外差干涉系统来测量样品的应力分布时需进行至少两次完整的系统测量。测量某一点的应力信息时,第一次需要获取λ/4波片与其入射光偏振方向成0°时的测量信号,第二次需要获取λ/4波片与其入射光偏振方向成45°时的测量信号,最后对这两次获取的信号进行处理就可以获得应力的方向和大小的分布情况。第一次测量时,由于λ/4与光束偏振方向夹角为0°,光束穿过它不改变偏振状态。但是光束穿过样品时,由于样品有应力存在会产生双折射效应,光束在样品测量点的应力主轴的平行和垂直方向的两个分量会产生相位差
Figure BDA00002077906900071
反射回去的时候这个相位差加倍。于是反射回偏振分束棱镜的会是一个椭圆偏振光,,设应力主轴与y轴的夹角为θ,如图3所示,应力主轴是o光方向则偏振分束棱镜的反射光可表示为:
其中A为入射光的振幅;
设1级光的表达式为:
E0=Bcos(ft)
其中B为1级光的振幅;
则探测器得到交变电流信号:
Figure BDA00002077906900073
其中Δf=f′-f;
第二次测量时,由于λ/4与入射光束偏振方向夹角为45°,光束两次穿过它偏振方向旋转了90°。这样我们第二次测得的就是相同的椭圆偏振光的与E1垂直的另一个方向的的分量,两次信号取样间隔小于MEMS扫描步长,保证两次是对同一个样品点的信号采样:
Figure BDA00002077906900074
同样探测器可得到交变电流:
Figure BDA00002077906900075
对交变电流I1和交变电流I2进行处理,得到被测玻璃样品的玻璃应力的方法为本领域技术人员常用方法,信号I1的仿真结果如图4所示,信号I2的仿真结果如图5所示;
它们满足如图6所示的二维和图7所示的时空分布;
对I1和I2进行信号处理,就可以得到
Figure BDA00002077906900081
和θ。
Figure BDA00002077906900082
与应力满足下述关系:
Figure BDA00002077906900083
则应力大小可以表示为:
Figure BDA00002077906900084
其中K为应力光学常数,它是物性常数,仅与玻璃品种有关。Py、Px为样品测量点主轴方向应力大小和垂直方向应力大小,λ为激光波长,L为样品厚度。
具体实施方式六:应用具体实施方式二所述的MEMS扫描式激光外差干涉仪测量玻璃应力的方法,它包括如下步骤:
步骤一:将被测样品放置在所述MEMS扫描式激光外差干涉仪的F-θ透镜8与平面反射镜9中间;
步骤二:在MEMS振镜7扫描的一个周期内,进行如下步骤:
步骤1:通过探测器12测得交变电流信号I1
步骤2:驱动电极驱动电路15,使克尔效应晶体产生双折射效应的o光和e光相位延迟π/4,然后通过探测器12测得交变电流信号I2
步骤三:信号处理系统13将步骤1和步骤2获得的两个交变电流信号I1和交变电流信号I2进行处理,得到被测玻璃样品的玻璃应力。
具体实施方式七:应用具体实施方式三所述的MEMS扫描式激光外差干涉仪测量玻璃应力的方法,它包括如下步骤:
步骤一:将被测样品放置在所述MEMS扫描式激光外差干涉仪的F-θ透镜8与平面反射镜9中间;
步骤二:驱动电极驱动电路15给克尔效应晶体施加电压信号,通过探测器12连续两次测得交变电流信号信号,分别获得I1和I2;所述两次测量的时间间隔大于电极驱动电路15的驱动信号的半个周期且小于1个周期;
步骤三:信号处理系统13将步骤二获得的两个交变电流信号I1和I2进行处理,得到被测玻璃样品的玻璃应力。
玻璃应力的测量过程中,现有装置一直依靠人为或者机械旋转偏振片来进行椭圆光的检测,控制困难,检测精度不高,本实施方式通过设置驱动电极驱动电路15的驱动信号周期,MEMS扫描式激光外差干涉仪自动测量MEMS扫描式激光外差干涉仪中的λ/4波片6调整为与七入射光夹角为90°和MEMS扫描式激光外差干涉仪中的λ/4波片6调整为七入射光夹角为45°的两组信号,易于控制同时也提高了测量精度。
测量两组数据的关键是λ/4波片的偏转角度的解决,我们设计用一个能产生克尔效应的晶体来代替它,克尔晶体的45°方向加电极,不通电时没有双折射效应,相当于它在0°工作,通电后产生双折射效应,并且使双折射两路光的相位差为π/4,即为成45°的λ/4波片。电极驱动信号与MEMS振镜7的扫描周期保持一致,但又有半周期的延迟,这样保证每扫到一个点可以取到0°和45°的两组信号。

Claims (7)

1.MEMS扫描式激光外差干涉仪,其特征在于,它包括激光器(1)、声光移频器(2)、第一光纤耦合器(3)、λ/2波片(4)、偏振分束棱镜(5)、偏λ/4波片(6)、MEMS振镜(7)、F-θ透镜(8)、反射镜(9)、第二光纤耦合器(10)、光纤合束器(11)、探测器(12)和信号处理系统(13);
激光器(1)发射的光束入射至声光移频器(2),经声光移频器(2)后出射的光分别为频率f的1级光和频率f'的0级光,频率f'的0级光入射至第一光纤耦合器(3),
经第一光纤耦合器(3)耦合后的光束入射至λ/2波片(4),经λ/2波片(4)透射的光束入射至偏振分束棱镜(5),经偏振分束棱镜(5)透射的光束入射至偏λ/4波片(6),经偏λ/4波片(6)透射的光束入射至MEMS振镜(7);
经MEMS振镜(7)反射的光束入射至F-θ透镜(8),经F-θ透镜(8)的光束入射至平面反射镜(9),经平面反射镜(9)的反射的光束沿入射光路返回并入射至偏振分束棱镜(5),经偏振分束棱镜(5)反射的光束入射至第二光纤耦合器(10),经第二光纤耦合器(10)耦合后的光束和声光移频器(2)后出射的频率f的1级光均入射至光纤合束器(11),经光纤合束器(11)整合后的光束入射至探测器(12),经探测器(12)输出的交变电流信号发送给信号处理系统(13)。
2.MEMS扫描式激光外差干涉仪,其特征在于,它包括激光器(1)、声光移频器(2)、第一光纤耦合器(3)、λ/2波片(4)、偏振分束棱镜(5)、MEMS振镜(7)、F-θ透镜(8)、反射镜(9)、第二光纤耦合器(10)、光纤合束器(11)、探测器(12)、信号处理系统(13)、克尔效应晶体(14)和电极驱动电路(15);
激光器(1)发射的光束入射至声光移频器(2),经声光移频器(2)后出射的光分别为频率f的1级光和频率f'的0级光,频率f'的0级光入射至第一光纤耦合器(3),
经第一光纤耦合器(3)耦合后的光束入射至λ/2波片(4),经λ/2波片(4)透射的光束入射至偏振分束棱镜(5),经偏振分束棱镜(5)透射的光束入射至克尔效应晶体(14),经克尔效应晶体(14)透射的光束入射至MEMS振镜(7);
经MEMS振镜(7)反射的光束入射至F-θ透镜(8),经F-θ透镜(8)的光束入射至平面反射镜(9),经平面反射镜(9)的反射的光束沿入射光路返回并入射至偏振分束棱镜(5),经偏振分束棱镜(5)反射的光束入射至第二光纤耦合器(10),经第二光纤耦合器(10)耦合后的光束和声光移频器(2)后出射的频率f的1级光均入射至光纤合束器(11),经光纤合束器(11)整合后的光束入射至探测器(12),经探测器(12)输出的交变电流信号发送给信号处理系统(13);
电极驱动电路(15)用于给克尔效应晶体施加电压使其沿指定方向产生双折射效应,所述指定方向与克尔效应晶体(14)入射光偏振方向之间的夹角为45°。
3.根据权利要求2所述的MEMS扫描式激光外差干涉仪,其特征在于,电极驱动电路(15)的驱动信号周期与MEMS振镜(7)扫描的周期相同,且电极驱动电路(15)的驱动信号周期内设置半个周期的延迟。
4.根据权利要求1或2所述的MEMS扫描式激光外差干涉仪,其特征在于,所述激光器(1)发射的激光为红外激光。
5.应用权利要求1所述的MEMS扫描式激光外差干涉仪测量玻璃应力的方法,其特征在于,它包括如下步骤:
步骤一:将被测样品放置在所述MEMS扫描式激光外差干涉仪的F-θ透镜(8)与平面反射镜(9)中间;
步骤二:在MEMS振镜(7)扫描的一个周期内,进行如下步骤:
步骤1:调整MEMS扫描式激光外差干涉仪中的偏λ/4波片(6)与其入射光的偏振方向的夹角为0°,探测器(12)测得交变电流信号I1
步骤2:调整所述MEMS扫描式激光外差干涉仪中的偏λ/4波片(6)与其入射光的偏振方向的夹角为45°,探测器(12)测得交变电流信号I2
步骤三:信号处理系统(13)将步骤1和步骤2获得的两个交变电流信号I1和I2进行处理,得到被测玻璃样品的玻璃应力。
6.应用权利要求2所述的MEMS扫描式激光外差干涉仪测量玻璃应力的方法,其特征在于,它包括如下步骤:
步骤一:将被测样品放置在所述MEMS扫描式激光外差干涉仪的F-θ透镜(8)与平面反射镜(9)中间;
步骤二:在MEMS振镜(7)扫描的一个周期内,进行如下步骤:
步骤1:通过探测器(12)测得交变电流信号I1
步骤2:驱动电极驱动电路(15),使克尔效应晶体产生双折射效应的o光和e光相位延迟π/4,然后通过探测器(12)测得交变电流信号I2
步骤三:信号处理系统(13)将步骤1和步骤2获得的两个交变电流信号I1和交变电流信号I2进行处理,得到被测玻璃样品的玻璃应力。
7.应用权利要求3所述的MEMS扫描式激光外差干涉仪测量玻璃应力的方法,其特征在于,它包括如下步骤:
步骤一:将被测样品放置在所述MEMS扫描式激光外差干涉仪的F-θ透镜(8)与平面反射镜(9)中间;
步骤二:驱动电极驱动电路(15)给克尔效应晶体施加电压信号,通过探测器(12)连续两次测得交变电流信号信号,分别获得I1和I2;所述两次测量的时间间隔大于电极驱动电路(15)的驱动信号的半个周期且小于1个周期;
步骤三:信号处理系统(13)将步骤二获得的两个交变电流信号I1和I2进行处理,得到被测玻璃样品的玻璃应力。
CN201210315020.9A 2012-08-30 2012-08-30 Mems扫描式激光外差干涉仪及其测量玻璃应力的方法 Expired - Fee Related CN102829903B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210315020.9A CN102829903B (zh) 2012-08-30 2012-08-30 Mems扫描式激光外差干涉仪及其测量玻璃应力的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210315020.9A CN102829903B (zh) 2012-08-30 2012-08-30 Mems扫描式激光外差干涉仪及其测量玻璃应力的方法

Publications (2)

Publication Number Publication Date
CN102829903A true CN102829903A (zh) 2012-12-19
CN102829903B CN102829903B (zh) 2014-05-07

Family

ID=47333117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210315020.9A Expired - Fee Related CN102829903B (zh) 2012-08-30 2012-08-30 Mems扫描式激光外差干涉仪及其测量玻璃应力的方法

Country Status (1)

Country Link
CN (1) CN102829903B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278087A (zh) * 2013-05-10 2013-09-04 北京空间机电研究所 MEMS扫描2μm激光外差干涉仪光学系统及其装调方法
CN104296676A (zh) * 2014-09-29 2015-01-21 中国科学院光电研究院 基于低频差声光移频器移相的外差点衍射干涉仪
CN104296905A (zh) * 2014-11-04 2015-01-21 苏州精创光学仪器有限公司 偏光仪测定玻璃内应力装置
CN104359862A (zh) * 2014-11-06 2015-02-18 佛山市南海区欧谱曼迪科技有限责任公司 一种基于光外差干涉术的共聚焦扫描显微成像方法及系统
CN104374501A (zh) * 2014-11-07 2015-02-25 西安科技大学 一种基于光干涉法测玻璃体应力的测量方法
CN105043612A (zh) * 2015-07-13 2015-11-11 清华大学 一种光学材料应力测量系统
CN109764993A (zh) * 2019-01-29 2019-05-17 华侨大学 基于双旋转补偿器型穆勒矩阵椭偏仪的残余应力测量方法
CN110836740A (zh) * 2019-11-05 2020-02-25 南京理工大学 一种玻璃材料应力的在线实时测量系统及其测量方法
CN113167720A (zh) * 2018-10-31 2021-07-23 康宁股份有限公司 使用光散射偏振测定来表征玻璃基样品的光学阻滞
CN115047638A (zh) * 2022-06-10 2022-09-13 北京空间机电研究所 一种无机械活动部件的激光双视向扫描组件系统
CN116295984A (zh) * 2023-03-15 2023-06-23 中国科学院力学研究所 一种平面钢化玻璃内应力分布的无损检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1193523A2 (en) * 2000-09-28 2002-04-03 Xerox Corporation Micro-electro-mechanical mirror structure
JP2009047528A (ja) * 2007-08-20 2009-03-05 Fujitsu Ltd 表面形状または表面の傾きを含む計測方法および計測装置
CN101592537A (zh) * 2009-07-10 2009-12-02 成都光明光电股份有限公司 光学玻璃应力测量装置及其测量方法
CN101915542A (zh) * 2010-08-05 2010-12-15 哈尔滨工业大学 一种应用于激光外差干涉仪的基于双轴MEMS反射振镜和F-Theta透镜的线性扫描系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1193523A2 (en) * 2000-09-28 2002-04-03 Xerox Corporation Micro-electro-mechanical mirror structure
JP2009047528A (ja) * 2007-08-20 2009-03-05 Fujitsu Ltd 表面形状または表面の傾きを含む計測方法および計測装置
CN101592537A (zh) * 2009-07-10 2009-12-02 成都光明光电股份有限公司 光学玻璃应力测量装置及其测量方法
CN101915542A (zh) * 2010-08-05 2010-12-15 哈尔滨工业大学 一种应用于激光外差干涉仪的基于双轴MEMS反射振镜和F-Theta透镜的线性扫描系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
夏雪松: "1.55微米激光MEMS扫描外差干涉仪研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》, 15 May 2011 (2011-05-15), pages 1 - 46 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278087A (zh) * 2013-05-10 2013-09-04 北京空间机电研究所 MEMS扫描2μm激光外差干涉仪光学系统及其装调方法
CN103278087B (zh) * 2013-05-10 2016-01-13 北京空间机电研究所 MEMS扫描2μm激光外差干涉仪光学系统的装调方法
CN104296676A (zh) * 2014-09-29 2015-01-21 中国科学院光电研究院 基于低频差声光移频器移相的外差点衍射干涉仪
CN104296676B (zh) * 2014-09-29 2017-04-26 中国科学院光电研究院 基于低频差声光移频器移相的外差点衍射干涉仪
CN104296905A (zh) * 2014-11-04 2015-01-21 苏州精创光学仪器有限公司 偏光仪测定玻璃内应力装置
CN104359862B (zh) * 2014-11-06 2017-02-01 佛山市南海区欧谱曼迪科技有限责任公司 一种基于光外差干涉术的共聚焦扫描显微成像方法及系统
CN104359862A (zh) * 2014-11-06 2015-02-18 佛山市南海区欧谱曼迪科技有限责任公司 一种基于光外差干涉术的共聚焦扫描显微成像方法及系统
CN104374501A (zh) * 2014-11-07 2015-02-25 西安科技大学 一种基于光干涉法测玻璃体应力的测量方法
CN104374501B (zh) * 2014-11-07 2016-09-28 西安科技大学 一种基于光干涉法测玻璃体应力的测量方法
CN105043612A (zh) * 2015-07-13 2015-11-11 清华大学 一种光学材料应力测量系统
CN113167720A (zh) * 2018-10-31 2021-07-23 康宁股份有限公司 使用光散射偏振测定来表征玻璃基样品的光学阻滞
CN109764993A (zh) * 2019-01-29 2019-05-17 华侨大学 基于双旋转补偿器型穆勒矩阵椭偏仪的残余应力测量方法
CN110836740A (zh) * 2019-11-05 2020-02-25 南京理工大学 一种玻璃材料应力的在线实时测量系统及其测量方法
CN115047638A (zh) * 2022-06-10 2022-09-13 北京空间机电研究所 一种无机械活动部件的激光双视向扫描组件系统
CN116295984A (zh) * 2023-03-15 2023-06-23 中国科学院力学研究所 一种平面钢化玻璃内应力分布的无损检测方法
CN116295984B (zh) * 2023-03-15 2023-12-19 中国科学院力学研究所 一种平面钢化玻璃内应力分布的无损检测方法

Also Published As

Publication number Publication date
CN102829903B (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
CN102829903B (zh) Mems扫描式激光外差干涉仪及其测量玻璃应力的方法
WO2019210734A1 (zh) 一种基于平面镜反射的激光外差干涉测量装置和方法
CN102109414A (zh) 利用外差干涉标定空间光调制器相位调制的方法和装置
CN104165582A (zh) 一种基于反射光栅的相移点衍射干涉检测装置及检测方法
JP2013117533A (ja) 3d表面形状測定と組み合わされた位相ステッピングシェアログラフィーのための低コヒーレント干渉計システム
CN102022977A (zh) 双轴mems扫描的外差干涉系统及方法
CN203745385U (zh) 激光超声光学干涉检测装置
CN110174054A (zh) 一种高稳定性四光程激光干涉测量系统
CN110057543A (zh) 基于同轴干涉的波面测量装置
CN101319873B (zh) 用于同步移相干涉仪的空间移相器
WO2013013345A1 (zh) 六轴4细分干涉仪
CN102865810B (zh) 基于正交双光栅的同步相移共光路干涉检测装置及检测方法
CN105043612B (zh) 一种光学材料应力测量系统
CN204177342U (zh) 一种基于反射光栅的相移点衍射干涉检测装置
CN107036527B (zh) 同步测量绝对寻址距离与偏摆角度的光学系统与方法
CN102269582B (zh) 一种空间三维角度测量装置
Bowe et al. Dual in-plane electronic speckle pattern interferometry system with electro-optical switching and phase shifting
CN201212838Y (zh) 用于同步移相干涉仪的空间移相器
Liu et al. Simultaneous measurement of small birefringence magnitude and direction in real time
WO2020248451A1 (zh) 检测bgo晶体的残余双折射的装置和方法
US6804009B2 (en) Wollaston prism phase-stepping point diffraction interferometer and method
CN102840823B (zh) 基于分光同步相移的共光路干涉检测装置及检测方法
CN102878922B (zh) 基于分光棱镜的三窗口共光路干涉检测装置及检测方法
CN110132169A (zh) 一种基于同轴干涉的波面测量系统和方法
Zhang Development of Digital Shearography for Complex Defects Inspection

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140507

Termination date: 20140830

EXPY Termination of patent right or utility model