CN101915542A - 一种应用于激光外差干涉仪的基于双轴MEMS反射振镜和F-Theta透镜的线性扫描系统 - Google Patents

一种应用于激光外差干涉仪的基于双轴MEMS反射振镜和F-Theta透镜的线性扫描系统 Download PDF

Info

Publication number
CN101915542A
CN101915542A CN2010102460410A CN201010246041A CN101915542A CN 101915542 A CN101915542 A CN 101915542A CN 2010102460410 A CN2010102460410 A CN 2010102460410A CN 201010246041 A CN201010246041 A CN 201010246041A CN 101915542 A CN101915542 A CN 101915542A
Authority
CN
China
Prior art keywords
biaxial mems
theta lens
mems reflective
galvanometer
reflective galvanometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010102460410A
Other languages
English (en)
Other versions
CN101915542B (zh
Inventor
王春晖
高龙
李彦超
丛海芳
曲杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN2010102460410A priority Critical patent/CN101915542B/zh
Publication of CN101915542A publication Critical patent/CN101915542A/zh
Application granted granted Critical
Publication of CN101915542B publication Critical patent/CN101915542B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

一种应用于激光外差干涉仪的基于双轴MEMS反射振镜和F-Theta透镜的线性扫描系统,它涉及一种利用光学透镜的扫描系统。它解决了现有的光学扫描系统适用波长单一且无法实现线性匀速扫描的问题,本发明包括2μm激光器、偏振分束棱镜、1/4波片、双轴MEMS反射振镜、三片式F-Theta透镜组、高反射镜和光电探测器,所述双轴MEMS反射振镜位于所述三片式F-Theta透镜组的系统焦距处。本发明适用于激光外差干涉仪的扫描系统。

Description

一种应用于激光外差干涉仪的基于双轴MEMS反射振镜和F-Theta透镜的线性扫描系统
技术领域
本发明涉及一种利用光学透镜的扫描系统,具体涉及一种应用于激光外差干涉仪的基于双轴MEMS反射振镜和F-Theta透镜的线性扫描系统。
背景技术
激光外差干涉仪以其测量精度高、速度快、对待测样品无损害、灵敏度高等优点,在半导体硅片检测,光学玻璃生产监测,超光滑表面检测过程越来越受到广泛的应用。然而,传统的激光外差干涉仪中的对待测样品的扫描测量是通过样品的运动来达到扫描的目的,这种扫描方式简单且易实现,但在精度上不能满足要求。相比之下,快速光扫描技术就显得优势明显。
光扫描技术是上世纪70年代中期以后出现的一种动态测试技术,它主要利用白光或激光形成对被测对象的扫描运动,配合光电器件,电子技术与计算机,构成各种精密测试方法,这种技术适合于精密测试方法。目前,从高精度的自动定位,面型检测,三维尺寸计量,表面瑕疵检查一直到超级市场的自动收货都已经应用了光扫描技术。自从MEMS振镜问世以来,就受到广大科研人员的青睐。它具有振动精度高,体积小,成本低,振动频率高等特点。目前世界上比较著名的几家公司,比如MARADIN, HIPERSCAN, FRAUHOFER等公司研发生产的MEMS振镜,可以实现在空间的1维和2维扫描,其在空间的扫描角度可以达到200。虽然MEMS振镜具有上述多种优点,但是MEMS的振动原理是通过对相应的转轴施加驱动信号,使得在相应的轴上产生不同的扭矩,从而达到在空间振动的目的。这种振动原理使空间扫描角度和时间是一种正弦形式的关系,给线性匀速的扫描的方式带来一定的困难。
目前在国内外市场上,F-Theta透镜已经取得了广泛的应用,如激光扫描系统,激光打标,刻印,光学精细加工,激光防伪和生物扫描仪等精密设备中常采用F-Theta透镜实现扫描功能。然而,以上这些应用仅仅局限在光束的单方向传播上。换句话说,光束只是一个方向从F-Theta透镜出射,在空间的像平面上扫描出一系列光斑。另外,F-Theta透镜所采用的光源都是针对于可见光波段来实现研究和生产的。第三,目前的F-Theta扫描透镜仅仅考虑光束在像平面上的扫描成像质量,对于扫描光束的方向性问题并没有过多考虑。
总之,现有的MEMS振镜的空间扫描角度和扫描时间是非线性的关系。而F-Theta扫描透镜具有以下三个方面的不足,一,扫描透镜的适用波长单一,停留在可见光波段。二,扫描光束单方向传播扫描。三,扫描光束和成像面不垂直。以上这些问题给应用在近红外外差干涉仪中的混合光学扫描带来很大的困难。
发明内容
为了解决现有的光学扫描系统适用波长单一且无法实现线性匀速扫描的问题,本发明提供一种应用于激光外差干涉仪的基于双轴MEMS反射振镜和F-Theta透镜的线性扫描系统。
本发明的一种应用于激光外差干涉仪的基于双轴MEMS反射振镜和F-Theta透镜的线性扫描系统,所述扫描系统包括                                                
Figure 2010102460410100002DEST_PATH_IMAGE001
激光器、偏振分束棱镜、1/4波片、双轴MEMS反射振镜、三片式F-Theta透镜组、高反射镜和光电探测器,所述高反射镜的反射率为96%~100%,所述双轴MEMS反射振镜位于所述三片式F-Theta透镜组的系统焦距处,
所述激光器输出波长为
Figure 629814DEST_PATH_IMAGE001
的线偏振光至偏振分束棱镜的一个信号接收端,所述偏振分束棱镜将所接受的线偏振光透过输出,所述经偏振分束棱镜透过输出的线偏振光通过1/4波片变换为圆偏振光后输入至双轴MEMS反射振镜的有效反射单元,所述双轴MEMS反射振镜将输入的圆偏振光反射输出至三片式F-Theta透镜组的信号通讯端面,所述三片式F-Theta透镜组输出圆偏振平行光至待扫描物体,经所述待扫描物体透射的圆偏振平行光输入至高反射镜的反射端面,所述高反射镜将输入的圆偏振平行光反射输出偏振方向旋转90°的圆偏振平行光,所述偏振方向旋转90°的圆偏振平行光按原光路返回至双轴MEMS反射振镜的有效反射单元,经所述双轴MEMS反射振镜反射回的偏振方向旋转90°的反射圆偏振光通过1/4波片后输出偏振方向旋转90°的反射线偏振光至线偏振分束棱镜,所述偏振方向旋转90°的反射线偏振光经所述偏振分束棱镜反射输入至光电探测器的信号接收端。
本发明的有益效果为:本发明提供了一种近红外波段(
Figure 471868DEST_PATH_IMAGE001
)的线性扫描系统,该线性扫描系统利用MEMS振镜和F-theta透镜相结合的方式实现了对待扫描物体的线性均匀扫描,可以被应用在近红外外差干涉仪系统当中作为扫描系统;本发明的线性扫描系统适用波长从传统的可见光波段拓宽到了红外波段;本发明的线性扫描系统采用双轴MEMS反射振镜可以缩小应用线性扫描系统的整个外差干涉仪系统的结构;本发明中的三片式F-Theta透镜组的扫描光束和待扫描物体完全平行,弥补了传统的F-Theta透镜的不足,提高了测量待扫描物体的横向分辨率精度。
附图说明
 图1是本发明的一种应用于激光外差干涉仪的基于双轴MEMS反射振镜和F-Theta透镜的线性扫描系统的结构示意图;图2是现有的双轴MEMS反射振镜的原理示意图;图3 是本发明中具体实施方式七中双轴MEMS反射振镜4的方波驱动信号和空间扫描角度的关系曲线示意图,其中,曲线I表示双轴MEMS反射振镜4的方波驱动信号,曲线II表示双轴MEMS反射振镜4的空间扫描角度的振动轨迹;图4是图3中方波驱动信号的驱动频率和空间扫描角度的关系曲线示意图;图5 是本发明中材料为BK7的透镜的光学透射曲线示意图;图6是本发明中材料为SF11的透镜的光学透射曲线示意图;图7是本发明中三片式 F-theta透镜组5的结构示意图;图8是本发明中三片式 F-Theta透镜组5中第一透镜5-1的尺寸示意图;图9 是本发明中三片式F-Theta透镜组5中第二的尺寸5-2的尺寸示意图;图10是本发明中三片式 F-Theta透镜组5中第三透镜5-3的尺寸示意图;图11 是本发明中三片式F-Theta透镜组5的系统场曲随视场的变化示意图;图12是本发明中三片式F-Theta透镜组5的系统畸变随视场的变化示意图;图13 是本发明中三片式F-Theta透镜组5在视场角为0度时在待扫描物体U上的点阵分布示意图;图14是本发明中三片式F-Theta透镜组5在视场角为-5度时在待扫描物体U上的点阵分布示意图;图15是本发明中三片式F-Theta透镜组5在视场角为-10度时在待扫描物体U上的点阵分布示意图;图16是本发明中三片式F-Theta透镜组5在视场角为-15度时在待扫描物体U上的点阵分布示意图;图17是本发明中三片式F-Theta透镜组5在视场角为-17度时在待扫描物体U上的点阵分布示意图;图18是本发明中三片式F-Theta透镜组5在视场角为-20度时在待扫描物体U上的点阵分布示意图;图19是本发明中三片式F-Theta透镜组5在视场角为20度时在待扫描物体U上的点阵分布示意图;图20是本发明中三片式F-Theta透镜组5在视场角为17度时在待扫描物体U上的点阵分布示意图;图21是本发明中三片式F-Theta透镜组5在视场角为15度时在待扫描物体U上的点阵分布示意图;图22是本发明中三片式F-Theta透镜组5在视场角为10度时在待扫描物体U上的点阵分布示意图;图23是本发明中三片式F-Theta透镜组5在视场角为5度时在待扫描物体U上的点阵分布示意图。
具体实施方式
具体实施方式一:根据说明书附图1和2具体说明本实施方式,本实施方式所述的一种应用于激光外差干涉仪的基于双轴MEMS反射振镜和F-Theta透镜的线性扫描系统,所述扫描系统包括
Figure 991711DEST_PATH_IMAGE001
激光器1、偏振分束棱镜2、1/4波片3、双轴MEMS反射振镜4、三片式F-Theta透镜组5、高反射镜6和光电探测器7,所述高反射镜6的反射率为96%~100%,所述双轴MEMS反射振镜4位于所述三片式F-Theta透镜组5的系统焦距处,
所述
Figure 868400DEST_PATH_IMAGE001
激光器1输出波长为
Figure 815496DEST_PATH_IMAGE001
的线偏振光至偏振分束棱镜2的一个信号接收端,所述偏振分束棱镜2将所接受的线偏振光透过输出,所述经偏振分束棱镜2透过输出的线偏振光通过1/4波片3变换为圆偏振光后输入至双轴MEMS反射振镜4的有效反射单元,所述双轴MEMS反射振镜4将输入的圆偏振光反射输出至三片式F-Theta透镜组5的信号通讯端面,所述三片式F-Theta透镜组5输出圆偏振平行光至待扫描物体U,经所述待扫描物体U透射的圆偏振平行光输入至高反射镜6的反射端面,所述高反射镜6将输入的圆偏振平行光反射输出偏振方向旋转90°的圆偏振平行光,所述偏振方向旋转90°的圆偏振平行光按原光路返回至双轴MEMS反射振镜4的有效反射单元,经所述双轴MEMS反射振镜4反射回的偏振方向旋转90°的反射圆偏振光通过1/4波片3后输出偏振方向旋转90°的反射线偏振光至线偏振分束棱镜2,所述偏振方向旋转90°的反射线偏振光经所述偏振分束棱镜2反射输入至光电探测器7的信号接收端。
具体实施方式二:本实施方式是对具体实施方式一的进一步说明,具体实施方式一中
Figure 144846DEST_PATH_IMAGE001
激光器1输出的波长为
Figure 406064DEST_PATH_IMAGE001
的线偏振光的激光束直径为
Figure 2010102460410100002DEST_PATH_IMAGE002
,双轴MEMS反射振镜4的有效反射单元的面积为
具体实施方式三:根据说明书附图7具体说明本实施方式,本实施方式是对具体实施方式一或二的进一步说明,具体实施方式一或二所述线性扫描系统中,三片式F-Theta透镜组5由共轴排列的三片透镜组合而成,所述三片透镜依次为:材料为SF11的第一透镜5-1、材料为SF11的第二透镜5-2和材料为BK7的第三透镜5-3,所述三片式F-Theta透镜组5的系统焦距为430mm,其筒长为280mm,其前工作距离为242.24mm,其后工作距离为328.50mm,所述前工作距离为双轴MEMS反射振镜4的有效反射单元与材料为SF11的第一透镜5-1之间的距离,所述后工作距离为材料为BK7的第三透镜5-3与待扫描物体U之间的距离。
具体实施方式四:根据说明书附图8、9和10具体说明本实施方式,本实施方式是对具体实施方式一、二或三的进一步说明,具体实施方式一、二或三的三片式F-Theta透镜组5中三个透镜的具体参数为:
具体实施方式五:本实施方式是对具体实施方式一至四中任意一个实施方式的进一步说明,具体实施方式一至四中双轴MEMS反射振镜4在驱动信号下工作,通过调节所述双轴MEMS反射振镜4的慢轴和快轴的相应驱动信号的驱动频率调整所述双轴MEMS反射振镜4的最大空间扫描角度。
具体实施方式六:本实施方式是对具体实施方式五的进一步说明,具体实施方式五中慢轴的驱动信号为方波驱动信号,其驱动频率为2527Hz,与所述驱动频率相应的慢轴的最大空间扫描角度为30°;快轴的驱动信号为方波驱动信号,其驱动频率为41580Hz,与所述驱动频率相应的快轴的最大空间扫描角度为40°。
具体实施方式七:本实施方式是对具体实施方式五的进一步说明,具体实施方式五中慢轴的驱动信号为方波驱动信号,其驱动频率为2600Hz,与所述驱动频率相应的慢轴的最大空间扫描角度为40°;快轴的驱动信号为方波驱动信号,其驱动频率为2527Hz,与所述驱动频率相应的快轴的最大空间扫描角度为50°。
具体实施方式八:本实施方式与具体实施方式一至七中任意一个实施方式的不同之处在于高反射镜6的反射率为98%。
本实施方式中,通过施加给双轴MEMS反射振镜的两个轴的驱动信号,这样从双轴MEMS反射振镜4反射出的光束在空间就形成了一个空间点阵分布。
现有的双轴MEMS反射振镜4的原理如图2所示,本实施方式中,通过给双轴MEMS反射振镜4施加方波驱动信号,方波驱动信号和空间扫描角度的关系如图3所示,空间扫描角度是以正弦形式
Figure 2010102460410100002DEST_PATH_IMAGE004
振动,式中
Figure 2010102460410100002DEST_PATH_IMAGE005
代表的是在固定驱动频率的驱动信号下,双轴MEMS反射振镜4的空间扫描角度和时间的关系,代表的是方波驱动信号的驱动频率,
Figure 2010102460410100002DEST_PATH_IMAGE007
是在给定方波驱动信号的驱动频率情况下,双轴MEMS反射振镜4在空间的最大空间扫描角度。双轴MEMS反射振镜4在空间的两个轴上所对应的不同驱动频率和空间扫描角度的关系曲线如图4所示,方波驱动信号的驱动频率和空间扫描角度成反指数形式变化。可以看出,当给快轴施加的驱动信号的驱动频率等于2527Hz,所对应的最大空间扫描角度等于40度,当给慢轴施加的方波驱动信号的驱动频率等于2600Hz,所对应的最大空间扫描角度等于50度。
BK7材料对于可见光和近红外波段的透射系数曲线如图5所示,SF11材料对于可见光和近红外波段的透射系数曲线如图6所示。由于本扫描系统所用的波长为2μm,由图5和图6可以看出,这两种材料在2μm波段附近的透过率分别是85%和92%,完全满足对于波长的要求。
本实施方式中,在选择三片式F-Theta透镜组5具体参数前,进行了前期设计,在前期设计三片式F-Theta透镜组5的过程中,引入了桶形畸变,使得像高满足
Figure 2010102460410100002DEST_PATH_IMAGE008
,对该式中的振动角度求导,得出,该式已经满足了“当双轴MEMS反射振镜4的两个轴同时振动时,扫描光束在待扫描物体上是匀速运动的”要求。然后再对
Figure 2010102460410100002DEST_PATH_IMAGE010
的时间变量求导,其中
Figure 2010102460410100002DEST_PATH_IMAGE011
,得出
Figure 2010102460410100002DEST_PATH_IMAGE012
,式中
Figure 2010102460410100002DEST_PATH_IMAGE013
代表的是三片式F-Theta透镜组5的系统焦距,
Figure 2010102460410100002DEST_PATH_IMAGE014
代表的是施加给双轴MEMS反射振镜4的驱动信号的驱动频率。由上述求导公式可以看出,在待扫描物体上的像高随时间变化是一个余弦的形式,因此在采用ZEMAX软件设计三片式F-Theta透镜组5的过程中,我们采用添加优化函数的方法来达到像高随时间的变化是一个常数,而不是上述按余弦形式变化。
具体设计优化的过程为:对于扫描光束和带扫描物体垂直,我们是通过添加RAIN操作数来保证从三片式F-Theta透镜组5出射的扫描光束和待扫描物体尽量垂直。RAIN指的是实际光线和指定表面的法线的夹角,因此在优化时保证此操作数的目标值为0。第二建立三片式F-Theta透镜组5发光源的视场角度函数,这里的视场角度函数对应于双轴MEMS反射振镜4的空间扫描角度随扫描时间的函数关系,这里我们所选择的操作数是RAIN和SINE,SINE的含义是对所应用的操作数取正弦。我们的目的是在归一化视场里建立振镜的扫描角度函数,然后再针对于像平面添加操作数REAZ,该操作数代表的是实际光线在指定面上的像高,建立这个操作数和上述建立振镜扫描角度函数的操作数是一一对应的。最后要添加的操作数是DISC,这个操作数表示的是归一化畸变参数,它是对整个可见视场计算标准化畸变,得到对于F-Theta条件下的最大非线形度值的绝对值,该操作数对于F-Theta镜头的设计十分有用。DISC也是对归一化视场里面的每一个值的目标值都是以0为目标值优化的,图11和图12表示了三片式F-Theta透镜组5得系统像差曲线分布。可以看出系统的最大畸变像差小于0.5%,这符合对于三片式F-Theta透镜组5的系统要求。为了使优化结果更加合理,默认的优化函数里还有关于待扫描物体上的点阵光斑大小的优化,如图13所示,由图13-图23可以看出,在各个角度的视场内所成的点阵光斑都在艾利斑以内。
本实施方式为近红外外差干涉仪系统提供了一套基于MEMS振镜和F-Theta透镜相混合的光学扫描系统。该光学扫描系统可以对空间直径为300mm的样品进行匀速均匀性的扫描,有效的把MEMS振镜和F-Theta透镜组相结合,MEMS振镜在空间的二维空间扫描角度为40度。F-Theta透镜组的最大特点是把使用波长从可见光波段扩展到近红外波段,近红外波段具有人眼安全性,这点对于装调操作是非常有吸引力的。另外,F-Theta透镜的扫描光束和成像面完全平行,弥补了传统的F-Theta透镜的不足,设计的系统畸变参数在0.5%以内,满足了一般的F-Theta透镜组对畸变参数的要求。该混合式扫描系统可以为近红外外差干涉仪系统的高精度测量带来广泛的应用前景。

Claims (8)

1.一种应用于激光外差干涉仪的基于双轴MEMS反射振镜和F-Theta透镜的线性扫描系统,其特征在于所述扫描系统包括                                                激光器(1)、偏振分束棱镜(2)、1/4波片(3)、双轴MEMS反射振镜(4)、三片式F-Theta透镜组(5)、高反射镜(6)和光电探测器(7),所述高反射镜(6)的反射率为96%~100%,所述双轴MEMS反射振镜(4)位于所述三片式F-Theta透镜组(5)的系统焦距处,
所述
Figure 319561DEST_PATH_IMAGE001
激光器(1)输出波长为
Figure 202066DEST_PATH_IMAGE001
的线偏振光至偏振分束棱镜(2)的一个信号接收端,所述偏振分束棱镜(2)将所接受的线偏振光透过输出,所述经偏振分束棱镜(2)透过输出的线偏振光通过1/4波片(3)变换为圆偏振光后输入至双轴MEMS反射振镜(4)的有效反射单元,所述双轴MEMS反射振镜(4)将输入的圆偏振光反射输出至三片式F-Theta透镜组(5)的信号通讯端面,所述三片式F-Theta透镜组(5)输出圆偏振平行光至待扫描物体(U),经所述待扫描物体(U)透射的圆偏振平行光输入至高反射镜(6)的反射端面,所述高反射镜(6)将输入的圆偏振平行光反射输出偏振方向旋转90°的圆偏振平行光,所述偏振方向旋转90°的圆偏振平行光按原光路返回至双轴MEMS反射振镜(4)的有效反射单元,经所述双轴MEMS反射振镜(4)反射回的偏振方向旋转90°的反射圆偏振光通过1/4波片(3)后输出偏振方向旋转90°的反射线偏振光至线偏振分束棱镜(2),所述偏振方向旋转90°的反射线偏振光经所述偏振分束棱镜(2)反射输入至光电探测器(7)的信号接收端。
2.根据权利要求1所述的一种应用于激光外差干涉仪的基于双轴MEMS反射振镜和F-Theta透镜的线性扫描系统,其特征在于
Figure 616867DEST_PATH_IMAGE001
激光器(1)输出的波长为
Figure 369535DEST_PATH_IMAGE001
的线偏振光的激光束直径为
Figure 869786DEST_PATH_IMAGE002
,双轴MEMS反射振镜(4)的有效反射单元的面积为
3.根据权利要求2所述的一种应用于激光外差干涉仪的基于双轴MEMS反射振镜和F-Theta透镜的线性扫描系统,其特征在于所述线性扫描系统中,三片式F-Theta透镜组(5)由共轴排列的三片透镜组合而成,所述三片透镜依次为:材料为SF11的第一透镜(5-1)、材料为SF11的第二透镜(5-2)和材料为BK7的第三透镜(5-3),所述三片式F-Theta透镜组(5)的系统焦距为430mm,其筒长为280mm,其前工作距离为242.24mm,其后工作距离为328.50mm,所述前工作距离为双轴MEMS反射振镜(4)的有效反射单元与材料为SF11的第一透镜(5-1)之间的距离,所述后工作距离为材料为BK7的第三透镜(5-3)与待扫描物体(U)之间的距离。
4.根据权利要求1、2或3所述的一种应用于激光外差干涉仪的基于双轴MEMS反射振镜和F-Theta透镜的线性扫描系统,其特征在于三片式F-Theta透镜组(5)中三个透镜的具体参数为:
Figure 638339DEST_PATH_IMAGE004
5.根据权利要求1、2或3所述的一种应用于激光外差干涉仪的基于双轴MEMS反射振镜和F-Theta透镜的线性扫描系统,其特征在于双轴MEMS反射振镜(4)在驱动信号下工作,通过调节所述双轴MEMS反射振镜(4)的慢轴和快轴的相应驱动信号的驱动频率调整所述双轴MEMS反射振镜(4)的最大空间扫描角度。
6.根据权利要求5所述的一种应用于激光外差干涉仪的基于双轴MEMS反射振镜和F-Theta透镜的线性扫描系统,其特征在于慢轴的驱动信号为方波驱动信号,其驱动频率为2527Hz,与所述驱动频率相应的慢轴的最大空间扫描角度为30°;快轴的驱动信号为方波驱动信号,其驱动频率为41580Hz,与所述驱动频率相应的快轴的最大空间扫描角度为40°。
7.根据权利要求5所述的一种应用于激光外差干涉仪的基于双轴MEMS反射振镜和F-Theta透镜的线性扫描系统,其特征在于慢轴的驱动信号为方波驱动信号,其驱动频率为2600Hz,与所述驱动频率相应的慢轴的最大空间扫描角度为40°;快轴的驱动信号为方波驱动信号,其驱动频率为2527Hz,与所述驱动频率相应的快轴的最大空间扫描角度为50°。
8.根据权利要求1、2、3、6或7所述的一种应用于激光外差干涉仪的基于双轴MEMS反射振镜和F-Theta透镜的线性扫描系统,其特征在于高反射镜(6)的反射率为98%。  
CN2010102460410A 2010-08-05 2010-08-05 基于双轴MEMS反射振镜和F-Theta透镜的线性扫描系统 Expired - Fee Related CN101915542B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102460410A CN101915542B (zh) 2010-08-05 2010-08-05 基于双轴MEMS反射振镜和F-Theta透镜的线性扫描系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102460410A CN101915542B (zh) 2010-08-05 2010-08-05 基于双轴MEMS反射振镜和F-Theta透镜的线性扫描系统

Publications (2)

Publication Number Publication Date
CN101915542A true CN101915542A (zh) 2010-12-15
CN101915542B CN101915542B (zh) 2011-11-02

Family

ID=43323108

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102460410A Expired - Fee Related CN101915542B (zh) 2010-08-05 2010-08-05 基于双轴MEMS反射振镜和F-Theta透镜的线性扫描系统

Country Status (1)

Country Link
CN (1) CN101915542B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012554A (zh) * 2010-10-26 2011-04-13 中国航天科工集团第三研究院第八三五八研究所 输出光垂直于像面的大口径F-Theta扫描透镜
CN102252652A (zh) * 2011-05-31 2011-11-23 哈尔滨工业大学 多光束激光外差二次谐波法测量激光入射角度的装置及方法
CN102706846A (zh) * 2012-06-14 2012-10-03 中国科学院苏州纳米技术与纳米仿生研究所 近红外激光扫描共聚焦成像系统
CN102829903A (zh) * 2012-08-30 2012-12-19 哈尔滨工业大学 Mems扫描式激光外差干涉仪及其测量玻璃应力的方法
CN103278087A (zh) * 2013-05-10 2013-09-04 北京空间机电研究所 MEMS扫描2μm激光外差干涉仪光学系统及其装调方法
CN103995351A (zh) * 2014-03-15 2014-08-20 吉林大学 一种光扫描显示和交互装置
CN104181691A (zh) * 2014-09-11 2014-12-03 哈尔滨工业大学 基于mems微镜折叠式的扫描光学系统
CN107356930A (zh) * 2017-08-28 2017-11-17 广州市杜格数控设备有限公司 一种振镜全景扫描装置及其扫描方法
CN108572493A (zh) * 2017-03-09 2018-09-25 中国科学院苏州纳米技术与纳米仿生研究所 Mems振镜激光微显示器
CN110187496A (zh) * 2019-05-13 2019-08-30 大族激光科技产业集团股份有限公司 一种激光扫描装置及方法
CN112432766A (zh) * 2020-09-23 2021-03-02 菲兹克光电(长春)有限公司 一种激光扫描振镜性能检测方法
CN112965044B (zh) * 2021-02-10 2024-05-10 深圳市镭神智能系统有限公司 一种激光雷达

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012554A (zh) * 2010-10-26 2011-04-13 中国航天科工集团第三研究院第八三五八研究所 输出光垂直于像面的大口径F-Theta扫描透镜
CN102252652A (zh) * 2011-05-31 2011-11-23 哈尔滨工业大学 多光束激光外差二次谐波法测量激光入射角度的装置及方法
CN102706846A (zh) * 2012-06-14 2012-10-03 中国科学院苏州纳米技术与纳米仿生研究所 近红外激光扫描共聚焦成像系统
CN102829903B (zh) * 2012-08-30 2014-05-07 哈尔滨工业大学 Mems扫描式激光外差干涉仪及其测量玻璃应力的方法
CN102829903A (zh) * 2012-08-30 2012-12-19 哈尔滨工业大学 Mems扫描式激光外差干涉仪及其测量玻璃应力的方法
CN103278087B (zh) * 2013-05-10 2016-01-13 北京空间机电研究所 MEMS扫描2μm激光外差干涉仪光学系统的装调方法
CN103278087A (zh) * 2013-05-10 2013-09-04 北京空间机电研究所 MEMS扫描2μm激光外差干涉仪光学系统及其装调方法
CN103995351A (zh) * 2014-03-15 2014-08-20 吉林大学 一种光扫描显示和交互装置
CN104181691A (zh) * 2014-09-11 2014-12-03 哈尔滨工业大学 基于mems微镜折叠式的扫描光学系统
CN104181691B (zh) * 2014-09-11 2016-05-11 哈尔滨工业大学 基于mems微镜折叠式的扫描光学系统
CN108572493A (zh) * 2017-03-09 2018-09-25 中国科学院苏州纳米技术与纳米仿生研究所 Mems振镜激光微显示器
CN107356930A (zh) * 2017-08-28 2017-11-17 广州市杜格数控设备有限公司 一种振镜全景扫描装置及其扫描方法
CN107356930B (zh) * 2017-08-28 2024-05-17 广州市杜格科技有限公司 一种振镜全景扫描装置及其扫描方法
CN110187496A (zh) * 2019-05-13 2019-08-30 大族激光科技产业集团股份有限公司 一种激光扫描装置及方法
CN112432766A (zh) * 2020-09-23 2021-03-02 菲兹克光电(长春)有限公司 一种激光扫描振镜性能检测方法
CN112965044B (zh) * 2021-02-10 2024-05-10 深圳市镭神智能系统有限公司 一种激光雷达

Also Published As

Publication number Publication date
CN101915542B (zh) 2011-11-02

Similar Documents

Publication Publication Date Title
CN101915542B (zh) 基于双轴MEMS反射振镜和F-Theta透镜的线性扫描系统
CN102022977B (zh) 双轴mems扫描的外差干涉系统及方法
CN102589428B (zh) 基于非对称入射的样品轴向位置跟踪校正的方法和装置
CN1900741A (zh) 高光谱全偏振三维成像集成探测系统
CN108827172A (zh) 基于固态变焦透镜的非接触式激光测厚装置及方法
CN102253014A (zh) 表面等离子体共振传感检测系统和方法
CN201589623U (zh) 光纤光栅传感器解调装置
CN102175184B (zh) 偏振光栅自参考自准直二维测角装置
CN106225727B (zh) 阵列调零激光大工作距自准直装置与方法
CN107144983A (zh) 相干度随时间可控变化的部分相干光束的产生装置及方法
CN106323198B (zh) 一种高精度、宽范围和大工作距激光自准直装置与方法
CN105783776A (zh) 基于双波面干涉条纹阵列的表面形貌测量装置及方法
CN109470454A (zh) 一种曲面微透镜阵列面形检测装置
CN106225730B (zh) 便携式组合调零高精度激光大工作距自准直装置与方法
CN106017364B (zh) 一种高精度激光大工作距自准直装置与方法
CN106247992B (zh) 一种高精度、宽范围和大工作距自准直装置与方法
CN204788666U (zh) 一种近红外傅里叶变换光谱成像仪
CN106323197B (zh) 便携式阵列调零高精度激光大工作距自准直装置与方法
CN102012554A (zh) 输出光垂直于像面的大口径F-Theta扫描透镜
CN106017441B (zh) 一种便携式高精度激光大工作距自准直装置与方法
CN106017363B (zh) 一种高动态精度大工作距自准直装置与方法
CN106091990B (zh) 便携式阵列调零高动态精度大工作距自准直装置与方法
CN106225725B (zh) 便携式阵列调零激光大工作距自准直装置与方法
CN101261159A (zh) 双猫眼动镜干涉仪
CN106323200B (zh) 一种激光大工作距自准直装置与方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111102

Termination date: 20120805