CN102812330A - 具有校正单元的科里奥利陀螺仪及减小90°相位差偏离的方法 - Google Patents

具有校正单元的科里奥利陀螺仪及减小90°相位差偏离的方法 Download PDF

Info

Publication number
CN102812330A
CN102812330A CN2011800073628A CN201180007362A CN102812330A CN 102812330 A CN102812330 A CN 102812330A CN 2011800073628 A CN2011800073628 A CN 2011800073628A CN 201180007362 A CN201180007362 A CN 201180007362A CN 102812330 A CN102812330 A CN 102812330A
Authority
CN
China
Prior art keywords
correction electrode
coriolis
correcting unit
electrode
motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800073628A
Other languages
English (en)
Other versions
CN102812330B (zh
Inventor
W·盖格
P·莱因菲尔德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northrop Grumman Litef GmbH
Original Assignee
Northrop Grumman Litef GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northrop Grumman Litef GmbH filed Critical Northrop Grumman Litef GmbH
Publication of CN102812330A publication Critical patent/CN102812330A/zh
Application granted granted Critical
Publication of CN102812330B publication Critical patent/CN102812330B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/5755Structural details or topology the devices having a single sensing mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Gyroscopes (AREA)

Abstract

一种科里奥利陀螺仪(1),包括可予以激发来平行于第一轴振荡的质量系统,从而可以检测该质量系统由于科里奥利力沿着垂直于第一轴设置的第二轴的偏移,并包括至少一个第一校正单元(30)以及至少一个第二校正单元(40),第一和第二校正单元各自包括多个固定校正电极(31、32、41、42)和运动校正电极(24、25、26、27),其中固定校正电极(31、32、41、42)在第一轴的方向延伸且通过相应的锚固结构(33,43)稳固地连接于基底,而运动校正电极(24、25、26、27)是形成质量系统的一部分。一种用于减小此种科里奥利陀螺仪(1)的90°相位差偏离的方法,包括施加至少暂时恒定的校正电压到校正单元(30、40)。

Description

具有校正单元的科里奥利陀螺仪及减小90°相位差偏离的方法
技术领域
本发明涉及一种具有用于减小90°相位差偏离的校正单元的科里奥利陀螺仪、包括用于减小90°相位差偏离的校正单元的互相耦联的科里奥利陀螺仪的系统、以及用于减小90°相位差偏离的方法。
背景技术
科里奥利陀螺仪(振荡陀螺仪、旋转速度传感器)包括被用来振荡的单部件式但通常是多部件式的质量系统。为此,为了操作科里奥利陀螺仪,激发质量系统的第一振荡模式(激发振荡)。如果科里奥利陀螺仪在其敏感轴上遭受旋转运动,则产生的科里奥利力激发可直接或间接测得的质量系统的第二振荡模式,从而得到反映该第二振荡模式的读取信号。对读取信号进行分析来获取幅度的变化,幅度的变化是施加于科里奥利陀螺仪的旋转速度的度量。在根据闭环系统的科里奥利陀螺仪中,控制电路用于连续地将读取振荡的幅度复位到一个固定值,例如0,因此从为此所需的恢复力来推导出施加的旋转速度。
科里奥利陀螺仪的质量系统可构造为单部件或多部件质量系统。例如该质量系统具有两个质量部分(谐振器),其通过弹性系统互相耦联且能够相对于彼此从事相对运动。在多部件质量系统中,制造公差可导致质量系统的互相耦联的质量部分,例如两部件单谐振器的两个谐振器,相对于彼此的不对准。不对准在科里奥利陀螺仪的读取信号中产生一个信号部分,该信号部分以90°相位差(90°相移)重叠于源自施加的旋转速度的实际信号部分。通常,90°相位差信号部分(90°相位差偏离、90°相位差信号、90°相位差误差)远大于来自期望的旋转速度解析的信号部分,使得两个信号部分难以分离。通过各信号部分之间大的差别,即使小的相移也会导致旋转速度信号中的清晰、显著的误差(0点误差,偏离)。
从DE 103 60 962 B4和DE 102 37 410 A1中得知一些方法,其中科里奥利质量部分由施加于特殊控制电极的电压旋转和/或偏移,以便减小90°相位差。
US 6,067,858描述了一种用于减小90°相位差偏离的结构,该结构由各个校正电极组成,其中各个电极之间必须具有对称的距离。此外,这些结构仅能用埋置氧化物的制造技术来实现。
发明内容
本发明的目的是,减小不对准对科里奥利陀螺仪中以及在由互相耦联的科里奥利陀螺仪组成的系统中的90°相位差偏离的影响,而不必旋转和/或偏移科里奥利质量且同时能够在制造工艺中免除埋置氧化物。
根据本发明,通过权利要求1所述的科里奥利陀螺仪、通过权利要求10所述的系统、以及通过权利要求17和21所述的方法来实现所述目的。从属权利要求分别给出优选的改进方案。
因此,科里奥利陀螺仪包括质量系统,其可被激发来平行于第一轴从事振荡。该质量系统可设置成一件式或板块至少两个质量部分。在多个质量部分系统的情况下,质量部分中的至少一个(科里奥利元件)这样来固定,使得通过围绕垂直于第一轴的敏感轴的旋转运动导致的所述质量部分的偏移可沿垂直于第一轴和敏感轴的第二轴进行检测。在闭环系统中质量部分的偏移可例如通过用于补偿该偏移的恢复力的产生来检测。
根据本发明的科里奥利陀螺仪还包括至少一个第一校正单元以及至少一个第二校正单元,它们各自包括多个固定校正电极和多个运动校正电极。固定校正电极在第一轴的方向上延伸且通过相应的锚固结构稳固地连接到基底,质量系统相对该基底悬挂以便是可动的。运动校正电极是质量系统的集成组成部分且可相对于基底运动。
该科里奥利陀螺仪例如包括被激发以沿着第一轴线从事线性振荡的第一质量部分(驱动框架),以及与第一质量部分以可动方式连接的第二质量部分(科里奥利框架,科里奥利质量,检测框架),该第二质量部分相对于第一质量部分这样连接,使得其可垂直于激发反向运动,从而可检测沿着科里奥利力的方向的可能的偏移运动,该科里奥利力由于施加旋转速度和激发运动而产生。在此,第二质量部分包括运动校正电极以及用于检测第二质量部分的偏移的一组检测电极,以及可选地用于恢复偏移的一组电极。
根据另一个实施方案,科里奥利陀螺仪包括被激发以沿着第一轴从事线性振荡的第一质量部分(驱动框架),固定成可因科里奥利力而偏移第二质量部分(科里奥利框架,科里奥利质量),以及第三质量部分(检测框架),第三质量部分与第二质量部分以这样一种可动方式连接、使得其不能从事激发运动但被迫使在第二方向沿着科里奥利框架的偏移运动移动,由此科里奥利框架的偏移得以检测。换句话说,检测框架和科里奥利框架的功能单元被分离。校正单元的运动校正电极在此是科里奥利框架的固定组件。用于检测和/或恢复的电极组通常指派给第三质量部分,如果分离的电极组用于检测和恢复,相关联的可能是将电极组分离地布置在第三和第二质量部分上。
根据本发明的校正单元例如各自包括相同数量的第一固定校正电极和第二固定校正电极。第一固定校正电极从相应的锚固结构沿着第一轴在第一方向延伸。第二固定校正电极从相应的锚固结构沿与第一方向相反的第二方向延伸。同样,校正单元可包括数量相同的第一和第二运动校正电极。第一运动校正电极在其作为集成部件所属的那个质量部分的周边内的参考点在第二方向延伸,而第二运动校正电极在第一方向延伸。
固定校正电极和与其相邻的运动校正电极的每一个之间的间距是不同的。因此,两个距离之比必须选择为不等于1。为了获得有效的力作用,该比应选择为尽可能大或尽可能小,虽然这增加空间需求。考虑到空间需求作为距离之比的函数增加,为了使力作用尽可能有效,产生的最优距离比为√2。与固定校正电极具有较小距离的运动校正电极在下文将称为指派给固定校正电极的运动校正电极。第一固定校正电极沿着第二轴设置,每一个位于指派给它们的第一运动校正电极上方,而第二固定校正电极各自设置在指派给它们的第二运动校正电极下方。在此,术语“上方”和“下方”将指沿着第二轴的方向。包括运动校正电极的质量部分这样设置,使得其用作各自相关于第一和第二固定校正电极的第一和第二移动校正电极。固定校正电极沿第二轴相对于指派给它们的运动校正电极的布置结构同样可以颠倒。
在一个实施方案中,科里奥利陀螺仪包括相当于彼此设置成倒置的第一和第二校正单元。可选地,科里奥利陀螺仪可包括相同构成的多个第一校正单元和/或多个第二校正单元,或相当于彼此设置成倒置的多对第一和第二校正单元。
固定校正电极和/或运动校正电极可各自具有宽度最大为10μm的鳍。
在一个实施方案中,科里奥利陀螺仪具有至少一个产生校正电压的控制单元。固定校正电极和运动校正电极连接到该至少一个控制单元,其中不同的校正单元可以用不同的校正电压来分开地触发和/或控制。校正电压至少暂时性地是恒定的,且在最简单的情况下为直流电压,该直流电压量值可这样调节使得90°相位差偏离最小化。不过,也可行的是,作为垂直于激发运动(y方向)的偏移的函数来控制校正电压。校正单元的电极这样设置,使得电压被施加时当运动电极在激发方向运动时,产生作为在激发方向的偏移的函数的沿检测方向的力。
此外,本发明提供了一种具有至少两个互相耦联的科里奥利陀螺仪的系统,其中每个科里奥利陀螺仪包括可被激发来平行于第一轴从事振荡的质量系统,其中可以检测质量系统由于科里奥利力沿垂直于第一轴延伸的第二轴的而的偏移。在此,系统包括在各个科里奥利陀螺仪行文中描述的类型的至少第一校正单元和至少第二校正单元。
系统例如包括两个科里奥利陀螺仪,它们一起设置为线性双谐振器,其中两个单谐振器被激发来沿着第一轴从事彼此相反的振荡。
在一个实施方案中,其中科里奥利陀螺仪仅相关于激发耦联,在每个科里奥利陀螺仪中的校正单元成对地设置以便相对于彼此颠倒。
如果如例如从DE 10 2007 030 120 A1中已知,各个科里奥利陀螺仪也相关于检测耦联,则至少两个相对于彼此颠倒设置的分开的校正单元可随意地设置在各个科里奥利陀螺仪上。
根据本发明的、用于减小根据本发明的科里奥利陀螺仪或根据本发明的系统的90°相位差偏离的方法包括在校正单元的固定校正电极和运动校正电极之间设置校正电压。
校正电压为直流电压,其量值作为有待减小的90°相位差偏离的去向和大小的函数进行调整。对存在且相对于彼此颠倒设置的至少两个校正单元中的哪个施加电压取决于有待补偿的90°相位差偏离的代数符号。
可选地或附加地,直流电压值可以作为质量系统沿第二轴的谐振频率的给定变化的函数来劲小调整。在这种情况下,成对且相对于彼此颠倒设置的现有两个校正单元两者施以相同值的电压。用于90°相位差偏离补偿的直流电压部分以正确的代数符号叠加于用于频率调整的电压。
如果科里奥利陀螺仪包括多于两个的校正单元,优选为2的倍数,则各校正单元优选地以这样一种方式施加以不同的电压,使得电压的总和抵消。例如,相同构成的校正单元即不是设置成彼此颠倒的校正单元可以施加以相同值但不同极性的电压。
附图说明
以下将参考实施方案的附图详细说明本发明。
图1示出根据本发明实施方案的、作为两部分单谐振器设置的科里奥利陀螺仪的示意顶视图。
图2示出了图1的包括校正单元的细节的示意俯视图。
图3示出了科里奥利陀螺仪的细节的示意俯视图,其中设置有相同类型的多个校正单元。
图4示出了根据本发明另一个实施方案的、两个耦联的科里奥利陀螺仪的系统的示意俯视图。
具体实施方式
图1示出了根据一个实施方案的科里奥利陀螺仪1的示意结构,根据该实施方案,科里奥利陀螺仪1实施为线性单谐振器。该线性单谐振器优选借助于蚀刻工艺由硅片制造且包括第一质量部分10(驱动框架)、第二质量部分20(科里奥利质量)、第一弹性元件11和第二弹性元件21。该驱动器框架10通过第一弹性元件11与位于质量部分10、20下方的基底连接。第一弹性元件11这样设置,使得第一质量部分10与第二质量部分20能够一起沿着第一轴(x方向)振荡。科里奥利质量20通过第二弹性元件21与第一质量部分10连接且这样悬挂,使得其能够相对于第一质量部分10沿着垂直于第一轴的第二轴(y方向)振荡。
弹性元件21的设计不限于具体实施方案。
第一和第二质量部分10、20构成科里奥利陀螺仪1的质量系统。科里奥利陀螺仪还包括与基底机械连接但与基底电绝缘的固定检测电极23和固定激发电极12。术语“基底”应理解为机械的、不振荡的结构,质量部分10和20“嵌入”在其中,例如硅片的非振荡部分或硅片的一部分的非振荡部分。科里奥利陀螺仪还包括作为第一质量部分10的集成组成元件的运动激发电极13、以及在该实施方案中作为第二质量部分20的集成组成元件的运动检测电极22。激发电极12和13在该实施方案中实现两个功能,第一个为激发功能,而第二个功能为检测第一质量部分在第一方向(图中坐标系统的x轴)的运动,从而激发电极为此目的以适当方式进行电触发。在另一个实施例中,激发电极的功能也可通过提供双激发电极来予以分离。
通常施加交流电压于固定激发电极12,而与驱动框架10固定连接且与其一起运动的运动激发电极13形成相对电极。所产生的静电力激发驱动框架10以沿着x方向进行振荡。第二弹性元件21将该运动传递到科里奥利质量20。由于第一弹性元件11的铅直取向,驱动框架10被防止沿着垂直于第一轴延伸的第二轴(y方向)从事运动。但是,由于第二弹性元件21的基本水平取向,可通过科里奥利质量20从事沿y方向的铅直振荡。如果由于围绕垂直于图示平面取向的量测轴的旋转而产生相应的科里奥利力,则科里奥利质量20被激发而在y方向从事振荡。
由科里奥利力产生的沿y方向的运动通过与科里奥利质量20固定连接且与其一起运动的运动检测电极22以及固定检测电极23监测和读取,而所述运动为对应于所施加的旋转速度的度量。作为上面已描述的开环方法的替代方案,第二谐振器20在y方向的运动可通过控制电路和适当的阻尼电极来加以防止,从而这种类型的闭环方法中所需要的力通过防止该y运动所需的电压来测量且是所施加的旋转速度的度量。在此所选的例示性实施例中,检测电极22和23相应于闭环方法包含两个功能,即作为这样的检测功能和阻尼功能,为此,这些电极通过电子装置适当地予以触发。然而,检测电极同样也可再分为两个相同设计的子单元,且每个子单元具有被赋予它的两个功能之一。
除了在图1中示出的实施方案,其他的科里奥利陀螺仪的实施方案也是可能的。例如,科里奥利质量的y运动的检测可以在分离的物体上进行,该分离的物体自身不从事x运动,但通过适当的弹性单元顺随科里奥利质量的y运动而运动且因此仅承担检测的功能且由此也可称为检测框架。在闭环方法中陀螺仪的情况下,检测和复原功能通常发生在分离的物体(检测框架)上,但两个功能同样也可分配给科里奥利质量和分离的物体。
在另一个实施方案中,科里奥利陀螺仪可包括仅只一个振动质量,以下也将在“科里奥利质量”的术语下予以理解。在闭环方法中驱动框架、科里奥利质量和检测的功能以及阻尼功能于是设置在单独的结构中。
此外,若干个图1中示出的科里奥利陀螺仪1,如在图4中表示的,可组合为单一传感器。在此,例如,可以使两个科里奥利陀螺仪以推拉方式沿着共同的振动轴振动。这使得耦联系统对外部干扰以及/或者对耦联系统传播至各单个谐振器设置其中的基底的干扰的敏度性得以降低。显然,两个科里奥利陀螺仪的耦联可超越图4所示的程度,使得根据具体实施方案,不仅驱动质量彼此耦联,而且科里奥利质量或检测框架也彼此耦联。
在激发运动不是取向为精确地垂直于检测运动的情况下,源于激发运动的加速力的一部分,其例如可以比科里奥利加速度大9个数量级,关联于检测方向,这意味着通过旋转运动产生的科里奥利力非常快地成为引发检测运动的力的一小部分,这会导致旋转速度测量的误差。特别在旋转速度非常小的情况下,两个质量部分相对于彼此的取向误差或相对于由激发电极和固定检测电极确定的坐标系统的科里奥利质量的运动方向的偏差,会导致对科里奥利陀螺仪的功具有不良影响的测量误差。图1和4示出误差机制可能的例子,呈现的形式为第二弹性元件21由于制造公差而相对于沿着x轴的激发运动略微倾斜地取向。由于科里奥利力是激发运动的速度的正函数,因此科里奥利力相对于源于激发运动的加速力呈现90°相位偏离(呈90°相位差),所述加速力直接关联于激发运动的幅度以及/或者其相对于时间的二次导数。
为了减小或补偿也称为90°相位差偏离的该误差,在图1中所示的科里奥利陀螺仪分别具有第一和第二校正单元30或40,它们至少一次总是成对地位于科里奥利质量上,且各自包括与基底机械连接但与基底电绝缘的固定校正电极和以刚性方式机械连接的运动校正电极。在图1中示出的实施方案中,第一校正单元30的固定校正电极与第一控制单元50电连接,而第二校正单元40的固定校正电极与第二控制单元60电连接,从而校正单元30和40的固定校正电极被保持或控制于每一情况下被限定的电位下。第一控制单元50施加第一校正电压于第一校正单元30,同时第二控制单元60施加第二校正电压于第二校正单元40。校正单元30和40分别通过电连接线路51和61分别连接到相应的控制单元50和60,从而电连接线路51和61分别与科里奥利陀螺仪的其他组件电绝缘。电连接线路51、61可以例如作为基底中的导电区域或作为由导电材料制成的印刷导体设置在基底上。
在图1中示出的科里奥利陀螺仪的实施方案的校正单元30和40相对于科里奥利质量20的中线28镜像地设置。不过,两个校正单元30和40两者同样可以设置在中线28上方或下方和/或与中线28具有相同或不同的间距。同样,校正单元30和40相对于检测电极22、23的位置可以关联于科里奥利陀螺仪的设计自由地调整。相应地,例如一个或两个校正单元可设置在检测电极22、23的右方或其上方或下方。检测电极22、23的局部区域之间的布置形式,如图1中所示,同样是可行的。
在图2中详细示出线性单谐振器1的校正单元30和40。每个校正单元30、40由多个第一固定校正电极31和/或41以及多个第二固定校正电极32和/或42组成,它们与基底刚性连接。此外,每个校正单元30和/或40具有多个第一运动校正电极24和/或26以及多个第二运动校正电极25和/或27,它们与科里奥利质量20作为单一部件一体地设置。因此,在使科里奥利质量20运动时,则运动校正电极24、25、26、27相对于固定校正电极31、32和/或41、42运动。
如果然后将恒定电压施加到固定校正电极31、32和/或41、42,则激发运动产生静电力,该静电力与激发运动的幅度和其相对于时间的二次导数成正比且导致90°相位差偏离的减小。为此,对恒定电压的大小进行选择以匹配有待减小或补偿的90°相位差信号的大小和取向。此外,所施加的恒定电压也可以用于影响科里奥利质量20在y方向的谐振频率,这可额外地用于调整或针对性地调整激发的谐振频率和读取。
在一阶中,如此产生的力仅具有依赖于x或依赖于y的力分量。依赖于y的力分量引起负弹簧刚度,该负弹簧刚度反作用于第二弹性元件21的弹簧刚度且因此导致科里奥利质量20在检测方向(y方向)的减小的谐振频率。可通过适当地选择在静置状态下固定校正电极31、32和/或41、42相对于运动校正电极24、25和/或26、27的重叠的长度来使该力作用最小化。另外,依赖于y的力分量同样可用于科里奥利质量在检测方向谐振频率和激发频率的预期频率调整。
所述力作用与科里奥利质量在x方向的偏移运动成正比,导致其相对于激发的速度具有90°的固定相位。因此,源于校正电极的力作用不发生相位旋转,防止对偏离产生促进作用。这也意味着,在激发到读取运动的传输功能中相位临时改变时,其理想地应为但非必须是90°,校正力同相位地随同用于90°相位差的力旋转且补偿作用如此得以维持。
另一个方面是,例如在类似于图4中示出的结构配置中,但另外耦联有科里奥利质量或检测框架,制造公差可导致出现一种情况,其中通过科里奥利质量在y方向的偏移来补偿90°相位差偏离是不可行的。然而,采用在此描述的校正电极形式总能对90°相位差偏离进行补偿。
用于减小或补偿90°相位差偏离的力分量不取决于固定校正电极31、32和/或41、42与运动校正电极24、25和/或26、27的重叠。校正单元30和40可因此设计得非常小。相应地,所需的最小重叠长度大约为激发振动的振幅的两倍加上某一长度以达到线性的、依赖于振幅的力作用。例如,对于大约10μm的激发振幅来说,大约15μm的重叠长度而校正电极的总长度为30至35μm是可以构想出的。这通常是驱动频率和检测谐振频率的频率调整所需的尺寸的大约1/10。
如在图2中详细地示出,成对存在的校正单元30、40包括多个固定校正电极31、32和/或41、42以及多个运动校正电极24、25和/或26、27。固定校正电极31、32和/或41、42各自借助于共同的锚固结构33和/或43以机械刚性方式连接于基底,但与其电绝缘。
锚固结构的尺寸可进行调整以适应科里奥利陀螺仪的制造方法。锚固结构的基底面积在2500μm2和0.04mm2之间的范围内。作为原则,期望锚固结构尽可能小,因为锚固结构产生额外的空间需求且因此使整体结构增大。基底面积的下限由科里奥利陀螺仪的制造方法和技术能力来确定。例如,当锚固结构通过硅熔粘接(SFB)连接于它们的基底时,锚固结构可以特别地设置为至少70×70μm2的尺寸,而不会因此丧失对于校正电极低空间需求的优点,因为它们的重叠长度小。由于校正电极的所需的总长度较短,取决于制造方法,校正电极也可保持为非常窄,例如达到大约5μm或甚至更小。校正电极的最小宽度也由技术能力限制,而机械方面(例如电极在操作时的弯曲,咬接)这里也是助因。因此,尽管锚固结构相对较大,但仍使校正单元30和40的总体小尺寸得以实现。上述的锚固结构的尺寸特别对于这样一种制造方法来说是有利的,在该制造方法中硅熔粘接方法用于将与基底分开产生的固定结构比如锚固结构和固定校正电极连接于基底。不过,固定结构同样可以通过直接在基底上或在施加到基底上的层上施用蚀刻工艺来产生。
第一固定校正电极31和41分别在第一方向(正x方向)从锚固结构33和43延伸出,而第二固定校正电极32和42分别在第二方向(负x方向)从锚固结构33和43延伸出。第二方向与第一方向相反。第一运动校正电极24和/或26在第二方向从科里奥利质量20延伸出,而第二运动校正电极25和/或27在第一方向从科里奥利质量20延伸出。因此,第一运动校正电极24和26分别延伸进入在单个第一固定校正电极31和41之间形成的间隙中,而第二运动校正电极25和27分别延伸进入在第二固定校正电极32和42之间形成的间隙中。这导致校正电极具有齿状结构,其中一个固定校正电极与一个运动校正电极彼此相对且彼此在y方向上以间隙隔开。
在校正单元中,在第一方向延伸的固定校正电极和运动校正电极的数量优选地与在第二方向延伸的固定校正电极和运动校正电极的数量相等。
固定校正电极31、32和41、42中的一个分别指派给运动校正电极24、25和26、27中的确定的一个。科里奥利质量20的一个部分用作指派给固定校正电极的运动校正电极。例如,在第一校正单元30中,科里奥利质量20的左上部分用作相对于最顶部固定校正电极32的运动校正电极,而科里奥利质量20的右下部分用作相对于最底部固定校正电极31的运动校正电极。在固定运动电极和指派给它的运动电极之间的距离,以下称为“间隙距离”,小于两个等同固定校正电极或两个相等同运动校正电极之间的距离,且小于相应固定校正电极和另一个相邻的运动校正电极之间的距离。由于运动校正电极24和26以及运动校正电极25和27分别相对于相应固定校正电极31和41以及32和42的非对称布置,直流电压的施用产生与校正电极沿第一轴(x轴)的偏移成正比的力。关于x轴镜像设置的校正单元30和40允许90°相位差的依赖于符号的代数补偿。运动校正电极24、25、26和27分别之于相邻的固定校正电极31、32、41和42的不同距离是由于制造工艺且使得锚固结构所需的区域最小。此外,他们帮助限定90°相位差补偿的取向。
在校正单元30中,在第一方向延伸的固定校正电极各自设置在指派给它们的运动校正电极上方,而在第二方向延伸的固定校正电极各自设置在指派给它们的运动校正电极下方。上下文中,“上方”指的是沿相对于指派的运动校正电极的第三方向(正y方向),而“下方”指的是沿相对于指派的运动校正电极的第四方向(负y方向),第四方向与第三方向相反。第三和第四方向沿着垂直于第一和第二方向的第二轴(y轴)延伸。
在图2所示的实施方案中,在校正单元40中固定校正电极和运动校正电极相对于彼此的布设实施为关于x轴镜像对称。
第二校正单元40的固定校正电极相对于指派给它们的运动校正电极的配置与第一校正单元30中的配置恰好相对。由第二校正单元40生成的力的取向,对于任意的施加电压和科里奥利质量20沿第一轴(x轴)的运动,相对于第一校正单元30生成的力反向。
根据本发明,科里奥利质量20包括两个相对于彼此反向配置的校正单元30和40,如图2中示出。校正单元30是否位于校正单元40上方或下方(在y方向)或者每个校正单元是否在y方向上反向(关于x轴成镜像)是无关紧要的。具体配置结构仅对电压向校正单元的施加有影响。
如果科里奥利陀螺仪还包括其他校正单元,所述校正单元能够被施加以相同的恒定电压、相同量值且不同极性的电压、相同极性且不同量值的电压或完全不同的电压和极性。同样可以给各校正单元中的仅只一个施用直流电压。其他的校正单元可以接地或未接地的。
图3示出另一实施方案的详细,其中第一校正单元和第二校正单元各自成对呈现。图3示出与图2类似的科里奥利质量20的细节。在该实施例中,科里奥利陀螺仪具有四个校正单元301、302、401和402。校正单元301和302设置为相同且各自相应于图2中示出的第一校正单元30。第二校正单元401和402也设置为相同且各自相应于图2中示出的第二校正单元40。校正单元301和302相对于校正单元401和402反向设置。校正单元301和401构成第一对相对彼此反向设置的校正单元,而校正单元302和402构成第二对相对彼此反向设置的校正单元。
校正单元301和302可以施加以相反取向和相同量值的恒定电压。这同样适用于校正单元401和402。这减小了电耦合效应,例如补偿电流。由于因调节总是存在残余运动,该效果不仅在开环过程而且也在闭环过程中具有有益效果。
根据本发明的科里奥利陀螺仪的应该效果是其不依赖于弹性元件21的设计。由于科里奥利质量20不必须偏移或旋转,因此可使用各种类型的弹性元件21。特别地,弹性元件21可设计为对加速度不敏感,其赋予科里奥利陀螺仪更广泛的振动不敏感性。90°相位差信号于是仅由弹性元件21的倾斜位置确定,但不由它们的偏移或承受源于激发振动的加速力的载荷来确定。
另外一个显著的优点在于,每个校正单元仅需要一个邻接的锚固结构,简化了设计和制造工艺。
所描述的校正单元可用于一个或多个谐振器的系统以及相对于驱动运动和/或检测运动完全封闭、部分封闭或开放的系统。上下文中,封闭的运动指的是源于运动的加速度和动量向外总体平衡掉。
这样类型的校正单元也可用于由多个科里奥利陀螺仪组成的耦联系统中,从而各个科里奥利陀螺仪的结构配置对于校正单元的作用的方式是无关紧要的。例如,在由两个科里奥利陀螺仪组成的耦联系统中,一个科里奥利陀螺仪的激发运动相对于另一个科里奥利陀螺仪的激发运动可以相移180°。在由四个科里奥利陀螺仪组成的结构配置中,其中每两个科里奥利陀螺仪的激发运动相对于彼此相移180°,各个科里奥利陀螺仪可以例如串联设置或彼此成对设置。在具有固定耦联的系统中,校正单元和/或其子单元就检测而言可以自由地划分成各个科里奥利质量。这可减少需要引导至科里奥利陀螺仪的印刷导体的数量。
图4示出这种类型的耦联系统的实施方案。该耦联系统例如包括恰好两个各自相应于图1示出的实施方案设置且通过机械耦联元件300例如弹簧相对于激发运动彼此耦联的科里奥利陀螺仪100和200。在此,相应科里奥利陀螺仪的相同构件以图1中相应的附图标记表示。图4中示出版本的每个科里奥利陀螺仪100或200具有校正单元对130和140和/或230和240。
在相对于它们沿y方向的运动性耦联两个科里奥利质量120和220的实施方案中,也可行的是,第一科里奥利陀螺仪100仅包括校正单元130,而第二科里奥利陀螺仪200仅包括校正单元240,或仅一个科里奥利陀螺仪100包括两个校正单元130和140而其他的科里奥利陀螺仪,例如科里奥利陀螺仪200,不具有校正单元。
如参照图1所述,校正单元130、140、230和/或240每一个具有通过至少一个控制单元(未图示)施加其上的恒定校正电压。在此,校正单元130、140、230和/或240的固定校正电极通过电连接线与至少一个控制单元连接。

Claims (21)

1.一种科里奥利陀螺仪(1),具有:
可予以激发来平行于第一轴从事振荡的质量系统,从而可以检测该质量系统由于科里奥利力沿着垂直于第一轴设置的第二轴的偏移,以及
各自包括多个固定校正电极(31、32、41、42)和运动校正电极(24、25、26、27)的至少一个第一校正单元(30)和至少一个第二校正单元(40),其中固定校正电极(31、32、41、42)在第一轴的方向延伸且通过相应的锚固结构(33、43)稳固地连接于基底,且运动校正电极(24、25、26、27)构成质量系统的一部分。
2.根据权利要求1所述的科里奥利陀螺仪,其特征在于,科里奥利陀螺仪(1)的质量系统由第一质量部分(10)和第二质量部分(20)组成,其中第二质量部分(20)由于科里奥利力产生的偏移能被检测,且其中运动校正电极(24、25、26、27)是第二质量部分(20)的集成组成部分。
3.根据前述任一项权利要求所述的科里奥利陀螺仪,其特征在于,质量系统由于科里奥利力产生的偏移可通过用于偏移补偿的恢复力的产生来进行检测。
4.根据前述任一项权利要求所述的科里奥利陀螺仪,其特征在于,多个固定校正电极(31、32、41、42)在每种情况下具有相同数量的第一固定校正电极(31、41)和第二固定校正电极(32、42),其中第一固定校正电极(31、41)从相应锚固结构(33、43)沿着第一轴在第一方向延伸,而第二固定校正电极(32、42)从相应锚固结构(33、43)沿着第一轴在第二方向延伸,其中第二方向与第一方向相反,以及
多个运动校正电极(24、25、26、27)在每种情况下具有相同数量的第一运动校正电极(24、26)和第二运动校正电极(25、27),其中第一运动校正电极(24、26)从质量系统沿着第一轴在第二方向延伸,而第二运动校正电极(25、27)从质量系统沿着第一轴在第一方向延伸。
5.根据前述任一项权利要求所述的科里奥利陀螺仪,其特征在于,
每个固定校正电极(31、32、41、42)配有运动校正电极(24、25、26、27),其中相应固定校正电极(31、32、41、42)和其配有的运动校正电极(24、25、26、27)之间的距离,小于相应固定校正电极(31、32、41、42)和另一相邻的运动校正电极(24、25、26、27)之间的距离,
第一校正单元(30)中的每个第一固定校正电极(31)从其配有的第一运动校正电极(24)看时沿着第二轴设置在第三方向,而每个第二固定校正电极(32)从其配有的第二运动校正电极(25)看时沿着第二轴设置在第四方向,其中第四方向与第三方向相反,以及
第二校正单元(40)中的每个第一固定校正电极(41)从其配有的第一运动校正电极(26)看时沿着第二轴设置在第四方向,而每个第二固定校正电极(42)从其配有的第二运动校正电极(27)看时沿着第二轴设置在第三方向。
6.根据权利要求5所述的科里奥利陀螺仪,其特征在于,科里奥利陀螺仪(1)包括多个相同构成的第一校正单元(30)和/或多个相同构成的第二校正单元(40)。
7.根据权利要求6所述的科里奥利陀螺仪,其特征在于,科里奥利陀螺仪(1)具有相同数量的第一和第二校正单元(30、40)。
8.根据前述任一项权利要求所述的科里奥利陀螺仪,其特征在于,固定校正电极(31、32、41、42)和/或运动校正电极(24、25、26、27)各自具有最大为10μm的宽度。
9.根据前述任一项权利要求所述的科里奥利陀螺仪,还具有至少一个控制单元(50、60),其与各校正单元(30、40)电连接且适于向它们施加至少暂时恒定的校正电压。
10.一种具有至少两个科里奥利陀螺仪(100、200)的系统,该至少两个科里奥利陀螺仪各自包括可予以激发来平行于第一轴从事振荡的质量系统,从而可以检测该质量系统由于科里奥利力沿着垂直于第一轴的第二轴的偏移,且至少两个科里奥利陀螺仪互相耦联,
其特征在于,所述系统包括至少一个第一校正单元(130、230)以及至少一个第二校正单元(140、240),第一和第二校正单元各自包括多个固定校正电极(31、32、41、42)和运动校正电极(24、25、26、27),其中固定校正电极(31、32、41、42)在第一轴的方向延伸且通过相应的锚固结构(33,43)稳固地连接于基底,而运动校正电极(24、25、26、27)是至少两个科里奥利陀螺仪(100、200)中的至少一个的质量系统的一部分。
11.根据权利要求10所述的系统,其特征在于,
多个固定校正电极(31、32、41、42)在每种情况下具有相同数量的第一固定校正电极(31、41)和第二固定校正电极(32、42),其中第一固定校正电极(31、41)从相应的锚固结构(33、43)沿着第一轴在第一方向延伸,而第二固定校正电极(32、42)从相应的锚固结构(33、43)沿着第一轴在第二方向延伸,其中第二方向与第一方向相反,以及
多个运动校正电极(24、25、26、27)在每种情况下具有相同数量的第一运动校正电极(24、26)和第二运动校正电极(25、27),其中第一运动校正电极(24、26)从质量系统沿着第一轴在第二方向延伸,而第二运动校正电极(25、27)从质量系统沿着第一轴在第一方向延伸。
12.根据权利要求10或11所述的系统,其特征在于,
每个固定校正电极(31、32、41、42)配有运动校正电极(24、25、26,27),其中相应固定校正电极(31、32、41、42)和其配有的运动校正电极(24、25、26、27)之间的距离,小于相应固定校正电极(31、32、41、42)和另一个相邻运动校正电极(24、25、26、27)之间的距离,
第一校正单元(130,230)中的每个第一固定校正电极(31)从其配有的第一运动校正电极(24)看时沿着第二轴设置在第三方向,而每个第二固定校正电极(32)从其配有的第二运动校正电极(25)看时沿着第二轴设置在第四方向,其中第四方向与第三方向相反,以及
第二校正单元(140,240)中的每个第一固定校正电极(41)从其配有的第一运动校正电极(26)看时沿着第二轴设置在第四方向,而每个第二固定校正电极(42)从其配有的第二运动校正电极(27)看时沿着第二轴设置在第三方向。
13.根据权利要求10-12中任一项所述的系统,其特征在于,
至少两个科里奥利陀螺仪(100、200)相关于激发运动彼此耦联,激发运动激发质量系统来从事平行于第一轴的振荡,以及
每个科里奥利陀螺仪(100、200)包括至少一个第一校正单元(130、230)以及至少一个第二校正单元(140、240)。
14.根据权利要求13所述的系统,其特征在于,
第一科里奥利陀螺仪(100)的至少一个第一校正单元(130)设计为与第二科里奥利陀螺仪(200)的至少一个第一校正单元(230)相同,以及
第一科里奥利陀螺仪(100)的至少一个第二校正单元(140)设计为与第二科里奥利陀螺仪(200)的至少一个第二校正单元(240)相同。
15.根据权利要求10-12中任一项所述的系统,其特征在于,
至少两个科里奥利陀螺仪(100、200)相关于由于沿第二轴作用的科里奥利力产生的质量系统的偏移的检测互相耦联,以及
科里奥利陀螺仪(100、200)中的至少一个包括至少一个第一校正单元(130、230),以及科里奥利陀螺仪(100、200)中的至少一个包括至少一个第二校正单元(140、240)。
16.根据权利要求10-15中任一项所述的系统,进一步包括至少一个控制单元,该控制单元与校正单元(130、140、230、240)电连接且适于向它们施加至少暂时恒定的校正电压。
17.一种用于减小科里奥利陀螺仪(1)的90°相位差偏离的方法,该科里奥利陀螺仪包括:
可予以激发来平行于第一轴从事振荡的质量系统,从而可以检测该质量系统由于科里奥利力沿着垂直于第一轴的第二轴的偏移,以及
各自包括多个固定校正电极(31、32、41、42)和多个运动校正电极(24、25、26、27)的至少一个第一校正单元(30)和至少一个第二校正单元(40),其中固定校正电极(31、32、41、42)在第一轴的方向延伸且通过相应的锚固结构(33、43)稳固地连接于基底,而运动校正电极(24、25、26、27)构成质量系统的一部分,
其特征在于,校正单元(30、40)被供以至少暂时恒定的校正电压。
18.根据权利要求17所述的方法,其特征在于,向校正单元施加校正电压涉及不同的量值,且作为有待减小的90°相位差的函数来进行。
19.根据权利要求17或18所述的方法,其特征在于,校正电压的量值作为质量系统的谐振频率的预定变化的函数并考虑有待减小的沿第二轴的90°相位差偏离来进行调整。
20.根据权利要求17-19中任一项所述的方法,其特征在于,
科里奥利陀螺仪(1)包括多个相同构成的第一校正单元(30)和/或多个相同构成的第二校正单元(40),以及
施加到相同构成的校正单元(30、40)的校正电压的总和抵消。
21.一种减小至少两个科里奥利陀螺仪(100、200)的系统中的90°相位差偏离的方法,该至少两个科里奥利陀螺仪各自包括可予以激发来平行于第一轴从事振荡的质量系统,从而可以检测该质量系统由于科里奥利力沿着垂直于第一轴设置的第二轴的偏移,且至少两个科里奥利陀螺仪互相耦联;所述系统包括至少一个第一校正单元(130、230)以及至少一个第二校正单元(140、240),第一和第二校正单元各自包括多个固定校正电极(31、32、41、42)和运动校正电极(24、25、26、27),其中固定校正电极(31、32、41、42)在第一轴的方向延伸且通过相应的锚固结构(33,43)稳固地连接于基底,而运动校正电极(24、25、26、27)是至少两个科里奥利陀螺仪(100、200)中的至少一个的质量系统的一部分,
其特征在于,至少暂时恒定的校正电压被施加到校正单元(130、230、140、240)。
CN201180007362.8A 2010-02-02 2011-02-01 具有校正单元的科里奥利陀螺仪及减小90°相位差偏离的方法 Active CN102812330B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010006584A DE102010006584B4 (de) 2010-02-02 2010-02-02 Corioliskreisel mit Korrektureinheiten und Verfahren zur Reduktion des Quadraturbias
DE102010006584.6 2010-02-02
PCT/EP2011/000444 WO2011095317A2 (de) 2010-02-02 2011-02-01 Corioliskreisel mit korrektureinheiten und verfahren zur reduktion des quadraturbias

Publications (2)

Publication Number Publication Date
CN102812330A true CN102812330A (zh) 2012-12-05
CN102812330B CN102812330B (zh) 2016-01-06

Family

ID=44279187

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180007362.8A Active CN102812330B (zh) 2010-02-02 2011-02-01 具有校正单元的科里奥利陀螺仪及减小90°相位差偏离的方法

Country Status (14)

Country Link
US (1) US9052196B2 (zh)
EP (1) EP2531813B1 (zh)
JP (1) JP5615383B2 (zh)
KR (1) KR101518405B1 (zh)
CN (1) CN102812330B (zh)
AU (1) AU2011212653B2 (zh)
BR (1) BR112012018666A2 (zh)
CA (1) CA2787212C (zh)
DE (1) DE102010006584B4 (zh)
IL (1) IL221060A (zh)
IN (1) IN2012DN06594A (zh)
RU (1) RU2554312C2 (zh)
WO (1) WO2011095317A2 (zh)
ZA (1) ZA201205119B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105841684A (zh) * 2015-01-29 2016-08-10 罗伯特·博世有限公司 转速传感器和用于运行转速传感器的方法
CN106104205A (zh) * 2014-03-14 2016-11-09 诺思罗普·格鲁曼·利特夫有限责任公司 用于优化科里奥利陀螺仪的接通时间的方法以及适用于此的科里奥利陀螺仪
CN107003131A (zh) * 2014-12-18 2017-08-01 赖斯阿克里奥公司 用于微机电陀螺仪的正交补偿方法和陀螺仪传感器
CN108535505A (zh) * 2017-03-06 2018-09-14 恩智浦美国有限公司 具有平面内正交补偿的mems装置
CN109387659A (zh) * 2017-08-08 2019-02-26 罗伯特·博世有限公司 转速传感器,用于制造转速传感器的方法
CN111670338A (zh) * 2017-08-11 2020-09-15 Hrl实验室有限责任公司 具有高阶旋转对称机械结构和32个电极的硅多模科里奥利振动陀螺仪

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9097524B2 (en) * 2009-09-11 2015-08-04 Invensense, Inc. MEMS device with improved spring system
JP5773844B2 (ja) * 2011-10-31 2015-09-02 三菱プレシジョン株式会社 出力安定性に優れた振動型ジャイロ
CN103115618B (zh) * 2011-11-17 2015-07-08 西安邮电学院 一种基于振动式微机械陀螺的正交误差和寄生科氏力的分离测试方法
DE102014010056B4 (de) * 2014-07-07 2016-02-25 Northrop Grumman Litef Gmbh Steuervorrichtung und Verfahren zur Minimierung von Skalenfaktorfehlern eines Drehratensensors
US9726491B2 (en) 2014-07-25 2017-08-08 Northrop Grumman Systems Corporation Vibrating-mass gyroscope systems and method
US9534897B2 (en) * 2015-01-12 2017-01-03 The Boeing Company High bandwidth Coriolis vibratory gyroscope (CVG) with in-situ bias self-calibration
US9810535B2 (en) * 2015-02-10 2017-11-07 Northrop Grumman Systems Corporation Vibrating-mass gyroscope systems and method
US10359284B2 (en) 2015-12-10 2019-07-23 Invensense, Inc. Yaw rate gyroscope robust to linear and angular acceleration
RU173867U1 (ru) * 2016-12-15 2017-09-15 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Вибрационный гироскоп LL-типа
US10466067B2 (en) * 2017-01-19 2019-11-05 The Boeing Company System and method for gyro rate computation for a Coriolis Vibrating Gyroscope
DE102017213815A1 (de) * 2017-08-08 2019-02-14 Robert Bosch Gmbh Drehratensensor mit einem Substrat, Herstellungsverfahren für einen Drehratensensor
JP7167425B2 (ja) * 2017-10-20 2022-11-09 セイコーエプソン株式会社 物理量センサー、慣性計測装置、移動体測位装置、携帯型電子機器、電子機器、および移動体
JP7310988B2 (ja) * 2017-10-20 2023-07-19 セイコーエプソン株式会社 物理量センサー、慣性計測装置、移動体測位装置、携帯型電子機器、電子機器、および移動体
CN109931959B (zh) * 2019-03-27 2023-03-31 河海大学常州校区 硅微陀螺仪正交误差校正方法
JP7204576B2 (ja) * 2019-05-15 2023-01-16 株式会社東芝 センサ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050166675A1 (en) * 2004-01-30 2005-08-04 Hobbs Larry P. Micromachined vibratory gyroscope and method with electronic coupling
US7051590B1 (en) * 1999-06-15 2006-05-30 Analog Devices Imi, Inc. Structure for attenuation or cancellation of quadrature error
CN1898528A (zh) * 2003-12-23 2007-01-17 利特夫有限责任公司 补偿科式陀螺正交偏差的方法和实现该方法的科式陀螺
US20080282833A1 (en) * 2005-12-13 2008-11-20 Thales Vibratory Gyroscope Balanced by an Electrostatic Device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530342A (en) * 1994-09-30 1996-06-25 Rockwell International Corporation Micromachined rate sensor comb drive device and method
DE19503236B4 (de) * 1995-02-02 2006-05-24 Robert Bosch Gmbh Sensor aus einem mehrschichtigen Substrat
US6250156B1 (en) * 1996-05-31 2001-06-26 The Regents Of The University Of California Dual-mass micromachined vibratory rate gyroscope
US5992233A (en) 1996-05-31 1999-11-30 The Regents Of The University Of California Micromachined Z-axis vibratory rate gyroscope
US5945599A (en) * 1996-12-13 1999-08-31 Kabushiki Kaisha Toyota Chuo Kenkyusho Resonance type angular velocity sensor
US6122961A (en) * 1997-09-02 2000-09-26 Analog Devices, Inc. Micromachined gyros
JP3489487B2 (ja) * 1998-10-23 2004-01-19 トヨタ自動車株式会社 角速度検出装置
JP3659160B2 (ja) * 2000-02-18 2005-06-15 株式会社デンソー 角速度センサ
JP3525862B2 (ja) * 2000-05-22 2004-05-10 トヨタ自動車株式会社 センサ素子及びセンサ装置
JP4555571B2 (ja) * 2002-01-12 2010-10-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 回転速度センサ
JP2005514608A (ja) * 2002-01-12 2005-05-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 回転速度センサ
DE10237410A1 (de) 2002-01-12 2003-08-28 Bosch Gmbh Robert Drehratensensor
JP2004170145A (ja) * 2002-11-18 2004-06-17 Denso Corp 容量式力学量センサ
US7703324B2 (en) * 2007-05-11 2010-04-27 Honeywell International Inc. MEMS tuning fork gyro sensitive to rate of rotation about two axes
DE102007030120B4 (de) 2007-06-29 2010-04-08 Litef Gmbh Drehratensensor
RU2347191C1 (ru) * 2007-11-08 2009-02-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Электроприбор" Способ подстройки резонансной частоты подвеса подвижной массы микромеханического гироскопа по оси вторичных колебаний и микромеханический гироскоп
JP5228675B2 (ja) * 2008-07-29 2013-07-03 富士通株式会社 角速度センサおよび電子装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7051590B1 (en) * 1999-06-15 2006-05-30 Analog Devices Imi, Inc. Structure for attenuation or cancellation of quadrature error
CN1898528A (zh) * 2003-12-23 2007-01-17 利特夫有限责任公司 补偿科式陀螺正交偏差的方法和实现该方法的科式陀螺
US20050166675A1 (en) * 2004-01-30 2005-08-04 Hobbs Larry P. Micromachined vibratory gyroscope and method with electronic coupling
US20080282833A1 (en) * 2005-12-13 2008-11-20 Thales Vibratory Gyroscope Balanced by an Electrostatic Device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106104205A (zh) * 2014-03-14 2016-11-09 诺思罗普·格鲁曼·利特夫有限责任公司 用于优化科里奥利陀螺仪的接通时间的方法以及适用于此的科里奥利陀螺仪
CN106104205B (zh) * 2014-03-14 2019-05-28 诺思罗普·格鲁曼·利特夫有限责任公司 用于优化科里奥利陀螺仪的接通时间的方法以及适用于此的科里奥利陀螺仪
CN107003131A (zh) * 2014-12-18 2017-08-01 赖斯阿克里奥公司 用于微机电陀螺仪的正交补偿方法和陀螺仪传感器
CN105841684A (zh) * 2015-01-29 2016-08-10 罗伯特·博世有限公司 转速传感器和用于运行转速传感器的方法
CN108535505A (zh) * 2017-03-06 2018-09-14 恩智浦美国有限公司 具有平面内正交补偿的mems装置
CN109387659A (zh) * 2017-08-08 2019-02-26 罗伯特·博世有限公司 转速传感器,用于制造转速传感器的方法
CN111670338A (zh) * 2017-08-11 2020-09-15 Hrl实验室有限责任公司 具有高阶旋转对称机械结构和32个电极的硅多模科里奥利振动陀螺仪
CN111670338B (zh) * 2017-08-11 2022-05-17 Hrl实验室有限责任公司 具有科里奥利振动陀螺仪谐振器的角度传感器

Also Published As

Publication number Publication date
BR112012018666A2 (pt) 2016-04-05
ZA201205119B (en) 2013-03-27
WO2011095317A2 (de) 2011-08-11
WO2011095317A3 (de) 2011-10-27
US9052196B2 (en) 2015-06-09
CA2787212C (en) 2016-05-03
AU2011212653A1 (en) 2012-08-16
AU2011212653B2 (en) 2014-01-09
IN2012DN06594A (zh) 2015-10-23
EP2531813B1 (de) 2015-05-27
IL221060A0 (en) 2012-09-24
DE102010006584A1 (de) 2011-10-06
JP2013519071A (ja) 2013-05-23
JP5615383B2 (ja) 2014-10-29
KR101518405B1 (ko) 2015-05-07
IL221060A (en) 2017-06-29
RU2554312C2 (ru) 2015-06-27
EP2531813A2 (de) 2012-12-12
US20130055787A1 (en) 2013-03-07
CN102812330B (zh) 2016-01-06
KR20120105042A (ko) 2012-09-24
CA2787212A1 (en) 2011-08-11
RU2012129948A (ru) 2014-03-10
DE102010006584B4 (de) 2012-09-27

Similar Documents

Publication Publication Date Title
CN102812330A (zh) 具有校正单元的科里奥利陀螺仪及减小90°相位差偏离的方法
US7707886B2 (en) Micro-machined gyrometric sensor for differential measurement of the movement of vibrating masses
CN101151507B (zh) 振荡微机械角速度传感器
US9574879B2 (en) MEMS angular inertial sensor operating in tuning fork mode
KR101166866B1 (ko) 수평으로 배향된 구동 전극을 구비한 mems자이로스코프
US7316161B2 (en) Rotation rate sensor
US20030183007A1 (en) Rotational speed sensor
EP1873489A1 (en) Force rebalancing for MEMS inertial sensors by using time-varying voltages
KR20090087133A (ko) 회전 속도 센서
CN103185575A (zh) 微转速传感器以及微转速传感器的操作方法
JP2005514608A (ja) 回転速度センサ
US9273962B2 (en) Physical quantity sensor and electronic device
US7159460B2 (en) Micromachined gyroscopic sensor with detection in the plane of the machined wafer
JP2005514608A6 (ja) 回転速度センサ
CN101939653A (zh) 具有垂直集成的电子器件和晶片级密封式封装的x-y轴双质量块音叉陀螺仪
JP2013210283A (ja) ロールオーバージャイロセンサ
US8104344B2 (en) Angular velocity sensor utilizing coriolis force

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant