CN102810678B - 一种直接甲醇燃料电池催化剂及其制备方法 - Google Patents

一种直接甲醇燃料电池催化剂及其制备方法 Download PDF

Info

Publication number
CN102810678B
CN102810678B CN201210296964.6A CN201210296964A CN102810678B CN 102810678 B CN102810678 B CN 102810678B CN 201210296964 A CN201210296964 A CN 201210296964A CN 102810678 B CN102810678 B CN 102810678B
Authority
CN
China
Prior art keywords
carbon black
reaction
fuel cell
nitrogen
direct methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210296964.6A
Other languages
English (en)
Other versions
CN102810678A (zh
Inventor
徐维林
孙秀娟
张玉微
邢巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Institute Of Energy Storage Materials & Devices
Original Assignee
Changchun Institute of Applied Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Applied Chemistry of CAS filed Critical Changchun Institute of Applied Chemistry of CAS
Priority to CN201210296964.6A priority Critical patent/CN102810678B/zh
Publication of CN102810678A publication Critical patent/CN102810678A/zh
Application granted granted Critical
Publication of CN102810678B publication Critical patent/CN102810678B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Abstract

本发明提供了一种直接甲醇燃料电池催化剂及其制备方法,该催化剂包括炭黑和掺杂在其中的氟和氮,其中氟为催化剂重量的0.1%~20%,氮为催化剂重量的0.1%~20%。与现有技术氮掺杂的非金属氧还原催化剂相比,本发明以炭黑为碳材料,先后掺杂氟原子和氮原子,首先,氟原子和氮原子均与氧的电负性不同,并且氟原子电负性较大,具有较强的吸电子性,两者协同作用可以减弱氧分子中氧原子之间化学键的键能,提高氧还原反应速率;其次,氟原子和氮原子两者的协同作用也影响炭黑的电子分布,改变了碳原子键价方式,提高了催化剂的氧还原反应催化活性;再次,炭黑微孔含量较少,易于反应物的运输,并且其制备方法简单,成本较低。

Description

一种直接甲醇燃料电池催化剂及其制备方法
技术领域
本发明属于催化剂技术领域,尤其涉及一种直接甲醇燃料电池及其制备方法。
背景技术
燃料电池是一种能量转换装置,能够通过发生在阳极和阴极的氧化还原反应将化学能转化为电能,其具有操作温度低、能量效率高、无电解质腐蚀等特点,是电化学和能源科学领域的一个研究热点。燃料电池根据电解质的不同,可分为碱性燃料电池、磷酸型燃料电池、熔融碳酸盐燃料电池、固体氧化物燃料电池及质子交换膜燃料电池。直接甲醇燃料电池是从质子交换膜燃料电池发展而来,具有功率密度高、能量转化效率高和燃料便于携带与易于储存等优点,是一种理想的便携式可移动能源。但是,其使用过程面临一个严重的技术问题为甲醇透过问题,其严重阻碍了直接甲醇燃料电池的产业化进程。
解决甲醇渗透主要有两种途径:使用甲醇渗透率低的电解质膜和使用抗甲醇氧化的氧还原催化剂。直接甲醇燃料电池阴极催化剂可分为两种:非贵金属催化剂和Pt催化剂。其中,催化活性较高的氧还原催化剂为Pt催化剂。然而,金属铂的价格及来源短缺限制了Pt催化剂的应用,并且在氧化还原过程中Pt催化剂容易因一氧化碳毒化和甲醇氧化而失去活性。掺杂有过渡金属及其氧化物的Pt合金催化剂同时具有铂的高活性与过渡金属的抗甲醇性,但是过渡金属易发生溶解,并能迁移到阳极再沉积,占据电极表面的活性位点。
石墨碳具有较高的比表面积、良好的导电性和较佳的孔结构,因此广泛用作催化剂的载体,同时石墨碳还可以通过多种方法进行改性,达到不同的效果。其中,通过掺杂氮或者硼元素可以改变材料的电子性质,并且氮掺杂碳材料作为非金属氧还原催化剂已得到广泛的应用,Dacheng Wei等采用CVD法制备了氮掺杂石墨烯;Nan Li等利用弧放电方法得到了氮掺杂的石墨烯材料,其中掺杂后的石墨碳材料能使结构发生变化,电导率提高,并且可作为还原催化剂;Qu等利用气相沉积法制备了氮掺杂的石墨烯。由于氮掺杂碳材料不含金属元素,因此可以有效解决甲醇渗透造成的催化剂氧化及一氧化碳中毒等问题,但其催化活性较差,并且石墨烯、碳纳米管等碳材料制备方法复杂,成本较高。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种直接甲醇燃料电池催化剂及其制备方法,该催化剂抗一氧化碳中毒、耐甲醇氧化同时具有良好的催化活性。
本发明提供了一种直接甲醇燃料电池催化剂,包括炭黑和掺杂在其中的氟和氮;
所述氟的含量为催化剂总重量的0.1%~20%;
所述氮的含量为催化剂总重量的0.1%~20%。
本发明提供了一种直接甲醇燃料电池催化剂的制备方法,包括以下步骤:
A)将炭黑与氟化铵混合,加热进行高温分解反应后,继续加热进行氟掺杂反应,得到氟掺杂的炭黑材料,所述炭黑与氟化铵的质量比为2.5~500:1;
B)将所述氟掺杂的炭黑材料与三聚氰胺混合,加热进行高温分解反应后,继续加热进行氮掺杂反应,得到直接甲醇燃料电池催化剂,所述氟掺杂的炭黑材料与三聚氰胺的质量比为1~660:1。
优选的,所述步骤A中高温分解反应的反应温度为300℃~500℃,反应时间为0.5~7h。
优选的,所述步骤A中氟掺杂反应的反应温度为750℃~1000℃,反应时间为0.5~6h。
优选的,所述步骤B中高温分解反应的反应温度为300℃~500℃,反应时间为0.5~7h。
优选的,所述步骤B中氮掺杂反应的反应温度为750℃~1000℃,反应时间为0.5~6h。
优选的,所述步骤A具体为:
A1)将炭黑、氟化铵与水混合超声20~40min,得到混合液;
A2)将所述混合液离心,干燥,得到混合物;
A3)将所述混合物加热进行高温分解反应后,继续加热进行氟掺杂反应,得到氟掺杂的炭黑材料。
优选的,所述步骤A1还包括:
将所述混合液搅拌20~26h。
优选的,所述步骤A2还包括:
将所述混合物研磨20~40min。
优选的,所述步骤B具体为:
B1)将所述氟掺杂的炭黑材料与三聚氰胺混合研磨20~40min,得到粉末;
B2)将所述粉末加热进行高温分解反应后,继续加热进行氟掺杂反应,得到直接甲醇燃料电池催化剂。
本发明提供了一种直接甲醇燃料电池催化剂及其制备方法,该催化剂包括炭黑和掺杂在其中的氟原子和氮原子,其中氟原子的含量为催化剂总重量的0.1%~20%,氮原子的含量为催化剂总重量的0.1%~20%。与现有技术氮掺杂的非金属氧还原催化剂相比,本发明以炭黑为碳材料,先后掺杂氟原子和氮原子,制备得到直接甲醇燃料电池催化剂。首先,氟原子和氮原子均与氧的电负性不同,并且氟原子电负性较大,具有较强的吸电子性,两者协同作用可以减弱氧分子中氧原子之间化学键的键能,提高氧还原反应速率;其次,氟原子和氮原子两者的协同作用也影响炭黑的电子分布,改变了碳原子的键价方式,提高了催化剂的氧还原反应催化活性;再次,炭黑微孔含量较少,易于反应物的运输,并且其制备方法简单,成本较低。
实验结果表明,本发明制备的氧还原催化剂的氧还原峰电位为-280~-226mV,氧还原起始电位为-80~-17mV。
附图说明
图1为本发明实施例1制备的氟氮共掺杂的乙炔炭黑在0.1mol/L KOH溶液中的循环伏安曲线图;
图2为本发明实施例1制备的氟氮共掺杂的乙炔炭黑、对比例1制备的氟掺杂的乙炔炭黑和对比例2制备的氮掺杂的乙炔炭黑在0.1mol/L KOH溶液中的线性伏安扫描曲线图;
图3为本发明实施例1制备的氟氮共掺杂的乙炔炭黑吸附一氧化碳和甲醇后在0.1mol/L KOH溶液中的循环伏安曲线图;
图4为本发明实施例1制备的氟氮共掺杂的乙炔炭黑在0.1mol/L KOH溶液中不同扫描圈数的循环伏安曲线图;
图5为本发明实施例2制备的氟氮共掺杂的Activated carbon VulcanXC-72在0.1mol/L KOH溶液中的循环伏安曲线图;
图6为本发明实施例2制备的氟氮共掺杂的Activated carbon VulcanXC-72在0.1mol/L KOH溶液中的线性伏安扫描曲线图;
图7为本发明实施例3制备的氟氮共掺杂的BP 2000在0.1mol/L KOH溶液中的循环伏安曲线图;
图8为本发明实施例3制备的氟氮共掺杂的BP 2000在0.1mol/L KOH溶液中的线性伏安扫描曲线图;
图9为本发明实施例3制备的氟氮共掺杂的BP 2000在0.5mol/L H2SO4溶液中的循环伏安曲线图;
图10为本发明实施例3制备的氟氮共掺杂的BP 2000吸附一氧化碳和甲醇后在0.5mol/L H2SO4溶液中的循环伏安曲线图;
图11为本发明对比例1制备的氟掺杂的乙炔炭黑在0.1mol/L KOH溶液中的循环伏安曲线图;
图12为本发明对比例2制备的氮掺杂的乙炔炭黑在0.1mol/L KOH溶液中的循环伏安曲线图;
图13为本发明对比例3商业Pt/C吸附一氧化碳和甲醇后的循环伏安曲线图。
具体实施方式
本发明提供了一种直接甲醇燃料电池催化剂,包括炭黑和掺杂在其中的氟和氮。其中所述氟含量为催化剂总重量的0.1%~20%,优选为0.1%~10%,更优选为0.1%~8%,所述氮含量为催化剂总重量的0.1%~20%,优选为1%~15%,再优选为5%~15%,更优选为5%~10%。所述炭黑为本领域技术人员熟知的炭黑材料,优选为乙炔炭黑以及市售的Vulcan XC-72(CabotCorpration),Ketjen Black EC(Akzo),Black Pearls 2000(Asian-Pacific SpecialtyChemicals Kuala Lumpur),Shawinigan(Gulf oil),Denka black(Denkikagakukogyo)等炭黑材料。炭黑离子与空气接触会自动氧化,因此与石墨烯相比较,采用炭黑作为碳材料无需进行氧化处理,其制备方法简单,成本较低,并且炭黑微孔含量较少,有利于反应物的运输。
与现有技术氮掺杂碳材料相比,本发明在炭黑中依次掺杂氟原子和氮原子。首先,氟原子和氮原子均与氧的电负性不同,并且氟原子电负性较大,具有较强的吸电子性,两者协同作用可以减弱氧分子中氧原子之间化学键的键能,提高氧还原反应速率;其次,氟原子和氮原子两者的协同作用也影响炭黑的电子分布,改变了碳原子的键价方式,提高了催化剂的氧还原反应催化活性。
本发明还提供了一种直接甲醇燃料电池催化剂的制备方法,包括以下步骤:A)将炭黑与氟化铵混合,加热进行高温分解反应后,继续加热进行氟掺杂反应,得到氟掺杂的炭黑材料,所述炭黑与氟化铵的质量比为2.5~500:1,优选为2.5~300:1,更优选为2.5~100:1;B)将所述氟掺杂的炭黑材料与三聚氰胺混合,加热进行高温分解反应后,继续加热进行氮掺杂反应,得到直接甲醇燃料电池催化剂,所述氟掺杂的炭黑材料与三聚氰胺的质量比为1~660:1,优选为1~400:1,更优选为1~200:1。
其中,步骤A中以氟化铵为氟源,高温条件下氟化铵分解为氨气和氟化氢,有利于掺杂反应的发生。所述分解反应的反应温度为300℃~500℃,优选为340℃~450℃,更优选为380℃~420℃,温度过高氟化铵会分解产生有毒的腐蚀性气体。反应时间为0.5~7h,优选为1~6.5h,更优选为2~6h。
所述氟掺杂反应的反应温度为750℃~1000℃,优选为750℃~900℃,更优选为750℃~850℃,反应时间为0.5~6h,优选为1~5.5h,更优选为2~5h。氟化氢与炭黑发生氟掺杂反应,氟原子通过化学键与碳原子相连接,形成碳氟键。
本发明步骤B中以三聚氰胺为氮源,在高温条件下三聚氰胺发生分解反应,所述高温分解反应的反应温度为300℃~500℃,优选为340℃~450℃,更优选为380℃~420℃,反应时间为0.5~7h,优选为1~6.5h,更优选为2~6h。
所述氮掺杂反应的反应温度750℃~1000℃,优选为750℃~900℃,更优选为750℃~850℃,反应时间为0.5~6h,优选为1~5.5h,更优选为2~5h。经过氮掺杂反应,氮原子通过化学键与碳原子相连接,形成碳氮键。
按照本发明,所述步骤A具体为:A1)将炭黑、氟化铵与水混合超声20~40min,得到混合液;A2)将所述混合液离心,干燥,得到混合物;A3)将所述混合物加热进行高温分解反应后,继续加热进行氟掺杂反应,得到氟掺杂的炭黑材料。
其中,步骤A1为溶液法,将氟化铵完全溶解在水中,与炭黑超声混合20~40min,优选为25~35min,超声后氟离子吸附在炭黑表面,有利于掺杂反应的发生,此步骤优选还包括将超声后的混合溶液搅拌20~26h,优选为22~25h,可以使氟离子更均匀地吸附在炭黑表面。
所述步骤A2具体为:将所述混合液在转速为7000~13000rpm/min的条件下离心,优选为8000~12000rpm/min,更优选为9000~11000rpm/min,50℃~70℃干燥,优选为55℃~65℃,得到混合物。所述混合物优选研磨20~40min,优选为25~35min,使混合物混合更加均匀。
按照本发明所述步骤B具体为:B1)将所述氟掺杂的炭黑材料与三聚氰胺混合研磨20~40min,得到粉末;B2)将所述粉末加热进行高温分解反应后,继续加热进行氟掺杂反应,得到直接甲醇燃料电池催化剂。
实验结果表明,本发明制备的直接甲醇燃料电池催化剂在酸性溶液和碱性溶液中均具有良好的催化活性。
为了进一步说明本发明,以下结合实施例对本发明提供的一种直接甲醇燃料电池催化剂及其制备方法进行详细描述。
以下实施例中所用试剂均为市售,所用乙炔炭黑为sterm公司生产,纯度为99.99%,50%压缩的乙炔炭黑;所用Nafion溶液为Aldrich公司生产,质量浓度为5%。
实施例1
1.1将0.14g氟化铵溶于30.0ml水中,搅拌至溶解,加入0.35g乙炔炭黑,超声分散30min,搅拌24h,在转速为10000rpm/min的条件下离心10min,弃上清,得到的黑色沉淀60℃干燥。将得到的混合物研磨30min,升温至400℃高温处理6h后,升温至800℃高温处理5h,得到氟掺杂的乙炔炭黑。
1.2将0.1g 1.1中得到的氟掺杂的乙炔炭黑与0.1g三聚氰胺研磨30min,升温至400℃高温处理6h后,继续升温至800℃高温处理5h,得到氟氮共掺杂的乙炔炭黑。
1.3将5mg 1.2中得到的氟氮共掺杂的乙炔炭黑与100μl Nafion溶液超声分散30min,得到溶液;取10μl所述溶液滴涂于旋转圆盘电极上,室温晾干后,得薄膜电极。
利用以SCE电极为参比电极、Pt片为对电极的三电极体系,在经过氧气除氮的0.1mol/L的KOH溶液中对1.3中得到的薄膜电极进行循环伏安测试,扫描速度为50mV/s,得到其循环伏安曲线,如图1所示,由图1可知1.2中得到的氟氮共掺杂的乙炔炭黑的氧还原峰电位为-280mV。
利用以SCE电极为参比电极、Pt片为对电极的三电极体系,在经过氧气除氮的0.1mol/L的KOH溶液中对1.3中得到的薄膜电极进行线性伏安扫描测试,扫描速度为5mV/s,得到其线性伏安扫描曲线,如图2中a所示,由图2可知1.2中得到的氟氮共掺杂的乙炔炭黑的氧还原起始电位为-50mV。
利用以SCE电极为参比电极、Pt片为对电极的三电极体系,向0.1mol/L的KOH溶液中通入一氧化碳10min,使电极吸附一氧化碳饱和后,通入氧气30min,除去溶液中多余的一氧化碳。对1.3中得到的薄膜电极进行循环伏安测试,扫描速度为50mV/s,得到其循环伏安曲线,如图3所示,结果表明其循环伏安曲线保持不变。
将1.0ml甲醇加至经过氧气除氮的0.1mol/L的KOH溶液中,搅拌均匀,在其中利用以SCE电极为参比电极、Pt片为对电极的三电极体系,对1.3中得到的薄膜电极进行循环伏安测试,扫描速度为50mV/s,得到其循环伏安曲线,如图3所示,结果表明其循环伏安曲线保持不变。
利用以SCE电极为参比电极、Pt片为对电极的三电极体系,在经过氧气除氮的0.1mol/L的KOH溶液中对1.3中得到的薄膜电极进行循环伏安测试,扫描速度为50mV/s,扫描圈数为2000圈,记录第1圈和第2001圈,得到其循环伏安曲线,如图4所示,结果表明两次循环伏安曲线基本重合,说明氟氮共掺杂的乙炔炭黑具有良好的稳定性。
实施例2
2.1将0.2g氟化铵溶于30.0ml水中,搅拌至溶解,加入0.35g Activatedcarbon Vulcan XC-72(Cabot Corpration),超声分散30min,搅拌24h后,真空抽滤干燥。将得到的混合物研磨30min,在单温区滑轨炉内升温至400℃高温处理0.5h后,升温至900℃高温处理1h,得到氟掺杂的Activated carbonVulcan XC-72。
2.2将0.1g 2.1中得到的氟掺杂的Activated carbon Vulcan XC-72与0.1g三聚氰胺研磨30min,升温至400℃高温处理0.5h后,继续升温至900℃高温处理1h,得到氟氮共掺杂的Activated carbon Vulcan XC-72。
2.3将5mg 2.2中得到的氟氮共掺杂的Activated carbon Vulcan XC-72与100μl Nafion溶液超声分散30min,得到溶液;取10μl所述溶液滴涂于旋转圆盘电极上,室温晾干后,得薄膜电极。
利用以SCE电极为参比电极、Pt片为对电极的三电极体系,分别在氮气饱和和经过氧气除氮的0.1mol/L的KOH溶液中对2.3中得到的薄膜电极进行循环伏安测试,扫描速度为50mV/s,得到其循环伏安曲线,如图5中a和b所示,a为氮气饱和条件下的循环曲线,b为氧气饱和条件下的循环曲线,由图5中曲线b可知2.2中得到的氟氮共掺杂的Activated carbon Vulcan XC-72的氧还原峰电位为-276mV。
利用以SCE电极为参比电极、Pt片为对电极的三电极体系,在经过氧气除氮的0.1mol/L的KOH溶液中对2.3中得到的薄膜电极进行线性伏安扫描测试,扫描速度为5mV/s,得到其线性伏安扫描曲线,如图6所示,由图6可知2.2中得到的氟氮共掺杂的Activated carbon Vulcan XC-72的氧还原起始电位为-80mV。
实施例3
3.1将0.14g氟化铵溶于30.0ml水中,搅拌至溶解,加入0.35g BP 2000(Asian-Pacific Specialty Chemicals Kuala Lumpur),超声分散30min,搅拌24h,在转速为10000rpm/min的条件下离心10min,弃上清,得到的黑色沉淀60℃干燥。将得到的混合物研磨30min,置于单温区滑轨炉内升温至400℃高温处理6h后,升温至800℃高温处理5h,得到氟掺杂的BP 2000。
3.2将0.1g 3.1中得到的氟掺杂的BP 2000与0.1g三聚氰胺研磨30min,升温至400℃高温处理6h后,继续升温至800℃高温处理5h,得到氟氮共掺杂的BP 2000。
3.3将5mg 3.2中得到的氟氮共掺杂的BP 2000与100μl Nafion溶液超声分散30min,得到溶液;取10μl所述溶液滴涂于旋转圆盘电极上,室温晾干后,得薄膜电极。
利用以SCE电极为参比电极、Pt片为对电极的三电极体系,分别在氮气饱和和经过氧气除氮的0.1mol/L的KOH溶液中对3.3中得到的薄膜电极进行循环伏安测试,扫描速度为50mV/s,得到其循环伏安曲线,如图7中a和b所示,a为氮气饱和条件下的循环曲线,b为氧气饱和条件下的循环曲线,由图7中曲线b可知3.2中得到的氟氮共掺杂的BP 2000的氧还原峰电位为-257mV。
利用以SCE电极为参比电极、Pt片为对电极的三电极体系,在经过氧气除氮的0.1mol/L的KOH溶液中对3.3中得到的薄膜电极进行线性伏安扫描测试,扫描速度为5mV/s,得到其线性伏安扫描曲线,如图8所示,由图8可知3.2中得到的氟氮共掺杂的BP 2000的氧还原起始电位为-17mV。
利用以SCE电极为参比电极、Pt片为对电极的三电极体系,分别在氮气饱和和经过氧气除氮的0.5mol/L的H2SO4溶液中对3.3中得到的薄膜电极进行循环伏安测试,扫描速度为50mV/s,得到其循环伏安曲线,如图9中a和b所示,由图9中曲线b可知3.2中得到的氟氮共掺杂的BP 2000的氧还原峰电位为-226mV。
利用以SCE电极为参比电极、Pt片为对电极的三电极体系,向0.5mol/L的H2SO4溶液中通入一氧化碳10min,使电极吸附一氧化碳饱和后,通入氧气30min,除去溶液中多余的一氧化碳。对3.3中得到的薄膜电极进行循环伏安测试,扫描速度为50mV/s,得到其循环伏安曲线,如图10所示,结果表明其循环伏安曲线保持不变。
将1.0ml甲醇加至经过氧气除氮的0.5mol/L的H2SO4溶液中,搅拌均匀,在其中利用以SCE电极为参比电极、Pt片为对电极的三电极体系,对3.3中得到的薄膜电极进行循环伏安测试,扫描速度为50mV/s,得到其循环伏安曲线,如图10所示,结果表明其循环伏安曲线保持不变。
对比例1
1.1将0.14g氟化铵与30.0ml水混合搅拌至溶解,加入0.35g乙炔炭黑,超声分散30min,搅拌24h,在转速为10000rpm/min的条件下离心10min,弃上清,得到的黑色沉淀60℃干燥。将得到的混合物研磨30min,升温至400℃高温处理6h后,升温至800℃高温处理5h,得到氟掺杂的乙炔炭黑。
1.2将5mg 2.1中得到的氟掺杂的乙炔炭黑与100μl Nafion溶液超声分散30min,得到溶液;取10μl所述溶液滴涂于旋转圆盘电极上,室温晾干后,得薄膜电极。
利用以SCE电极为参比电极、Pt片为对电极的三电极体系,在经过氧气除氮的0.1mol/L的KOH溶液中对1.2中得到的薄膜电极进行循环伏安测试,扫描速度为50mV/s,得到其循环伏安曲线,如图11所示,由图11可知1.1中得到的氟掺杂的乙炔炭黑的氧还原峰电位为-500mV。
利用以SCE电极为参比电极、Pt片为对电极的三电极体系,在经过氧气除氮的0.1mol/L的KOH溶液中对1.2中得到的薄膜电极进行线性伏安扫描测试,扫描速度为5mV/s,得到其线性伏安扫描曲线,如图2中b所示,由图2可知1.1中得到的氟掺杂的乙炔炭黑的氧还原起始电位为-200mV。
对比例2
2.1将0.14g三聚氰胺与30.0ml水混合搅拌至溶解,加入0.35g乙炔炭黑,超声分散30min,搅拌24h,在转速为10000rpm/min的条件下离心10min,弃上清,得到的黑色沉淀60℃干燥。将得到的混合物研磨30min,升温至400℃高温处理6h后,升温至800℃高温处理5h,得到氮掺杂的乙炔炭黑。
2.2将5mg 3.1中得到的氮掺杂的乙炔炭黑与100μl Nafion溶液超声分散30min,得到溶液;取10μl所述溶液滴涂于旋转圆盘电极上,室温晾干后,得薄膜电极。
利用以SCE电极为参比电极、Pt片为对电极的三电极体系,在经过氧气除氮的0.1mol/L的KOH溶液中对2.2中得到的薄膜电极进行循环伏安测试,扫描速度为50mV/s,得到其循环伏安曲线,如图12所示,由图12可知2.1中得到的氮掺杂的乙炔炭黑的氧还原峰电位为-420mV。
利用以SCE电极为参比电极、Pt片为对电极的三电极体系,在经过氧气除氮的0.1mol/L的KOH溶液中对2.2中得到的薄膜电极进行线性伏安扫描测试,扫描速度为5mV/s,得到其线性伏安扫描曲线,如图2中c所示,由图2可知2.1中得到的氮掺杂的乙炔炭黑的氧还原起始电位为-100mV。
对比例3
将5mg商业Pt/C(Johnson Matthey company,载量为20%)与100μlNafion溶液超声分散30min,得到溶液;取10μl所述溶液滴涂于旋转圆盘电极上,室温晾干后,得薄膜电极。
利用以SCE电极为参比电极、Pt片为对电极的三电极体系,向0.1mol/L的KOH溶液中通入一氧化碳10min,使电极吸附一氧化碳饱和后,通入氧气30min,除去溶液中多余的一氧化碳。对对比例中得到的薄膜电极进行循环伏安测试,扫描速度为50mV/s,得到其循环伏安曲线,如图13所示,由图13可知其循环曲线出现明显的一氧化碳氧化峰。
将1.0ml甲醇加至经过氧气除氮的0.1mol/L的KOH溶液中,搅拌均匀,在其中利用以SCE电极为参比电极、Pt片为对电极的三电极体系,对对比例3中得到的薄膜电极进行循环伏安测试,扫描速度为50mV/s,得到其循环伏安曲线,如图13所示,由图13可知其循环曲线出现明显的甲醇氧化峰。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种直接甲醇燃料电池催化剂的制备方法,其特征在于,包括以下步骤:
A)将炭黑与氟化铵混合,加热进行高温分解反应后,继续加热进行氟掺杂反应,得到氟掺杂的炭黑材料,所述炭黑与氟化铵的质量比为2.5~500:1;
B)将所述氟掺杂的炭黑材料与三聚氰胺混合,加热进行高温分解反应后,继续加热进行氮掺杂反应,得到直接甲醇燃料电池催化剂,所述氟掺杂的炭黑材料与三聚氰胺的质量比为1~660:1;
所述步骤A)中高温分解反应的反应温度为300℃~500℃;
所述步骤B)中高温分解反应的反应温度为300℃~500℃。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤A中高温分解反应的反应时间为0.5~7h。
3.根据权利要求1所述的制备方法,其特征在于,所述步骤A中氟掺杂反应的反应温度为750℃~1000℃,反应时间为0.5~6h。
4.根据权利要求1所述的制备方法,其特征在于,所述步骤B中高温分解反应的反应时间为0.5~7h。
5.根据权利要求1所述的制备方法,其特征在于,所述步骤B中氮掺杂反应的反应温度为750℃~1000℃,反应时间为0.5~6h。
6.根据权利要求1所述的制备方法,其特征在于,所述步骤A具体为:
A1)将炭黑、氟化铵与水混合超声20~40min,得到混合液;
A2)将所述混合液离心,干燥,得到混合物;
A3)将所述混合物加热进行高温分解反应后,继续加热进行氟掺杂反应,得到氟掺杂的炭黑材料;
所述高温分解反应的反应温度为300℃~500℃。
7.根据权利要求6所述的制备方法,其特征在于,所述步骤A1还包括:
将所述混合液搅拌20~26h。
8.根据权利要求6所述的制备方法,其特征在于,所述步骤A2还包括:
将所述混合物研磨20~40min。
9.根据权利要求1所述的制备方法,其特征在于,所述步骤B具体为:
B1)将所述氟掺杂的炭黑材料与三聚氰胺混合研磨20~40min,得到粉末;
B2)将所述粉末加热进行高温分解反应后,继续加热进行氟掺杂反应,得到直接甲醇燃料电池催化剂;
所述高温分解反应的反应温度为300℃~500℃。
CN201210296964.6A 2012-08-20 2012-08-20 一种直接甲醇燃料电池催化剂及其制备方法 Active CN102810678B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210296964.6A CN102810678B (zh) 2012-08-20 2012-08-20 一种直接甲醇燃料电池催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210296964.6A CN102810678B (zh) 2012-08-20 2012-08-20 一种直接甲醇燃料电池催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN102810678A CN102810678A (zh) 2012-12-05
CN102810678B true CN102810678B (zh) 2015-02-18

Family

ID=47234323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210296964.6A Active CN102810678B (zh) 2012-08-20 2012-08-20 一种直接甲醇燃料电池催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN102810678B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6666662B2 (ja) * 2015-07-07 2020-03-18 株式会社日本触媒 炭素触媒及びそれを用いた電極、電池
CN109012729A (zh) * 2018-08-13 2018-12-18 河南师范大学 一种多孔氮氟双掺杂碳氧还原催化剂的制备方法
CN109560293A (zh) * 2018-11-01 2019-04-02 江苏可兰素汽车环保科技有限公司 氧还原催化剂及其制备方法和应用
CN113839058B (zh) * 2021-09-23 2023-05-26 重庆文理学院 一种碳基氧还原反应催化剂及其制备方法
CN115739161B (zh) * 2022-12-13 2024-07-02 南京理工大学 铁单原子催化剂及其制备方法和在催化制备五唑阴离子盐反应中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102060284A (zh) * 2010-10-29 2011-05-18 华南理工大学 一种氮磷共掺杂多壁碳纳米管的制备方法
CN102637882A (zh) * 2012-04-13 2012-08-15 东华大学 一种无金属掺杂氮功能化碳催化剂及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050282061A1 (en) * 2004-06-22 2005-12-22 Campbell Stephen A Catalyst support for an electrochemical fuel cell
KR101328583B1 (ko) * 2010-06-03 2013-11-12 한국과학기술원 도핑된 2차원 평면 형태의 그래핀을 활용한 산소환원 활성 및 알코올 내성 특성을 갖는 연료전지의 양극촉매

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102060284A (zh) * 2010-10-29 2011-05-18 华南理工大学 一种氮磷共掺杂多壁碳纳米管的制备方法
CN102637882A (zh) * 2012-04-13 2012-08-15 东华大学 一种无金属掺杂氮功能化碳催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Direct methanol fuel cell cathodes with sulfur and nitrogen-based carbon functionality";S.C.Roy et al;《Journal of the electrochemical society》;19961031;第143卷(第10期);第3071页摘要部分、左栏第1段至右栏第1段 *

Also Published As

Publication number Publication date
CN102810678A (zh) 2012-12-05

Similar Documents

Publication Publication Date Title
Dector et al. Glycerol oxidation in a microfluidic fuel cell using Pd/C and Pd/MWCNT anodes electrodes
Li et al. Non-precious metal catalysts synthesized from precursors of carbon, nitrogen, and transition metal for oxygen reduction in alkaline fuel cells
CN102637882B (zh) 一种无金属掺杂氮功能化碳催化剂及其制备方法和应用
CN107346826A (zh) 一种单原子铁分散的氧还原电催化剂的制备方法
CN101944620B (zh) 多元复合物为载体的燃料电池催化剂及制备方法
CN104624190B (zh) 一种钴基过渡金属氧还原催化剂及其制备方法和应用
CN102104157B (zh) 一种炭干凝胶的制备方法
CN104289242B (zh) 用于燃料电池阴极的高石墨化度炭基催化剂的制备方法
CN103515624A (zh) 碳载非贵金属氧还原复合物催化剂及制备方法和应用
CN105170169A (zh) 一种氮掺杂石墨烯-铁基纳米颗粒复合型催化剂及其制备方法
CN103357401B (zh) 一种钯基催化剂的制备方法
CN101890365B (zh) 非贵金属氧还原催化剂及其制备方法
CN102810678B (zh) 一种直接甲醇燃料电池催化剂及其制备方法
CN102569831B (zh) 碳负载铜酞菁燃料电池催化剂CuPc/C及制备和应用
CN105289687A (zh) 氮掺杂石墨烯负载铁基纳米粒子复合催化剂及其制备方法
CN102324531A (zh) 一种碳载CoN燃料电池催化剂及其制备方法和应用
CN104409745A (zh) 高性能超低钯载量的直接甲酸用燃料电池阳极电催化剂Pd-CoP/C的制法
CN108923050A (zh) 一种高催化性能的核壳碳纳米结构电催化剂及其制备方法
CN103949251A (zh) 一种氧还原催化剂及其制备方法和应用
CN104393312A (zh) 高活性、高稳定性直接甲醇燃料电池用超低铂载量Pt-CoP/C阳极电催化剂的制法
CN103706375B (zh) 用于质子交换膜燃料电池的PtFe/C催化剂的制备方法
CN104716335B (zh) 一种液流电池用电极及制备和应用
Su et al. Palladium nanoparticles immobilized in B, N doped porous carbon as electrocatalyst for ethanol oxidation reaction
CN106532073A (zh) 一种氮硫铁三掺杂碳黑催化剂及其制备方法与应用
CN107138172A (zh) 一种电极催化材料的制备方法及其在葡萄糖燃料电池中的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201215

Address after: No. 9, river Hai Dong Road, Changzhou, Jiangsu Province

Patentee after: CHANGZHOU INSTITUTE OF ENERGY STORAGE MATERIALS & DEVICES

Address before: 130022 No. 5625 Renmin Street, Jilin, Changchun

Patentee before: Changchun Institute of Applied Chemistry Chinese Academy of Sciences