CN102804303B - 包括固体多层电解质的能量储存装置 - Google Patents

包括固体多层电解质的能量储存装置 Download PDF

Info

Publication number
CN102804303B
CN102804303B CN201180012841.9A CN201180012841A CN102804303B CN 102804303 B CN102804303 B CN 102804303B CN 201180012841 A CN201180012841 A CN 201180012841A CN 102804303 B CN102804303 B CN 102804303B
Authority
CN
China
Prior art keywords
anion
layer
cation
exchange polymer
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201180012841.9A
Other languages
English (en)
Other versions
CN102804303A (zh
Inventor
S.G.埃伦伯格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dais Analytic Corp
Original Assignee
Dais Analytic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dais Analytic Corp filed Critical Dais Analytic Corp
Publication of CN102804303A publication Critical patent/CN102804303A/zh
Application granted granted Critical
Publication of CN102804303B publication Critical patent/CN102804303B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/02Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof using combined reduction-oxidation reactions, e.g. redox arrangement or solion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

提供了包括固体多层电解质的能量储存装置。在某些实施方案中,本文公开的能量储存装置在较低电压下可呈现与电化学电池类似的性能,但是当电压升高时可过渡为静电电容器性能。通过提供大的总能量储量,本文公开的能量储存装置、方法和系统可优选为有利的。

Description

包括固体多层电解质的能量储存装置
本申请要求2010年1月9日提交的美国临时申请号61/293,638的权益,该临时申请通过引用全文结合到本文中。
发明背景
电能储存装置(例如电容器、电池和超电容器)通过利用在两个金属或另外的导电性表面(“电极”)上的电荷而储存或产生能量。带电荷的表面通常通过电绝缘体或电介质分隔。当将电荷放置在传导性表面上时,在电极之间建立电场,产生电压。通常,电容器物理分隔正和负电荷,而不是像在电池中通常的那样化学分隔电荷。电池再循环能力有限并且不能像电容器那么快地递送能量,或者不具有比电容器产生的更大的损失。
超电容器(supercapacitor)或超电容器(ultracapacitor)有时称为双层电容器,因为它极化电解质溶液,以静电储存能量。超电容器的能量储存机理高度可逆,这使得超电容器多次充电和放电。
然而,由于缺乏可容许具有足够强度的电场的可用的材料和结构,电容器通常不能与电池的能量储量匹配。
发明概述
在一方面,本公开提供能量储存装置。在一个实施方案中,能量储存装置包括:阳极;包括多个层的固体多层电解质,所述多个层包括阴离子交换聚合物电解质层和阳离子交换聚合物电解质层;和阴极。至少一个阴离子交换聚合物电解质层包括具有多个化学结合的正离子和多个静电结合的负离子的聚合物。至少一个阳离子交换聚合物电解质层包括具有多个化学结合的负离子和多个静电结合的正离子的聚合物。在某些实施方案中,阳极、阴极或二者可为高表面积电极,例如,包括其中具有多个颗粒(例如,碳或石墨纳米颗粒)的离子交换聚合物电解质的复合材料电极。在某些实施方案中,所述装置进一步包括非导电性电介质油(例如,聚二甲基硅氧烷),优选在固体多层电解质内。在优选的实施方案中,所述装置设置为初始充电以电化学模式储存能量,且进一步充电以静电模式储存能量。
在另一个实施方案中,能量储存装置包括:阳极;包括多个层的固体多层电解质,所述多个层包括交替的阴离子交换聚合物电解质层和阳离子交换聚合物电解质层;和阴极。至少一个阴离子交换聚合物电解质层包括具有多个化学结合的正离子和多个静电结合的负离子的聚合物。至少一个阳离子交换聚合物电解质层包括具有多个化学结合的负离子和多个静电结合的正离子的聚合物。至少一个阴离子交换聚合物电解质层与阴极相邻,并且至少一个阳离子交换聚合物电解质层与阳极相邻。在某些实施方案中,阳极、阴极或二者可为高表面积电极,例如,包括其中具有多个颗粒(例如,碳或石墨纳米颗粒)的离子交换聚合物电解质的复合材料电极。在某些实施方案中,所述装置进一步包括非导电性电介质油(例如,聚二甲基硅氧烷),优选在固体多层电解质内。在优选的实施方案中,所述装置设置为初始充电以电化学模式储存能量,且进一步充电以静电模式储存能量。
在另一方面,本公开提供一种储存能量的方法。在一个实施方案中,所述方法包括:提供本文描述的能量储存装置;在足以引起实质上所有的静电结合的正离子迁移并在阴极上被还原和沉积以及实质上所有的静电结合的负离子迁移并在阳极上被氧化和沉积的条件下,施加相对于阴极负极化的和相对于阳极正极化的场,其中在一个或多个阴离子交换聚合物电解质层上的残余的化学结合的正离子和在一个或多个阳离子交换聚合物电解质层上的残余的化学结合的负离子形成包括极化的聚合物层(例如,交替层)的固体多层电介质;和在足以在电极的表面上静电储存电荷的条件下,进一步施加相对于阳极正极化的和相对于阴极负极化的场。
在另一方面,本公开提供一种至少部分充电的能量储存装置。在一个实施方案中,所述装置包括:阳极;包括一个或多个阳离子极化的聚合物层和一个或多个阴离子极化的聚合物层的层的固体多层电介质;和阴极。至少一个阳离子极化的聚合物层包括多个化学结合的正离子。至少一个阴离子极化的聚合物层包括多个化学结合的负离子。
在另一个实施方案中,所述装置包括:阳极;固体多层电介质,其包括一个或多个阳离子极化的聚合物层和一个或多个阴离子极化的聚合物层的交替层;和阴极。至少一个阳离子极化的聚合物层包括多个化学结合的正离子。至少一个阴离子极化的聚合物层包括多个化学结合的负离子。另外,至少一个阳离子极化的聚合物层与阴极相邻,并且至少一个阴离子极化的聚合物层与阳极相邻。
在另一方面,本公开提供一种储存能量的方法。所述方法包括:提供本文描述的至少部分充电的能量储存装置;和在足以在电极的表面上静电储存电荷的条件下,施加相对于阳极正极化的和相对于阴极负极化的场。
在另一个实施方案中,本公开提供至少部分充电的能量储存装置,所述装置包括:阳极;具有至少80,000 (并且在某些实施方案中,至少20,000)的介电常数的固体多层电介质;和阴极。在某些实施方案中,所述固体多层电介质可具有至少25,000、50,000或甚至100,000的介电常数。
在另一方面,本公开提供一种用于储存和释放能量的系统。在一个实施方案中,所述系统包括:一个或多个本文描述的至少部分充电的能量储存装置;用于在足以在电极的表面上静电储存电荷的条件下,施加相对于阴极负极化的和相对于阳极正极化的场的装置(例如,使用电流来源,例如直流电流来源,其可任选为连续的电流来源);和用于在电极的表面上从静电储存的电荷释放能量的装置(例如,使用阻抗和/或机械漏电,例如加热器和/或电动机)。
在另一方面,本公开提供一种制备固体多层电解质的方法。在某些实施方案中,所述方法包括辊压层压阴离子交换聚合物电解质和阳离子交换聚合物电解质的层(例如,交替层)。
在另一方面,本公开提供一种制备能量储存装置的方法。在某些实施方案中,所述方法包括在阳极和阴极之间提供固体多层电解质。
在另一方面,本公开提供包括一个或多个本文描述的能量储存装置的电池和电池包装。
在某些实施方案中,比起本领域已知的能量储存装置、方法和系统,本文公开的能量储存装置、方法和系统可提供优点。例如,具有交替的极化聚合物层的固体多层电介质由于固有地非导电性电解质层的高电阻率可具有超过120 V/微米的击穿电压和低渗漏电流。另外,高电介质介电常数和大的击穿电压可允许在较高电压下操作,能制造能储存一定量的能量的电池,该能量与锂离子电池可比并优选超过锂离子电池,同时保持期望的电容器特性,例如,快速递送能量。对于另一个实例,固体多层电介质的高电介质介电常数与至少适度的板极(plate)表面积和高电压组合可导致具有大的总能量储量的高能量密度结构。在优选的实施方案中,本文公开的能量储存装置可具有大于汽油(例如,34,000,000焦耳/升)的储能容量。
本文使用的“一个”、“该”和“至少一个”可互换使用,并且是指一个或多于一个。
本文使用的术语“包含”与“包括”或“含有”同义,为包含性、开放式、并且不排除另外的未引用的要素或方法步骤。
本公开的各种实施方案的以上简要描述不旨在描述本公开的每个实施方案或每种实施。而是,鉴于附图,参考以下描述和权利要求,对本公开的更完全的理解将变得显而易见并得到领会。另外,应理解的是,可利用其它实施方案,并且在不偏离本公开的范围下可进行结构变化。
附图简述
图1为简单的电容器的示意性说明。
图2为电双层电容器(EDLC)结构的示意性说明。
图3为说明示例性自组装的聚合物电解质的层状结构的透射电子显微照片。
图4为对于示例性未极化的聚合物电解质结构所观察到的介电常数(103;正方形;y-轴)和tan(δ)(虚线;y-轴)相对于频率(Hz;x-轴)的图。
图5为说明当本文描述的示例性能量储存装置被充电时可观察到的氧化还原性能的示意图。
图6为说明当在图5中说明的部分充电的示例性能量储存装置进一步充电时可观察到的极化的电介质性能的示意图。
图7说明本文描述的示例性单一电池能量储存装置。
图8说明本文描述的示例性单一电池能量储存装置,使用塑料隔离和电连接接头包装。
图9说明包括多个本文描述的能量储存装置电池的示例性电池包装。
图10图示说明各种能量储存技术的电池-水平性能。
图11和12为说明可极化的电介质对电容器功能的影响的电容器的示意性说明。
发明详述
电容器通常在导电性表面上储存电荷。这些带电荷的表面被电介质(体积电阻大于106欧姆-cm的电绝缘体)分隔。当将电荷放置在材料表面上时,在板极之间建立电场,产生电压。在电容器内储存的净电荷总是零。
可将电荷加入到板极中,直至电场变得强到它击穿电介质。电介质材料性能的一种度量为其介电常数,即,其每单位长度的电容。介电常数越高,则对于给定量的电荷,电场构建得越慢。电介质性能的其它度量为击穿电压,即,可引起电介质破裂的电场强度(以伏特/单位厚度的电介质报道)。
虽然电池作为化学电势储存能量,电容器在通过板极上的电荷产生的电场中储存能量。比起电池,电容器通常可更快速地接受和递送能量,并且具有更少损失。这使得电容器比电池更有效和潜在地更大功率。
电容器的电和性能特性通常通过三个简单的方程式来描述:
电荷=电容×电压
电容=(电介质的介电常数×A)/d
储存的能量=?电容×电压2
参考图1,A为电极的表面积,d为电极之间的间隔,并且Q为当将电场E施加于板极时在板极上储存的电荷。这些方程式说明电容可通过提高板极面积、提高电介质的介电常数和/或降低在板极之间的分隔而提高。另外,提高电容器上的电压对在装置内储存的能量具有指数效应。
由于缺少内部电化学反应,电容器能循环数千次。然而,由于缺少可容许具有足够强度的电场的可用的材料和结构,电容器通常不能匹配电池的能量储量。
术语“超电容器”是指开始接近电池的能量储量的电容器。然而,材料和结构约束将现有技术的超电容器限制于类似尺寸的锂-离子电池约1/25小的能量储量。
现有的超电容器供应基于电双层电容器(EDLC)原理。在EDLC中,将通常由碳制成的高表面积多孔电极放置在电介质阻挡的任一侧上。这些电极的表面积与重量比为1000-2300 m2/g。将液体电解质溶液注入多孔结构中,涂布表面。溶液含有在有机溶剂中悬浮的溶解的电解质盐。
在操作期间,当在电容器上存在电荷时,电解质盐响应通过电荷产生的电场并沿着电极的多孔表面排列。该排列产生反电场,使得净电容器电压最小化,允许加入更多的电荷。由于电荷分隔非常小(10埃-100埃),该结构所得到的电容非常高。典型的电池可具有1500-3500法拉(F)的电容。EDLC的结构示于图2。图2说明通过分隔器分隔的两个高表面积多孔电极,并且每一个包括电流收集器和活性炭。图2显示电解质离子沿着每个电极的多孔表面的排列,以及当将电荷施加于电池时,由电场引起的电荷的小分隔(d)。
电解质溶液能够具有极高的电容,但是限制可施加于电池的电压。用于电解质溶液的有机溶剂通常在3伏特(例如,直流电流)下击穿。为了安全,典型的EDLC电压通常限制在2.7伏特(例如,直流电流)。
在某些实施方案中,除了别的以外,通过使用具有所需的介电常数和击穿电压的材料来储存、加载和释放能量,本文公开的装置、方法和系统可克服至少一些这些限制,优选以等同或优越于最佳锂离子电池的性能水平。
提供以下实例来进一步说明本公开的各种具体实施方案和技术。然而,应理解的是,可进行本领域普通技术人员所理解的许多变化和修改,同时仍在本公开的范围内。因此,本公开的范围不旨在局限于以下实例。
在某些实施方案中,本文公开的装置、方法和系统不充当典型的EDLC装置。例如,在某些实施方案中,本文公开的能量储存装置在较低电压下呈现与电化学电池类似的性能,但是当电压升高(例如,超过几伏特)时过渡为静电电容器性能。
在一个实施方案中,本文公开的能量储存装置可包括:阳极;包括多个层的固体多层电解质,所述多个层包括交替的阴离子交换聚合物电解质层和阳离子交换聚合物电解质层;和阴极。至少一个阴离子交换聚合物电解质层包括具有多个化学结合的正离子和多个静电结合的负离子的聚合物。至少一个阳离子交换聚合物电解质层包括具有多个化学结合的负离子和多个静电结合的正离子的聚合物。至少一个阴离子交换聚合物电解质层与阴极相邻,并且至少一个阳离子交换聚合物电解质层与阳极相邻。在某些实施方案中,阳极、阴极或二者可为高表面积电极,例如,包括其中具有多个颗粒(例如,碳或石墨纳米颗粒)的离子交换聚合物电解质的复合材料电极。在某些实施方案中,所述装置进一步包括非导电性电介质油(例如,聚二甲基硅氧烷),优选在固体多层电解质内。在优选的实施方案中,所述装置设置为初始充电以电化学模式储存能量,且进一步充电以静电模式储存能量。
在某些实施方案中,本文公开的能量储存装置可通过以下方法储存能量。在一个实施方案中,所述方法包括:提供本文描述的能量储存装置;在足以引起实质上所有的静电结合的正离子迁移并在阴极上被还原和沉积以及实质上所有的静电结合的负离子迁移并在阳极上被氧化和沉积的条件下,施加相对于阴极负极化的和相对于阳极正极化的场,其中在一个或多个阴离子交换聚合物电解质层上的残余的化学结合的正离子和在一个或多个阳离子交换聚合物电解质层上的残余的化学结合的负离子形成包括交替的极化聚合物层的固体多层电介质;和在足以在电极的表面上静电储存电荷的条件下进一步施加相对于阴极负极化的和相对于阳极正极化的场。本文使用的迁移和沉积“实质上”所有的静电结合的离子是指至少80%的离子,优选至少90%,至少95%,或甚至至少99%的静电结合的离子已迁移和沉积。
因此,在一个实施方案中,本文公开的能量储存装置初始时可采用与氧化还原电池(例如,碘化钠氧化还原电池)类似的方式起作用。简单地说,向装置的电极施加电压(例如,连续的直流电流)可引起固体多层电解质中的钠离子迁移并在阴极上被还原和沉积,并且固体多层电解质中的碘离子迁移并在阳极上被氧化和沉积(即,在电极上“板极输出(plate out)”)。当能量储存装置实质上作为氧化还原电池充电并且电介质内的可用的离子已实质上耗尽时,该结构开始充当静电电容器。本文使用的“实质上充电”是指已将电压施加于板极,足以引起电流流动进入电容器,并导致电解质中的静电结合的离子重排。本文使用的“实质上耗尽”可用的离子是指如上文所讨论的实质上所有的静电结合的离子已迁移和沉积。
本公开的装置可区别于已知的静电电容器,在于板极之间的电介质层可具有几万的介电常数,并且在远远超过EDLC限制的电压下稳定。当极化的电介质层与高表面积复合材料电极组合时,超过锂离子电池水平的能量密度是可能的。
固体多层电解质
本公开提供了高电荷密度、高离子传导率聚合物电解质,如本文所描述。具有高电子电阻(例如,10-7-10-11欧姆-cm体积电阻)的电介质可由阴离子交换聚合物电解质和阳离子交换聚合物电解质的交替层构成。可按需选择每一层的厚度,并且通常可为500纳米-5000纳米。方便地,每一层的厚度可为约1,000纳米。交替层可包括2-40层。方便地,可使用12-24个交替层,在这种情况下,约1,000纳米厚的层可形成具有12-24微米厚度的电介质结构。交替的聚合物电解质层可排列使得相邻或面向阴极的层为阴离子交换聚合物电解质,而相邻或面向阳极的层为阳离子交换聚合物电解质。
阴离子交换聚合物电解质层包括具有多个化学结合的正离子和多个静电结合的负离子的聚合物。各种各样的阴离子交换聚合物电解质可用于本文公开的装置、方法和系统。示例性化学结合的正离子包括铵(例如,季铵)、                                                (例如,季)、锍(例如,叔锍)和它们的组合。示例性静电结合的负离子包括,例如,卤化物(例如,氯化物、氟化物、溴化物和/或碘化物)、假卤化物(例如,叠氮化物、异氰化物)、SbF6 -、PF6 -和它们的组合。在某些实施方案中,所述阴离子交换聚合物电解质层可包括任选交联的阴离子交换聚合物(例如,碘化物阴离子交换聚合物)。
在某些实施方案中,所述阴离子交换聚合物电解质可为具有与至少一部分苯乙烯单元的芳族环(例如,邻位和/或对位)连接的-CH2NR3 +X-基团的聚苯乙烯,其中R可各自独立地表示C1-C10烷基,X可表示卤化物。特别优选的阴离子交换聚合物电解质可为具有与至少一部分苯乙烯单元的芳族环连接的-CH2N(CH3)3 +I-基团的聚苯乙烯,其可方便地如下制备:使用叔胺使氯甲基化的聚苯乙烯氨基化,并将氯化物交换为碘化物。
阳离子交换聚合物电解质层包括具有多个化学结合的负离子和多个静电结合的正离子的聚合物。各种各样的阳离子交换聚合物电解质可用于本文公开的装置、方法和系统。示例性化学结合的负离子包括磺酸根、羧酸根、磷酸根、膦酸根和它们的组合。示例性静电结合的正离子包括,例如,碱金属离子(例如,锂、钠、钾、铷和/或铯),碱土金属离子(例如,钙、锶和/或钡)和它们的组合。在某些实施方案中,所述阳离子交换聚合物电解质层可包括任选交联的阳离子交换聚合物(例如,钠阳离子交换聚合物)。
在某些实施方案中,所述阳离子交换聚合物电解质可为具有与至少一部分苯乙烯单元的芳族环(例如,邻位和/或对位)连接的磺酸根的聚苯乙烯。例如,具有侧基芳基磺酸根的聚合物描述于例如美国专利号5,468,574 (Ehrenberg等人)、5,677,074 (Serpico等人)、5,679,482 (Ehrenberg等人)、5,840,387 (Berlowitz-Tarrant等人)、6,110,616 (Sheikh-Ali等人)、6,383,391 (Ehrenberg等人)、6,413,298 (Wnek等人)、6,841,601 (Serpico等人)和7,179,860 (Cao等人);以及美国专利申请号2008/0316678 (Ehrenberg等人)。
用于阴离子和阳离子交换聚合物电解质的聚合物的通用结构可相同或不同。本文使用的术语“聚合物”旨在宽泛地解释为包括例如低聚物。在某些实施方案中,具有相同的通用结构的聚合物可通过聚合物和/或用于制备聚合物的单体的化学反应(例如,磺化)或取代反应而改性,变为阴离子和/或阳离子聚合物交换电解质。在某些实施方案中,聚合物的通用结构可导致可产生纳米-结构的自组装性能,这对于离子传导和电荷分隔可能是重要的。
对于其中交换聚合物电解质被磺化的实施方案,待磺化的聚合物可具有高苯乙烯含量和/或碳-碳双键的受控的分布。在某些实施方案中,交换聚合物电解质可为高度磺化的聚合物复合材料。对于其中交换聚合物电解质被磺化的实施方案,聚合物可被高度均匀磺化(即,约25-100重量%被磺化),并且可按磺化的片材或膜的形式利用。用于磺化聚合物的方法描述于例如Gilbert,Chem Rev (1962) 62:549-589;和德国专利号DE 580,366。
本文描述的磺化的聚合物可通过各种各样的方法被磺化。磺化通常是指导致形成碳-硫键的有机化学反应。当反应化合物含有芳族环时,通过反应性(磺化)化合物在芳族环的磺化通常通过磺酸残基官能团借助亲电芳族取代反应替换芳族环上的氢原子而发生。磺化的嵌段共聚物可使用例如三氧化硫、硫酸、氯磺酸和/或乙酰硫酸酯作为磺化剂通过磺化反应产生。磺化的聚合物可以它们生成的形式或它们的酸、碱金属盐或铵盐(包括复杂的胺)形式而使用。
在某些实施方案中,所述阴离子和/或阳离子交换聚合物电解质可包括,例如,肽、多肽、蛋白质、糖蛋白、生物聚合物和它们的组合。在某些实施方案中,所述阴离子和/或阳离子交换聚合物电解质可包括,例如,均聚物和/或共聚物(例如,统计、无规或嵌段共聚物)。在其它某些实施方案中,所述阴离子和/或阳离子交换聚合物电解质可包括,例如,单一或多相聚合物和/或共聚物。在某些实施方案中,所述阴离子和/或阳离子交换聚合物电解质可包括,例如,离聚物。
通常,离聚物含有极性和非极性部分二者,各基团在一起。极性离子部分倾向于群集在一起并与非极性骨架部分分隔,后者使得具有热塑性,特别是当加热时。该提高的热塑性使得能量储存提高和循环能力提高。此外,非离子区域可呈现粘合性能。在某些实施方案中,可期望在某一温度下热塑性和流动之间的平衡。
在某些实施方案中,所述阴离子和/或阳离子交换聚合物电解质可包括,例如,含芳烃的直链侧链、不含芳烃的直链侧链、饱和直链侧链、不饱和直链侧链和柔性烃直链侧链。在某些实施方案中,所述阴离子和/或阳离子交换聚合物电解质可为例如未被取代和/或取代的(例如,被杂原子例如氧、氮或其它非碳原子取代)。在某些实施方案中,所述阴离子和/或阳离子交换聚合物电解质能溶解于氯化溶剂中,并且在冷的温度下可留在溶液中。
本文使用的“烯烃部分”是指含有至少一个碳-碳双键的烃链。“芳烃部分”是指一价或二价的芳基或杂芳基。芳基是指包含氢、6-18个碳原子和至少一个芳族环的烃环体系。所述芳基可以是单环或多环(例如双环、三环或四环)的环体系,其可以包括稠合的或桥接的环体系。芳基包括但不限于如下来源的芳基:醋蒽烯、苊、醋亚菲(acephenanthrylene)、蒽、薁、苯、、荧蒽、芴、不对称引达省(as-indacene)、对称引达省(s-indacene)、1,2-二氢化茚、茚、萘、萉、菲、芘和苯并菲。优选地,芳基源自于苯。杂芳基表示5-14元环体系,其包含氢原子、1-13个碳原子、1-6个杂原子(例如氮、氧和/或硫)以及至少一个芳族环。所述杂芳基可以是单环或多环(例如双环、三环或四环)的环体系,其可包括稠合的或桥接的环体系。所述杂芳基中的氮、碳和/或硫原子可以任选被氧化,并且所述氮原子可以任选被季铵化。实例包括但不限于氮杂?基、吖啶基、苯并咪唑基、苯并吲哚基、1,3-苯并二氧戊环基、苯并呋喃基、苯并噁唑基、苯并噻唑基、苯并噻二唑基、苯并[b][1,4]二氧杂环庚烯基(dioxepinyl)、苯并[b][1,4] 噁嗪基、1,4-苯并二噁烷基、苯并萘并呋喃基、苯并噁唑基、苯并二氧戊环基、苯并二氧杂环己烯基、苯并吡喃基、苯并吡喃酮基、苯并呋喃基、苯并呋喃酮基、苯并噻吩基(苯并苯硫基)、苯并噻吩并[3,2-d]嘧啶基、苯并三唑基、苯并[4,6]咪唑并[1,2-a]吡啶基、咔唑基、肉啉基、环戊[d]嘧啶基、6,7-二氢-5H-环戊[4,5]噻吩并[2,3-d]嘧啶基、5,6-二氢苯并[H]喹唑啉基、5,6-二氢苯并[h]肉啉基、6,7-二氢-5H-苯并[6,7]环庚[1,2-c]哒嗪基、二苯并呋喃基、二苯并苯硫基、呋喃基、呋喃酮基、呋喃并[3,2-c]吡啶基、5,6,7,8,9,10-六氢环辛[d]嘧啶基、5,6,7,8,9,10-六氢环辛[d]哒嗪基、5,6,7,8,9,10-六氢环辛[d]吡啶基、异噻唑基、咪唑基、吲唑基、吲哚基、吲唑基、异吲哚基、二氢吲哚基、异二氢吲哚基、异喹啉基、中氮茚基、异噁唑基、5,8-甲撑-5,6,7,8-四氢喹唑啉基、萘基、萘啶基、1,6-萘啶酮基、噁二唑基、2-氧代氮杂?基、噁唑基、环氧乙烷基、5,6,6a,7,8,9,10,10a-八氢苯并[h]喹唑啉基、1-苯基-1H-吡咯基、吩嗪基、吩噻嗪基、吩噁嗪基、2,3-二氮杂萘基、喋啶基、嘌呤基、吡咯基、吡唑基、吡唑并[3,4-d]嘧啶基、吡啶基、吡啶并[3,2-d]嘧啶基、吡啶并[3,4-d]嘧啶基、吡嗪基、嘧啶基、哒嗪基、吡咯基、喹唑啉基、喹喔啉基、喹啉基、奎宁环基、异喹啉基、四氢喹啉基、5,6,7,8-四氢喹唑啉基、5,6,7,8-四氢苯并[4,5]噻吩并[2,3-d]嘧啶基、6,7,8,9-四氢-5H-环庚[4,5]噻吩并[2,3-d]嘧啶基、5,6,7,8-四氢吡啶并[4,5-c]哒嗪基、噻唑基、噻二唑基、三唑基、四唑基、三嗪基、噻吩并[2,3-d]嘧啶基、噻吩并[3,2-d]嘧啶基、噻吩并[2,3-c]吡啶基(pridinyl)和苯硫基(即噻吩基)。
本文使用的“含芳烃的直链侧链”是指仅由碳和/或氢组成的无支链的烃链,其中该链中的至少一个碳被替换为如以上所定义的芳基或杂芳基。
本文使用的“不含芳烃的直链侧链”是指仅由氢或碳组成且在该链内不包含芳基或杂芳基的无支链的烃链。
本文使用的“不饱和直链侧链”是指仅由碳和/或氢组成并包含至少一个碳-碳双键或至少一个碳-碳叁键的无支链的烃链。本文使用的“饱和直链侧链”是指仅由碳和/或氢组成并且不含碳-碳双键且不含碳-碳叁键的无支链的烃链。
本文使用的“柔性烃直链侧链”是指如美国专利号5,468,574 (Ehrenberg等人)和5,679,482(Ehrenberg等人)所公开的柔性连接组分。
存在可以和本文公开的某些实施方案使用的各种类型的共聚物,包括嵌段共聚物。例如,交替共聚物包括规则交替的A和B化学或结构单元;周期共聚物包含以重复序列(例如(A-B-A-B-B-A-A-A-B-B)n)排列的A和B单元;无规共聚物包括单体A和单体B单元的随机序列;统计共聚物包括不同单体在聚合物序列内服从统计规则的排序;嵌段共聚物包括两个或更多个通过共价键连接的均聚物子单元,例如二嵌段、三嵌段、四嵌段或其它多嵌段共聚物。参见例如IUPAC, Pure Appl. Chem (1996) 68:2287-2311。
另外,所述的任何共聚物可以是直链的(包含单个主链)或支化的(包含具有一个或多个聚合侧链的单个主链)。具有结构上不同于主链的侧链的支化共聚物被称为接枝共聚物。接枝共聚物的单个链可以是均聚物或共聚物,且不同的共聚物序列足以限定出结构差异。例如,具有A-B交替共聚物侧链的A-B二嵌段共聚物被认为是接枝共聚物。其它类型的支化共聚物包括星形、刷式和梳状共聚物。这些共聚物中的任何一种或其任何混合物可与所公开的装置的某些方面使用。
在某些实施方案中,所述阴离子和/或阳离子交换聚合物电解质可包括,例如,包括至少一个嵌段的聚合物。在某些实施方案中,所述聚合物为热塑性嵌段共聚物。在其它实施方案中,所述聚合物是包含可区分的单体单元的嵌段共聚物。优选地,所述嵌段共聚物的至少一个单体单元包括含芳烃部分的单元。在其它优选实施方案中,至少一个嵌段包括不含芳烃部分的单元。在某些实施方案中,所述嵌段共聚物包括至少两种以统计上随机顺序排列的单体单元。在其它实施方案中,所述嵌段共聚物包括至少两种以有序序列排列的单体单元。在某些实施方案中,所述阴离子和/或阳离子交换聚合物电解质可例如不仅包括聚合物或嵌段共聚物,而且包括具有其它乙烯式不饱和单体(例如丙烯腈、丁二烯、甲基丙烯酸甲酯和它们的组合)的共聚物。
在某些实施方案中,嵌段共聚物可为具有至少第一嵌段和第二嵌段的嵌段共聚物,所述第一嵌段是一个或多个单烯烃-芳烃部分(如苯乙烯、环取代的苯乙烯、α-取代的苯乙烯或其任何组合)的第一嵌段,所述第二嵌段是二烯部分与单烯烃-芳烃部分的受控分布共聚物的第二嵌段。所述嵌段共聚物可为“A”与“B”嵌段的任何构造,且此类嵌段共聚物可通过本领域技术人员已知的各种各样的方法产生。
本文使用的“单烯烃-芳烃部分”是指如以上所定义的一个或多个烯烃部分共价键接至如以上所定义的芳烃部分。“单烯烃-芳烃部分”的实例是苯乙烯。“聚烯烃-芳烃部分”是指如以上所定义的两个或更多个单烯烃-芳烃部分彼此共价键接以形成包含两个或更多个单烯烃-芳烃部分的链。“聚烯烃-芳烃部分”的实例是聚苯乙烯。“二烯部分”是指含有两个碳-碳双键的烃链。在某些实施方案中,所述二烯部分可以是共轭的、非共轭的或累积的。
嵌段共聚物的一些具体实例包括例如描述于以下的那些:美国专利号4,248,821 (Van Dellen)、5,239,010 (Balas等人)、6,699,941 (Handlin等人)、7,001,950 (Handlin、Jr.等人)、7,067,589 (Bening等人)、7,169,848 (Bening等人)、7,169,850 (Handlin、Jr.等人)和7,186,779 (Joly等人)和美国专利申请公开号2005/0154144 (Atwood等人)、2007/0004830 (Flood等人)、2007/0020473 (Umana等人)、2007/0021569 (Willis等人)、2007/0026251 (Umana)、2007/0037927 (Yang)和2007/0055015 (Flood等人)。
在某些实施方案中,所述阴离子和/或阳离子交换聚合物电解质可包括例如统计共聚物。统计共聚物在本文中按照本领域中通常理解的用法一致地使用。参见,例如Odian, Principles of Polymerization (聚合原理), 1991。统计共聚物可源自于两种单体的同时聚合并可具有例如该两种单体单元沿共聚物链的分布,该分布遵循伯努利(零阶马尔可夫),或者一阶或二阶马尔可夫统计。所述聚合可以由自由基、阴离子、阳离子或配位不饱和(例如齐格勒-纳塔催化剂)物类引发。根据Ring等人(Pure Appl Chem (1985)57:1427),统计共聚物可以是导致形成单体单元的统计序列的基元过程(其未必以相等概率进行)的结果。
这些方法可导致各种类型的序列分布,包括其中单体单元的排列倾向于改变、倾向于类似单元群集或根本不呈现有序倾向的那些。伯努利统计本质上是扔硬币统计;通过伯努利方法形成的共聚物具有两种无规分布的单体,并称为无规聚合物。例如,在活性末端的自由基共聚中,在一种实施方案的情况下,相对于丁二烯,苯乙烯基或丁二烯基可对苯乙烯基本上没有选择性。如果是这样,统计将是伯努利,并且得到的共聚物将是无规的。经常,扩散中的链端存在对一种单体或另一种具有一些选择性的倾向。在一些情况下,当扩散中的链端对加入相对单体的优选性非常低时,嵌段共聚物可源自于两种单体的同时共聚。就本公开的目的而言,所得到的聚合物分类为嵌段共聚物。
统计共聚物通常显示出单一的玻璃化转变温度。嵌段和接枝共聚物由于多相的存在典型地显示出多重玻璃化转变。因此,统计共聚物可以此为基础与嵌段和接枝共聚物区别开。单一的玻璃化转变温度反映了分子水平的均匀性。这种均匀性的额外后果是统计共聚物如苯乙烯和丁二烯的统计共聚物在通过电子显微镜观察时,显示出没有微相分离的单相形态。相反,例如,苯乙烯/丁二烯的嵌段和接枝共聚物的特征在于两个玻璃化转变温度并分离为苯乙烯富集域和丁二烯富集域。应该注意到由于受磺化影响在聚合物中的化学变化以及受本公开的流延过程影响的物理变化,由原本具有单一的玻璃化转变温度和单相形态的统计共聚物制造的膜在磺化后未必显示出单相形态或单一的玻璃化转变温度。
伪无规共聚物(pseudo-random copolymer)是统计共聚物的一个子类,其源自于单体引入时的权重变化,所述权重变化使得分布偏离定义为统计的随机排列(即伯努利)。在本文中已经描述了直链排列,但单体的支化或接枝包括星形排列也是可能的。另外,可以采用苯乙烯和氢化丁二烯、异戊二烯或等同烯烃的嵌段共聚物。所述嵌段结构可以是包括二嵌段、三嵌段、接枝嵌段、多臂星形嵌段、多嵌段、片段的、锥形嵌段或其任何组合的单体单元。
在某些此类实施方案中,所述聚合物包括包含不饱和碳-碳双键的部分或片段,其能够被磺化。此类聚合物的一些实例包括但不限于聚丁二烯和/或聚异戊二烯。
特别地,本文公开的某些实施方案涉及聚合物的磺化,所述聚合物包含一个或多个以下部分:烷烃、烯烃、炔烃和芳烃,其各自可以任选地由一个或多个下列官能团取代:羧酸、脲、酯、氨基甲酸乙酯(氨基甲酸酯)、烯烃、酰胺、苯、吡啶、吲哚、碳酸酯、硫酯、丙烯酸酯(arcylate)/丙烯酸类、醚、脒、乙基、包含烯烃、烷烃或炔烃的脂族化合物的酸型式、咪唑、噁唑、及对失水和/或分解敏感的含杂原子的基团的其他可能的组合。以上所列的各术语具有本领域技术人员已知的标准定义。
用于本公开的聚合物的重量优选为至少约1千道尔顿(KD)、2KD、5KD、10KD、15KD、20KD、25KD、30KD、40KD、50KD、60KD、70KD、80KD、90KD或它们之间的任何值或更大。
可包括在某些实施方案中的聚合物或聚合物嵌段的一些实例包括但不限于聚乙烯(PE)、聚丙烯(PP)、聚环氧乙烷(PEO)、聚苯乙烯(PS)、聚酯、聚碳酸酯(PC)、聚氯乙烯(PVC)、尼龙、卤化聚合物或共聚物如全氟化共聚物、聚(甲基丙烯酸甲酯)(PMMA)、丙烯腈丁二烯苯乙烯(ABS)、聚酰胺(PA)、聚氨酯(PU)、聚四氟乙烯(PTFE)、聚乳酸(PLA)、聚偏氯乙烯(PVDC)、苯乙烯-丁二烯橡胶(SBR)、苯乙烯-乙烯/丁烯-苯乙烯(SEBS);苯乙烯-乙烯/丙烯-苯乙烯(SEPS)、乙烯-苯乙烯互聚物(ESI)、苯乙烯丙烯酸酯、聚醚醚酮(PEEK)、聚对苯二甲酸乙二酯(PET或PETE)以及这些或其它的任何组合。
本公开中还包括不同聚合度的聚合物。如本领域技术人员将轻易理解地,所述聚合度通常是指在聚合反应中的特定时间,平均聚合物链中重复单元或片段的数目,其中长度通过单体片段或单元测量。优选的长度包括但不限于大约500个单体单元、1000个单体单元、5000个单体单元、10,000个单体单元、25,000个单体单元、50,000个单体单元、100,000个单体单元、200,000个单体单元、300,000个单体单元、500,000个单体单元、700,000个单体单元或更高或这些值之间的任何值。
聚合度还可以是聚合物分子量的度量。因此,所述聚合度等于聚合物的总分子量除以重复单元或片段的总分子量。具有不同总分子量但组成相同的聚合物可显示出不同的物理性能。总的说来,较高的聚合度与较高熔融温度和较高机械强度相互关联。
在某些实施方案中,所述聚合物可包括多相大分子链聚合物。在一些实施方案中,所述多相大分子链聚合物包括一个或多个含芳烃的直链侧链、不含芳烃的直链侧链、饱和直链侧链、不饱和直链侧链和/或柔性烃直链侧链。
在某些实施方案中,交换聚合物电解质可包括各种各样的阴离子-传导基,只要它们是使得材料可显示足够的阴离子传导性和水分转移性能的基团。这样的阴离子-传导基包括被具有1-10个碳原子的烷基任选取代的铵基;具有与氮原子键合的甲基或乙基的吡啶基或已与酸形成盐的吡啶基;具有与氮原子键合的甲基或乙基的咪唑基或已与酸形成盐的咪唑基;被甲基或乙基任选取代的基等。
关于向聚合物嵌段(A)内引入阴离子-传导基的位置,没有具体的限制,并且它们可引入到芳族乙烯基单元或其它单体单元内。
可根据应用目的选择引入的阴离子-传导基的量,但是通常,为了显示用作聚合物交换电解质的足够的离子传导率,该量优选足以使得嵌段聚合物的离子交换容量为0.3-4毫当量/g。在某些实施方案中,引入较大量可导致低机械强度和/或低长期耐久性。
通过已知的方法可进行向所得到的嵌段共聚物中引入阴离子-传导基。例如,所得到的嵌段共聚物可被氯甲基化,随后与胺或膦反应。任选,氯离子可被氢氧根离子或其它酸阴离子替换。可使用本领域已知的各种各样的氯甲基化方法。例如,可使用包括向嵌段聚合物在有机溶剂中的溶液或悬浮液中加入氯甲基化剂和催化剂的方法,使得嵌段共聚物氯甲基化。可使用各种各样的有机溶剂,包括,例如,卤代烃(例如,氯仿或二氯乙烷)。可使用以下氯甲基化剂,包括,例如,氯甲基醚和/或盐酸-多聚甲醛,并且可使用以下催化剂,包括,例如,氯化锡和/或氯化锌。
可使用使胺或膦与氯甲基化的嵌段聚合物反应的各种各样的方法。例如,可使用包括向氯甲基化的嵌段共聚物在有机溶剂中的溶液或悬浮液或由该溶液或悬浮液形成的材料中加入胺或膦(例如,作为在有机溶剂中的溶液)的方法。各种各样的有机溶剂可用于制备溶液或悬浮液,包括,例如,甲醇、乙醇、丙酮和/或乙腈。可使用各种各样的胺,包括,例如,氨、伯胺(例如,甲基胺)、仲胺(例如,二甲基胺)和它们的组合可用于得到弱碱性阴离子交换聚合物;叔胺(例如,三甲胺、三乙胺、二甲基乙醇胺、甲基二乙醇胺和/或三乙醇胺)可用于得到强碱性阴离子交换膜;和二胺或多胺(例如,乙二胺或四甲基二氨基丙烷)可用于得到具有彼此键合的离子交换基团的阴离子交换膜。
如果期望,可引入氯离子作为可任选转化为氢氧根离子或另一种酸阴离子的阴离子-传导基。可使用将氯离子转化为另一种离子的各种各样的方法。例如,通过将含氯离子的嵌段共聚物浸入氢氧化钠或氢氧化钾的水溶液中,可将氯离子转化为氢氧根离子传导基。
可使用本领域已知的各种各样的分析方法测量阴离子-传导共聚物的离子交换容量,包括,例如,滴定方法、红外光谱分析、质子核磁共振(1H NMR)光谱法、元素分析或它们的组合。
可通过本领域已知用于制备多层构造的各种各样的方法来构造电介质。例如,通过同时辊压层压各层,可制备阴离子交换聚合物电解质和阳离子交换聚合物电解质的交替层。在一些实施方案中,可依序和/或同时辊压层压各层。在某些实施方案中,各层可挤出(例如,依序和/或同时共挤出)。
在某些实施方案中,每一层电解质可具有层状纳米结构。例如,在制造过程期间某些嵌段共聚物可自组装。例如,制备了29 mol%苯乙烯(其中55%的苯乙烯嵌段被磺化)的三嵌段样品,并且发现呈现两个Tg (-40℃和160℃)。将样品在-100℃下切片,使用四氧化钌染色,并经历透射电子显微术(TEM)。在图3中说明的显微照片显示薄片厚度从约5到30纳米不等。这种结构可具有高离子传导性,并且可交联用于机械稳定性。这种层的电荷密度可以高,通过酸当量测量,以2或3倍超过市售含氟聚合物电解质。
本文描述的包括未极化的聚合物电解质材料的多层交替阴离子和阳离子结构可呈现具有大的频率依赖性(由于离子传导)的高介电常数性能,如图4所示的图所说明。多层结构为具有中等至低电荷密度的四层交替阴离子和阳离子嵌段共聚物。阴离子和阳离子层经加热和加压熔合。在测试期间未采取措施来排除环境湿度。测试设备为具有中等夹紧力的平行板极电容。横跨样品放置具有1/1000赫兹至多于一兆赫的可变频率控制,正或负1伏特的精确电压波形,并且监测输入电流的相延迟和变形。在减去板极和导线电容之后,将电流相延迟和变形用于计算样品电容和Tan δ。
在外部电场下放置聚合物电解质可克服离子与电解质中的反离子结合的静电力,并使得以前结合的离子变得可移动,并且最终将它们自身电镀在带相反电荷的电极上。当将游离离子从电介质除去时,因为通过与聚合物结构共价键合而固定电解质反离子部分,使电解质层极化。一旦将游离的离子除去,频率依赖性可最小化或消除,并且在升高的直流电压下高介电常数(示于图4,10-2赫兹)可稳定。提高电解质电荷密度可提高所得到的极化的介电常数。
可极化的电介质对电容器功能的影响在图11和12中示意性说明。参考图11,在电容器的板极之间的绝缘间隙称为电介质。参比电介质为真空,但是空气得到非常类似的值。当使用电介质而非空气时,一些绝缘材料不实质影响电容器的电容。然而,在其它电介质(例如,聚乙烯或上蜡的纸)中,分子可变得极化,如图11说明的。极化可由稍微朝向正板极移动的电子引起,在另一端留下电子缺乏,因此留下正电荷。所得到的电容提高在图12中说明。存在极化的分子可改变板极之间的电场,所说明的电场的方向为从正到负。如图12中说明的,在板极之间的场从右到左,而极化的分子产生从左到右的场。整个场可被还原,使得更多的电子聚集在板极上,由此提高可被电容器固定的电荷。
从电介质层移除离子可受到电解质的离子形式的影响。离子形式选自在复合材料电极结构内可在石墨粉末表面上形成电镀层的材料。电解质已润湿石墨表面的区域可允许离子电镀到结构中。在某些实施方案中,可选择Na+用于阳离子交换电解质,并且可选择I-用于阴离子交换电解质。
电极
在本文公开的装置、方法和系统中的电极(即,阴极和阳极)可具有金属或另外的导电性表面。在某些实施方案中,所述电极可具有高表面积并且可任选为多孔的。在优选的实施方案中,所述电极包括复合材料,例如,包括具有多个颗粒的阴离子交换聚合物电解质的阳极,和包括具有多个颗粒的阳离子交换聚合物电解质的阴极。关于复合材料电极的另外的实例,参见美国专利号5,136,474 (Sarangapani等人)。
在某些实施方案中,所述颗粒可通过流延、气相沉积、喷射或能够涂敷的任何其它方法涂敷于电极的正面,优选以均匀的方式。一旦涂敷于电极的正面,颗粒可提高功能性表面积,导致提高电容器的电容。在某些实施方案中,表面积可提高至少100倍,至少500倍,至少1,000倍,至少10,000倍,至少50,000倍,至少100,000倍,或甚至更多。
各种各样的阴离子交换聚合物电解质和阳离子交换聚合物电解质可用于复合材料电极。示例性阴离子交换聚合物电解质和示例性阳离子交换聚合物电解质如上文所描述。可用于复合材料电极的另外的示例性聚合物电解质描述于美国专利申请公布号2008/0316678 (Ehrenberg等人)。
聚合物电解质可用于将电极的颗粒固定在一起。在某些实施方案中,所述聚合物电解质可充当粘合剂以将传导性颗粒电极与外层(例如金属箔)的内面结合。通过调节在颗粒表面处的电场以及提高电极和电池的电荷容量,聚合物电解质也可用于电介质功能。聚合物电解质还可填充颗粒之间的空隙,防止任何空隙产生到达电介质层的路径。
各种各样的颗粒可用于复合材料电极。在某些实施方案中,所述颗粒为传导性的。可用的颗粒可包括,例如,碳、金属、金属氧化物或其它含金属的颗粒。可用的金属包括,例如,镍、钛(例如,二氧化钛)、铅、锂、银和铜。其它导电性颗粒包括酞菁低聚物和其它导电性材料(例如,有机分子和聚合物)。在某些优选的实施方案中,纳米颗粒包括碳。在某些实施方案中,颗粒为具有高表面积(例如,大于1000 m2/g,在一些实施方案中,大于2000 m2/g)的颗粒,例如纳米颗粒。在优选的实施方案中,所述纳米颗粒为碳颗粒(例如,石墨)。
在某些实施方案中,纳米颗粒可用于提高复合材料电极的表面积。纳米颗粒的三维表面可允许提高的功能性表面积,在该功能性表面积上电荷可在能量储存装置的每一个电极层内构建电场。某些示例性实施方案使用的纳米颗粒可具有任何形状或形式,优选球形,并且可为圆形、椭圆形、不规则形、金字塔形、圆锥形、长菱形或这些或其它形状的任何变体。在某些实施方案中,纳米颗粒的平均直径最多150 nm,最多125 nm,最多100 nm,最多75 nm,最多50 nm,最多25 nm,最多10 nm,最多5 nm,最多2.5 nm,最多2 nm,最多1 nm,或甚至更少。对于非球形颗粒,直径取颗粒的最大尺寸。
在某些实施方案中,石墨复合材料电极可通过将石墨(例如,传导性石墨粉末)与相应的聚合物电解质混合而构造,所述石墨为市售可得的,其表面积远超2400 m2/g。术语石墨旨在包括石墨烯,其为碳原子的平面单层。虽然复合材料电极的结构可降低石墨的有效表面积,其可在离子和电子传导性结构之间产生平衡。预期20-40%的颗粒表面积仍可用于氧化还原电镀和静电充电。在适度的石墨负载/cm2的复合材料电极下,预期104的表面积增强。
在某些实施方案中,在石墨复合材料电极中传导性石墨粉末的负载足够高,以实现导电性,但是未高至妨碍离子到传导性表面的介电进入。在某些实施方案中,石墨复合材料电极可包括17-50体积百分比的传导性石墨粉末。
本文公开的某些其它实施方案包括复合材料电极的平面片材以形成能量储存装置电池。形成能量储存装置的非常薄的电池的平面片材可允许装置的形状和尺寸的多样性。此外,平面电池可允许使用棱柱形状或用于装置的其它形状,以产生在空间和体积上有效的能量储存装置。
在具体的示例性实施方案中,所述薄的平面片材可层压在一起以形成能量储存装置的电池。形成材料和装配电池的具体过程可允许高速自动化,因此降低制造装置的总成本。在某些示例性实施方案中,所述片材材料装置可以棱形或其它排列堆叠,其可允许产生具有良好动力递送的循环和再循环能力的能量储存装置。
非导电性电介质油
在组装之前,电介质和复合材料电极层可用油(例如,非导电性电介质油)浸渍。所述油可选自一组已知具有非常高击穿电压和体积电阻以及适度介电常数的小分子油。这种油通常用于高电压变压器和开关,作为电介质绝缘以防止电弧放电。一种这样的实例为聚二甲基硅氧烷。在电解质结构内浸渍的这样的油可被吸收至电荷域内以替换例如任何残余的水,并且提高结构的体积电阻率和离子传导率(例如,充当离子传导率增强剂)。
储存能量的方法
在阴极和阳极之间具有固体多层电解质的能量储存装置初始时可采用电化学模式充电。虽然本公开可提供在阴极和阳极之间具有固体多层电解质的能量储存装置的许多结构,本文进一步描述以下示例性实施方案。参考如图5所说明的具有复合材料电极和含有钠和碘离子的固体多层电解质的装置,该装置的初始性能在于碘化钠氧化还原电池。多层电解质分层,其中钠阳离子交换电解质与碘化物阴离子交换电解质交替。施加于阳极和阴极的外部电场引起游离的离子迁移通过电解质并电镀带相反电荷的电极的表面。产生高介电常数结构的聚合物的电极化已有描述。参见,例如,Pohl,Journal of Electronic Materials,1986年7月,15:201-203。
在一些实施方案中,装置的该初始充电引起离子通过电解质的物理移动,直至它们电镀在电极上。预期极化电介质所需的电压可能超过5伏特,并且由于电解质层边界处的界面电阻,电介质极化可能慢。然而,只要外部电压保持在该水平或更高,钠和碘离子将不会释放返回至电解质中。
所得到的部分充电的结构的性能类似具有高介电常数固体多层电介质的静电电容器。在某些实施方案中,足以形成固体多层电介质的条件包括施加具有至少1伏特(例如,直流电流),在某些实施方案中至少2伏特,至少3伏特,至少4伏特或至少5伏特(例如,直流电流)的电势(例如,连续电势)的场。
所得到的部分充电的结构的性能可类似具有高介电常数多层电介质的静电电容器,所述多层电介质包括极化的电解质的层,如图6所示。该装置包括阳极;固体多层电介质;和阴极。多层电介质包括一个或多个阳离子极化的聚合物层和一个或多个阴离子极化的聚合物层的交替层。至少一个阳离子极化的聚合物层包括多个化学结合的正离子,并且至少一个阴离子极化的聚合物层包括多个化学结合的负离子。至少一个阳离子极化的聚合物层与阴极相邻,并且至少一个阴离子极化的聚合物层与阳极相邻。在某些实施方案中,所述至少部分充电的储存装置可具有至少1伏特(例如,直流电流),在某些实施方案中至少2伏特,至少3伏特,至少4伏特,或至少5伏特(例如,直流电流)的储存的电势。在某些实施方案中,所述至少部分充电的储存装置可具有最多500伏特(例如,直流电流)的储存的电势。
当钠和碘离子在带正电荷的和带负电荷的共价结合的离子基团之间交替的电极上电镀时,留下聚合物电解质层。物理上,这些薄层使得电荷之间的间距最小化,允许它们与来自外部施加的电荷的电场有效偶联。采用与在电流EDLC电容器中的液体电解质类似的方式,该高介电常数提高装置的电容。然而,聚合物电解质不局限于在EDLC电容器中的有机溶剂的低击穿电压,使得本文公开的能量储存装置的某些实施方案能在高得多的电压下操作,并且储存显著更多的能量,因为能量储存取决于电压的平方。
足以在部分充电的能量储存装置的电极的表面上储存电荷的条件包括施加具有大于1伏特(例如,直流电流),在某些实施方案中,大于2伏特,大于3伏特,大于4伏特,或大于5伏特(例如,直流电流)的电势(例如,连续电势)的场。在某些实施方案中,足以在部分充电的能量储存装置的电极的表面上储存电荷的条件包括施加具有最多电介质的击穿电压(例如,500伏特直流电流)的电势(例如,连续电势)的场。对于静电模式的结构的操作电压范围可为例如,48伏特(例如,直流电流)至电介质击穿电压的约一半。极化形式的电介质可具有超过120伏特/微米的击穿电压,因为确定未极化的样品具有该能力。对于一些实施方案,超过500伏特的操作范围是可能的。
电池/系统
示例性电池及其结构的示意图示于图7。该电池包括覆盖弹性材料电介质的铝外层(例如,12微米厚)端,以装入包括复合材料阳极(例如,12微米厚)、多层电解质(例如,12-25微米厚)和复合材料阴极(例如,12微米厚)的装置,导致电池具有约60-75微米的总厚度。提高多层电解质中的层数或提高其它层的厚度可提高电池的总厚度至最多例如250微米。虽然复合材料电极层可比其它电极更具阻抗,铝外部涂层可为外部负载提供高度传导性电路径。
图8说明本文描述的示例性单一电池能量储存装置。该电池用塑料隔离和电连接接头包装。每个电池可装入塑料袋中,并且接头可进入其中的能量储存装置电池内。
多个电池可并联连接,例如,通过接触每个电池的接头的集线器连接。图9说明包括多个本文描述的能量储存装置电池的示例性电池包装。以棱形排列堆叠这些电容器电池可允许产生能量储存装置,该装置具有优良的比能、能量密度和比功率,其保持典型的电容器循环和环程能量效率特性。此外,并联包装电池可分开电池电阻,以产生低等价串联电阻电池包装。
图10为各种能量储存技术的电池-水平性能的图示说明。预期本文描述的能量储存装置的某些实施方案可具有在图10的图表中概述的区域的功能性。精确的功能性可取决于电介质的介电常数和电极(例如,复合材料电极)的性能。
本文引用的专利、专利文件及出版物的完全公开通过引用而全文结合到本文中,就像每一个被单独引用一样。在不偏离本公开的范围和精神下,对本公开的各种修改和改变对于本领域技术人员来说将变得显而易见。应理解的是,本公开不旨在过度局限于本文描述的说明性实施方案和实施例,并且这些实施例和实施方案仅通过举例的方式呈现,本公开的范围旨在仅受限于本文如下描述的权利要求。

Claims (24)

1.一种储存能量的方法,包括:
提供一种能量储存装置,所述装置包含:
阳极;
阴极;和
置于阳极和阴极之间的包含多个层的固体多层电解质,所述多个层包含交替的阴离子交换聚合物电解质层和阳离子交换聚合物电解质层,其中至少一个阴离子交换聚合物电解质层包含具有多个化学结合的正离子和多个静电结合的负离子的聚合物,并且至少一个阳离子交换聚合物电解质层包含具有多个化学结合的负离子和多个静电结合的正离子的聚合物,
在足以引起实质上所有的静电结合的正离子迁移并在阴极上被还原和沉积以及实质上所有的静电结合的负离子迁移并在阳极上被氧化和沉积的条件下,施加相对于阴极负极化的和相对于阳极正极化的场,其中在一个或多个阴离子交换聚合物电解质层上的残余的化学结合的正离子和在一个或多个阳离子交换聚合物电解质层上的残余的化学结合的负离子形成包含交替的极化聚合物层的固体多层电介质;和
在足以在电极的表面上静电储存电荷的条件下进一步施加相对于阴极负极化的和相对于阳极正极化的场。
2.权利要求1的方法,其中所述阳极包含阴离子交换聚合物电解质和多个颗粒。
3.权利要求2的方法,其中多个颗粒中的至少一部分包含纳米颗粒。
4.权利要求1-3中任一项的方法,其中所述阳极为碳复合材料电极。
5.权利要求2-3中任一项的方法,其中多个颗粒中的至少一部分包含石墨。
6.权利要求1-3中任一项的方法,其中所述阴极包含阳离子交换聚合物电解质和多个颗粒。
7.权利要求6的方法,其中多个颗粒中的至少一部分包含纳米颗粒。
8.权利要求1-3中任一项的方法,其中所述阴极为碳复合材料电极。
9.权利要求2-3中任一项的方法,其中多个颗粒中的至少一部分包含石墨。
10.权利要求1-3中任一项的方法,其中至少一个阴离子交换聚合物电解质层包含碘化物阴离子交换聚合物。
11.权利要求1-3中任一项的方法,其中至少一个阴离子交换聚合物电解质层为交联的。
12.权利要求1-3中任一项的方法,其中至少一个阳离子交换聚合物电解质层包含钠离子阳离子交换聚合物。
13.权利要求1-3中任一项的方法,其中至少一个阳离子交换聚合物电解质层为交联的。
14.权利要求1-3中任一项的方法,所述方法进一步包含非导电性电介质油。
15.权利要求14的方法,其中所述非导电性电介质油至少部分在所述固体多层电解质内。
16.权利要求14的方法,其中所述非导电性电介质油包含聚二甲基硅氧烷。
17.权利要求1-3中任一项的方法,其中所述装置设置为初始充电以电化学模式储存能量。
18.权利要求17的方法,其中所述装置设置为进一步充电以静电模式储存能量。
19.权利要求1的方法,其中足以形成包含交替的极化聚合物层的固体多层电介质的条件包括施加具有至少1伏特直流电流的电势的场。
20.权利要求1或19的方法,其中足以在电极的表面上储存电荷的条件包括施加具有大于1伏特直流电流的电势的场。
21.权利要求1或19的方法,其中足以在电极的表面上储存电荷的条件包括施加具有不大于电介质的击穿电压的电势的场。
22.一种用于储存和释放能量的系统,所述系统包含:
一个或多个至少部分充电的能量储存装置,所述装置包含:
阳极;
包含一个或多个阳离子极化的聚合物层和一个或多个阴离子极化的聚合物层的交替层的固体多层电介质,其中至少一个阳离子极化的聚合物层包含多个化学结合的正离子,并且至少一个阴离子极化的聚合物层包含多个化学结合的负离子;和
阴极,
其中至少一个阳离子极化的聚合物层与阴极相邻,并且至少一个阴离子极化的聚合物层与阳极相邻;
用于在足以在电极的表面上静电储存电荷的条件下,施加相对于阴极负极化的和相对于阳极正极化的场的装置;和
用于在电极的表面上从静电储存的电荷释放能量的装置。
23.权利要求22的系统,其中所述至少部分充电的储存装置具有至少1伏特的储存电势。
24.权利要求22或23的系统,其中所述至少部分充电的储存装置具有最多500伏特的储存电势。
CN201180012841.9A 2010-01-09 2011-01-07 包括固体多层电解质的能量储存装置 Expired - Fee Related CN102804303B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US29363810P 2010-01-09 2010-01-09
US61/293638 2010-01-09
PCT/US2011/020514 WO2011085197A2 (en) 2010-01-09 2011-01-07 Energy storage devices including a solid multilayer electrolyte

Publications (2)

Publication Number Publication Date
CN102804303A CN102804303A (zh) 2012-11-28
CN102804303B true CN102804303B (zh) 2015-09-09

Family

ID=44306166

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180012841.9A Expired - Fee Related CN102804303B (zh) 2010-01-09 2011-01-07 包括固体多层电解质的能量储存装置

Country Status (2)

Country Link
CN (1) CN102804303B (zh)
WO (1) WO2011085197A2 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9013155B2 (en) 2010-01-09 2015-04-21 Dais Analytic Corporation Energy storage devices including a solid multilayer electrolyte
EP2810325A4 (en) * 2012-02-03 2015-07-15 Univ Washington Ct Commerciali METHODS AND APPARATUS FOR GENERATING ELECTRICITY FROM FUEL AND OXIDANT BY USING CAPACITOR
US9887042B1 (en) 2013-03-26 2018-02-06 Ehrenberg Industries Corporation Dielectric material, capacitor and method
CN105977044A (zh) * 2016-04-07 2016-09-28 铜陵泰力电子有限公司 一种自放电电压衰减小的聚丙烯腈增强型复合电极材料及其制备方法
IT201600071670A1 (it) * 2016-07-08 2018-01-08 Eni Spa Batterie Redox a flusso non acquose
CN111052279B (zh) * 2017-05-26 2022-07-26 弗莱士功率电容器有限责任公司 高能量密度电容器及无线充电系统
DE102017214770B3 (de) * 2017-08-23 2019-02-14 VW-VM Forschungsgesellschaft mbH & Co. KG Verfahren zur Bestimmung eines Zustands oder einer Zustandsänderung einer elektrochemischen Energiespeichervorrichtung und dafür vorbereitete Energiespeichervorrichtung
CN116666115B (zh) * 2023-07-31 2023-09-22 南通江海电容器股份有限公司 一种基于n型导电聚合物的电解电容器及其制备工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637421A (en) * 1995-09-13 1997-06-10 The Johns Hopkins University Completely polymeric charge storage device and method for producing same
CN1650463A (zh) * 2002-04-25 2005-08-03 佩密斯股份有限公司 多层电解质膜
US7342755B1 (en) * 2005-01-26 2008-03-11 Horvat Branimir L High energy capacitor and charging procedures
JP5150095B2 (ja) * 2006-12-20 2013-02-20 株式会社東芝 非水電解質電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6396682B1 (en) * 2000-01-31 2002-05-28 Ness Capacitor Co., Ltd. Electric energy storage device and method for manufacturing the same
CN1781201A (zh) * 2003-03-05 2006-05-31 威廉B·朵夫二世 具有增强的功率特性的电荷存储器件
CN101111959B (zh) * 2004-12-27 2010-06-02 株式会社可乐丽 聚合物电解质燃料电池用聚合物电解质膜、膜电极组件和燃料电池
US7776478B2 (en) * 2005-07-15 2010-08-17 Cymbet Corporation Thin-film batteries with polymer and LiPON electrolyte layers and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637421A (en) * 1995-09-13 1997-06-10 The Johns Hopkins University Completely polymeric charge storage device and method for producing same
CN1650463A (zh) * 2002-04-25 2005-08-03 佩密斯股份有限公司 多层电解质膜
US7342755B1 (en) * 2005-01-26 2008-03-11 Horvat Branimir L High energy capacitor and charging procedures
JP5150095B2 (ja) * 2006-12-20 2013-02-20 株式会社東芝 非水電解質電池

Also Published As

Publication number Publication date
WO2011085197A2 (en) 2011-07-14
WO2011085197A3 (en) 2011-11-24
CN102804303A (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
CN102804303B (zh) 包括固体多层电解质的能量储存装置
US9293269B2 (en) Ultracapacitor tolerating electric field of sufficient strength
US9013155B2 (en) Energy storage devices including a solid multilayer electrolyte
US7990679B2 (en) Nanoparticle ultracapacitor
US20210091433A1 (en) Multi-layer structures prepared by layer-by-layer assembly
Manjakkal et al. Graphene–graphite polyurethane composite based high‐energy density flexible supercapacitors
Wang et al. Mussel inspired modification of polypropylene separators by catechol/polyamine for Li-ion batteries
CN103035416B (zh) 一种超级电容及其制作方法
CN104838518B (zh) 电池隔板上的陶瓷涂层
KR102213229B1 (ko) 마찰전기 발전 소자 및 그 제조방법
Su et al. A specific free-volume network as synergistic zinc–ion–conductor interface towards stable zinc anode
CN101622738A (zh) 可再充电的电化学蓄电池组电池
US20160322662A1 (en) ION-EXCHANGE MEMBRANE MADE OF A BIAXIALLY STRETCHED ß-POROUS FILM
WO2014034415A1 (ja) バナジウム系レドックス電池用イオン交換膜、複合体、及びバナジウム系レドックス電池
US20180075982A1 (en) Enhanced structural supercapacitors
Kang et al. Thin coating of microporous organic network makes a big difference: Sustainability issue of Ni electrodes on the PET textile for flexible lithium-ion batteries
WO2011085186A2 (en) Anionic exchange electrolyte polymer membranes
Wang et al. An electronegative modified separator with semifused pores as a selective barrier for highly stable lithium–sulfur batteries
Pei et al. Ionic conductivity enhanced by crown ether bridges for lithium-ion battery separators
Krishnan et al. Nanoionic transport and electric double layer formation at the electrode/polymer interface for high-performance supercapacitors
Hong et al. Polypyrrole nanofoam/carbon nanotube multilayered electrode for flexible electrochemical capacitors
CN109642388B (zh) 表面修饰纳米纤维、电解质膜、电解质膜的制造方法、膜电极接合体及固体高分子型燃料电池
CN105742562A (zh) 导电和液体保持结构
EP3278387A1 (en) Improved charge storage device and system
KR20170071204A (ko) 코어-쉘 구조의 입자들을 포함하는 활성층이 구비된 전기화학 소자용 분리막 및 이의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150909

Termination date: 20170107