CN102787276A - 一种高磁感取向硅钢及其制造方法 - Google Patents

一种高磁感取向硅钢及其制造方法 Download PDF

Info

Publication number
CN102787276A
CN102787276A CN2012103156582A CN201210315658A CN102787276A CN 102787276 A CN102787276 A CN 102787276A CN 2012103156582 A CN2012103156582 A CN 2012103156582A CN 201210315658 A CN201210315658 A CN 201210315658A CN 102787276 A CN102787276 A CN 102787276A
Authority
CN
China
Prior art keywords
oriented silicon
magnetic induction
high magnetic
grain
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012103156582A
Other languages
English (en)
Other versions
CN102787276B (zh
Inventor
章华兵
李国保
卢锡江
杨勇杰
胡卓超
沈侃毅
高加强
吴美洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to CN201210315658.2A priority Critical patent/CN102787276B/zh
Publication of CN102787276A publication Critical patent/CN102787276A/zh
Priority to MX2015002566A priority patent/MX367870B/es
Priority to US14/422,991 priority patent/US10236105B2/en
Priority to JP2015527746A priority patent/JP6062051B2/ja
Priority to PCT/CN2012/001683 priority patent/WO2014032216A1/zh
Priority to RU2015104491/02A priority patent/RU2594543C1/ru
Priority to EP12883627.7A priority patent/EP2891728B1/en
Priority to KR1020157004380A priority patent/KR101695954B1/ko
Application granted granted Critical
Publication of CN102787276B publication Critical patent/CN102787276B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating

Abstract

本发明公开了一种高磁感取向硅钢,其各化学元素重量百分含量为:C:0.035~0.120%,Si:2.9~4.5%,Mn:0.05~0.20%,P:0.005~0.050%,S:0.005~0.012%,Als:0.015~0.035%,N:0.001~0.010%,Cr:0.05~0.30%,Sn:0.005~0.090%,V:≤0.0100%,Ti:≤0.0100%,微量元素Sb、Bi、Ni和Mo的至少其中之一,且满足Sb+Bi+Nb+Mo:0.0015~0.0250%,余量为Fe和其他不可避免的杂质;且(Sb/121.8+Bi/209.0+Nb/92.9+Mo/95.9)/(Ti/47.9+V/50.9)为0.1~15;本发明还公开了该高磁感取向硅钢的制造方法。

Description

一种高磁感取向硅钢及其制造方法
技术领域
本发明涉及一种钢板及其制造方法,尤其涉及一种硅钢及其制造方法。
背景技术
传统高磁感取向硅钢的基本化学成分为Si2.0~4.5%,C0.03~0.10%,Mn0.03~0.2%,S0.005~0.050%,Als(酸溶铝)0.02~0.05%,N0.003~0.012%,有的成分体系还含有Cu、Mo、Sb、B、Bi等元素中的一种或多种。
传统高磁感取向硅钢的制造方法为:首先用转炉(或电炉)炼钢,经二次精炼及合金化,连铸成板坯;接着板坯在专用高温加热炉内加热到约1400℃,并保温45min以上,使有利夹杂物充分固溶;然后进行热轧,层流冷却后卷取,在热轧板常化过程中硅钢基体内析出细小、弥散的第二相质点,获得有效抑制剂;再将热轧板冷轧到成品厚度后脱碳退火,把钢板中的[C]脱到不影响成品磁性能的程度(一般应在30ppm以下),并涂布以MgO为主要成分的退火隔离剂;再次进行高温退火,在高温退火过程中,钢板发生二次再结晶、形成硅酸镁底层并完成净化处理(除去钢中的S、N等对磁性有害的元素),获得取向度高、铁损低的高磁感取向硅钢;最后经过涂布绝缘涂层和拉伸退火,得到商业应用形态的取向硅钢产品。
传统高磁感取向硅钢制造方法的不足在于:为了使抑制剂充分固溶,加热温度最高需达到1400℃,这是传统加热炉的极限水平。此外,由于加热温度高,烧损大、加热炉需频繁修补,利用率低。同时,能耗高,热轧卷的边裂大,致使冷轧工序生产困难,成材率低,成本也高。
鉴于存在上述这些问题,在该技术领域内开展了大量降低取向硅钢加热温度的研究。按照板坯加热温度范围来区分,其主要改进路径有两种:一种是中温板坯加热工艺,板坯加热温度在1250~1320℃,采用AlN和Cu作为抑制剂;另一种是低温板坯加热工艺,板坯加热温度在1100~1250℃,采用渗氮方法导入抑制剂。
目前,低温板坯加热工艺发展较快,例如采用在1200℃以下进行板坯加热,最终冷轧采用冷轧压下率大于80%,并在脱碳退火过程中采用氨气进行连续渗氮处理,经高温退火获得取向度较高的二次再结晶晶粒。该制造工艺的优点是可以实现较低成本地生产高磁感取向硅钢(HiB),该硅钢的典型磁感B8为1.88~1.92T。
低温板坯加热工艺抑制剂主要来源于脱碳退火后通过渗氮处理,使氮与钢中原有的铝结合,形成细小弥散的(Al,Si)N、(Mn,Si)N质点。同时,抑制剂还来源于板坯中已有的夹杂物,这些夹杂物在炼钢浇铸过程中形成,在板坯加热过程部分固溶并在轧制过程中析出,常化退火调整夹杂物形态,对初次再结晶有着重要影响从而也会影响最终产品的磁性能。当初次晶粒尺寸与抑制力水平匹配时,二次再结晶予以完善,最终产品的磁性能优良。常化过程中析出的氮化物抑制剂虽然受到板坯中夹杂物形态的影响,但是板坯中夹杂物形态的控制是相当困难的,例如,在浇铸过程中形成粗大的AlN在后续退火中难以固溶,导致初次晶粒尺寸稳定性控制的难度大,稳定获得磁感B8≥1.93T的高等级HiB产品的概率低。此外,在成品厚度确定的条件下,通常采取的一些进一步降低铁损的措施会导致磁感的降低,例如,提高Si含量或激光刻痕等。磁感的降低使得这些降低铁损的方法应用范围受限。另一些提高磁感B8的方法,如在脱碳退火过程中快速加热,则需要新增快速感应加热或通电加热等专用设备,投资成本增加。另外,快速升温会增加成品底层缺陷,尤其是亮点状缺陷的发生率。
专利公开号为CN1138107A,公开日为1996年12月18日,名称为“高磁通密度低铁损晶粒取向的电磁钢板及其制造方法”的中国专利文献公开了一种电磁钢板,其含有Si:2.5~4.0wt%,Al:0.005~0.06wt%,并且该钢板的各个晶粒之中,按面积率计,至少95%由直径为5~50mm的粗大的二次再结晶晶粒组成,其(001)轴相对于该钢板的轧制方向在5°以内,而(001)轴相对于板面垂直方向在5°以内;在这种粗大的二次再结晶晶粒中或者晶界中,存在直径为0.05~2mm的细小晶粒,其(001)轴与粗大的二次晶粒的(001)轴的相对角度在2~30°。
专利公开号为JP8232020A,公开日为1996年9月10日,名称为“方向性电磁钢片的制造方法”的日本专利文献涉及了一种生产廉价优异磁性的硅钢片的制造方法,其步骤包括特定轧制速度的冷连轧和退火,调节至特定ppm的总氮含量,然后完成退火。该钢片的重量百分配比为C:0.001~0.09%,硅:2~4.5%,酸溶铝:0.01~0.08%,N:0.00010.004%,独立或总数S和(或)硒:0.008~0.06%,铜:0.01~1%,锰:0.01~0.5%,少量的Bi、P、Sn、Pb、B、V、铌等,余量为Fe和其他不可避免的杂质。冷轧硅钢的冷连轧率为75~95%,退火温度为800~1000℃,退火时间为1300秒,总氮含量为50~1000ppm。
专利公开号为JP4337029A,公开日为1992年11月25日,名称为“一种方向性电磁钢板的一次再结晶烧结方法”的日本专利文献公开了方向性电磁钢板的制造方法,其主要涉及渗氮法取向硅钢初次晶粒尺寸控制方法及提出根据Als、N与Si调整脱碳温度的方法。
发明内容
本发明的目的在于提供一种高磁感取向硅钢及其制造方法,其在不新增设备的前提下,通过对钢种成分的设计及对脱碳退火工艺的控制,获得磁性能更优异的取向硅钢产品,其磁感较普通取向硅钢有明显的提高,典型磁感B8>1.93T。
为了实现上述发明目的,本发明提供了一种高磁感取向硅钢,其化学元素重量百分含量为:C:0.035~0.120%,Si:2.9~4.5%,Mn:0.05~0.20%,P:0.005~0.050%,S:0.005~0.012%,Als:0.015~0.035%,N:0.001~0.010%,Cr:0.05~0.30%,Sn:0.005~0.090%,V:≤0.0100%,Ti:≤0.0100%,微量元素Sb、Bi、Ni和Mo的至少其中之一,且满足Sb+Bi+Nb+Mo:0.0015~0.0250%,余量为Fe和其它不可避免的杂质;且(Sb/121.8+Bi/209.0+Nb/92.9+Mo/95.9)/(Ti/47.9+V/50.9)的值,即(Sb+Bi+Nb+Mo)/(V+Ti)的摩尔分数比,处于0.1~15范围内。
进一步地,本发明所述的高磁感取向硅钢,其初次晶粒尺寸Φ≤30μm,初次再结晶度P≥90%。
在本技术方案中,发明人通过添加微量元素Sb、Bi、Nb或Mo,并控制杂质元素V、Ti的含量,优先形成微量元素的碳、氮化合物,板坯中以TiN、TiC或VN为核心的MnS+AlN复合夹杂物数量大为减少。由于这些复合夹杂物尺寸粗大,在板坯加热及后续退火过程中不能完全固溶,抑制效果差,而随着(Sb+Bi+Nb+Mo)含量之和及(Sb+Bi+Nb+Mo)/(V+Ti)的摩尔分数比的增加,一方面微量元素及其形成的碳、氮化合物可作为辅助抑制剂,起到增强抑制力的效果,另一方面,由于MnS+AlN复合夹杂物数量的减少,细小弥散AlN数量的增加,这既增强了二次再结晶的抑制力水平,也有利于初次晶粒细小均匀、初次再结晶程度高,有利于二次再结晶的完善,因此成品钢板的磁感明显提高。
相应地,本发明还提供了上述高磁感取向硅钢的制造方法,其包括如下步骤:
(1)冶炼和浇铸后获得板坯;
(2)热轧;
(3)常化退火;
(4)冷轧;
(5)脱碳退火:脱碳温度满足T(x1,x2)=ax1+bx2+c,其中x1为Sb+Bi+Nb+Mo的重量百分比含量,单位为ppm,x2为(Sb+Bi+Nb+Mo)/(V+Ti)的摩尔分数比,单位为1,a取值范围为0.1~1.0,b取值范围为0.1~1.0,c取值范围为800~900℃,其表示不添加微量元素时的脱碳温度;脱碳时间为80~160s;
(6)渗氮处理;
(7)在钢板上进行MgO涂层后进行高温退火;
(8)涂敷绝缘涂层以及热拉伸平整退火后得到高磁感取向硅钢。
进一步地,本发明所述的高磁感取向硅钢的制造方法将脱碳退火温度控制为以使初次晶粒尺寸Φ≤30μm且初次再结晶度P≥90%。
进一步地,本发明所述的高磁感取向硅钢的制造方法还包括步骤(9)细化磁畴,以获得铁损要求更低的产品。细化磁畴可以采用激光刻痕的方法,经激光刻痕后,高磁感取向硅钢的磁性能更为优异。
进一步地,本发明所述的高磁感取向硅钢的制造方法的步骤(2)中,加热温度≤1250℃。
进一步地,本发明所述的高磁感取向硅钢的制造方法的步骤(4)中冷轧压下率≥75%。
更进一步地,本发明所述的高磁感取向硅钢的制造方法的步骤(6)中渗入氮含量50~260ppm。
本发明所述的高磁感取向硅钢的制造方法,关键在于控制脱碳温度,适宜的脱碳温度的设定需要实现两个目的:一是使初次晶粒尺寸Φ≤30μm,二是使初次再结晶的再结晶度P≥90%,其中初次再结晶度P的定义为脱碳退火后带钢发生初次再结晶的比例。当初次晶粒尺寸Φ≤30μm且再结晶度P≥90%时,带钢的磁性能更加优异。为了使初次晶粒尺寸与再结晶度都能满足上述要求范围,脱碳温度需要根据板坯中微量元素含量及其比例进行设定,并满足函数关系式T(x1,x2)=ax1+bx2+c。在本技术方案中,初次晶粒尺寸Φ和初次再结晶度P是可以采用本领域内的常规测量手段测得的,例如初次再结晶度P可以采用电子背散射衍射(EBSD)测得。
另外,由上述脱碳温度的函数关系式可以看出,添加微量元素Sb、Bi、Nb或Mo后的脱碳温度较不添加这些元素成分体系的脱碳温度高。这是因为在钢板中的MnS+AlN复合夹杂物数量的减少,而细小弥散AlN数量的增加,增强了初次再结晶的抑制效果,因此需要适当增加脱碳温度。
本发明所述的高磁感取向硅钢,相比普通的高磁感取向硅钢,其初次再结晶度高,初次晶粒尺寸更为细小、均匀,二次再结晶晶粒更为粗大,在铁损不降低或略有降低的情况下,其磁感显著提高,产品磁性能稳定。
本发明所述的高磁感取向硅钢的制造方法,通过在炼钢过程中添加微量元素并控制相应杂质元素的含量,并配合后续脱碳退火工艺的调整,使初次晶粒尺寸≤30μm且初次再结晶的再结晶度≥90%,既可使微量元素及其形成的碳、氮化合物作为辅助抑制剂,又可使板坯中MnS+AlN复合夹杂物数量减少,细小弥散AlN数量增加,有利于初次晶粒细小均匀且初次再结晶度高,有利于成品磁感提高,从而获得一种具有优异磁性能的取向硅钢。
附图说明
图1显示了高磁感取向硅钢的初次晶粒尺寸、再结晶度与磁感的关系。
具体实施方式
图1显示了本技术方案中高磁感取向硅钢的初次晶粒尺寸、再结晶度与磁感的关系,从图1可以看出,对于本技术方案来说,当初次晶粒尺寸Φ≤30μm且初次再结晶度P≥90%时,带钢的磁感B8>1.93T。
下面结合具体实施例和比较例对于本发明所述的技术方案做进一步的说明和解释。
按照下列步骤制造本发明所述的高磁感取向硅钢:
(1)按照如表1所示的成分配比进行冶炼,浇铸后得到板坯;
(2)将板坯于1150℃加热后热轧至厚度为2.3mm的热轧板;
(3)常化退火;
(4)冷轧到成品厚度0.30mm;
(5)脱碳温度满足函数关系式:T=0.21x1+0.16x2+831,脱碳时间为80~160s,使钢板中[C]含量降到30ppm以下;
(6)渗氮处理:渗入[N]含量100~160ppm;
(7)在钢板上进行MgO涂层后在气氛为100%H2、温度为1200℃的条件下进行20小时的高温退火;
(8)开卷后涂敷绝缘涂层以及热拉伸平整退火后得到高磁感取向硅钢。
上述脱碳温度函数关系式是通过选取冷轧到成品厚度且经过25h高温退火的钢材进行不同成分、不同脱碳温度的试验组合,测定脱碳钢板的初次晶粒尺寸Φ与初次再结晶度P,选择符合初次晶粒尺寸Φ≤30μm且初次再结晶度P≥90%的钢卷进行统计分析(x1、x2值相同时,优选P/Φ值较大的钢卷进行统计分析),采用线性拟合法得到脱碳温度与x1、x2间的函数关系式的a、b与c。参与拟合的数据如表2所示。
表1.
Figure BDA00002076128200071
(序号1-11为实施例,序号12-17为比较例)
表2.
注:○表示满足要求;×表示不满足要求。
表3显示了实施例1-12和比较例14-17的脱碳温度、再结晶度、初次晶粒尺寸、磁感B8与铁损P17/50
表3.
Figure BDA00002076128200082
Figure BDA00002076128200091
由表1和表3可见,采用本发明所述的技术方案的,尤其是微量元素含量及其比例满足本发明的成分设计要求,脱碳温度、初次晶粒尺寸和再结晶度满足要求的钢卷,其磁性能普遍很好,磁感B8都大于1.93T。
为了进一步说明细化磁畴步骤对取向硅钢铁损性能的影响,发明人还按常规低温取向硅钢成分,添加Sb、Bi、Nb或Mo元素,并控制V、Ti含量<0.0020%,通过采用合适的脱碳温度获得0.23mm厚度取向硅钢产品,经激光刻痕处理后得到若干产品,其磁性能见表4。
表4.
Figure BDA00002076128200092
由表4可知,由于最终产品晶粒粗大,序号1~7的产品经激光刻痕后,铁损改善效果非常明显,刻痕后产品综合磁性能较序号8~11的产品明显优异。
要注意的是,以上列举的仅为本发明的具体实施例,显然本发明不限于以上实施例,随之有着许多的类似变化。本领域的技术人员如果从本发明公开的内容直接导出或联想到的所有变形,均应属于本发明的保护范围。

Claims (8)

1.一种高磁感取向硅钢,其特征在于,其化学元素重量百分含量为:
C:0.035~0.120%,
Si:2.9~4.5%,
Mn:0.05~0.20%,
P:0.005~0.050%,
S:0.005~0.012%,
Als:0.015~0.035%,
N:0.001~0.010%,
Cr:0.05~0.30%,
Sn:0.005~0.090%,
V:≤0.0100%,
Ti:≤0.0100%,
微量元素Sb、Bi、Ni和Mo的至少其中之一,且满足
Sb+Bi+Nb+Mo:0.0015~0.0250%,
余量为Fe和其它不可避免的杂质;
且(Sb/121.8+Bi/209.0+Nb/92.9+Mo/95.9)/(Ti/47.9+V/50.9)的值处于0.1~15范围内。
2.如权利要求1所述的高磁感取向硅钢,其初次晶粒尺寸Φ≤30μm,初次再结晶度P≥90%。
3.如权利要求1所述的高磁感取向硅钢的制造方法,其特征在于,包括下列步骤:
(1)冶炼和浇铸后获得板坯;
(2)热轧;
(3)常化退火;
(4)冷轧;
(5)脱碳退火:脱碳温度满足T(x1,x2)=ax1+bx2+c,其中x1为Sb+Bi+Nb+Mo的重量百分比含量,单位为ppm,x2为(Sb+Bi+Nb+Mo)/(V+Ti)的摩尔分数比,a取值范围为0.1~1.0,b取值范围为0.1~1.0,c取值范围为800~900℃;脱碳时间为80~160s;
(6)渗氮处理;
(7)在钢板上进行MgO涂层后进行高温退火;
(8)涂敷绝缘涂层以及热拉伸平整退火后得到高磁感取向硅钢。
4.如权利要求3所述的高磁感取向硅钢的制造方法,其特征在于,控制脱碳温度,以使初次晶粒尺寸Φ≤30μm且初次再结晶度P≥90%。
5.如权利要求3或4所述的高磁感取向硅钢的制造方法,其特征在于,还包括步骤(9)细化磁畴。
6.如权利要求3或4所述的高磁感取向硅钢的制造方法,其特征在于,所述步骤(2)中,加热温度≤1250℃。
7.如权利要求3或4所述的高磁感取向硅钢的制造方法,其特征在于,所述步骤(4)中冷轧压下率≥75%。
8.如权利要求3或4所述的高磁感取向硅钢的制造方法,其特征在于,所述步骤(6)中渗入氮含量50~260ppm。
CN201210315658.2A 2012-08-30 2012-08-30 一种高磁感取向硅钢及其制造方法 Active CN102787276B (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201210315658.2A CN102787276B (zh) 2012-08-30 2012-08-30 一种高磁感取向硅钢及其制造方法
PCT/CN2012/001683 WO2014032216A1 (zh) 2012-08-30 2012-12-11 一种高磁感取向硅钢及其制造方法
US14/422,991 US10236105B2 (en) 2012-08-30 2012-12-11 High magnetic induction oriented silicon steel and manufacturing method thereof
JP2015527746A JP6062051B2 (ja) 2012-08-30 2012-12-11 高磁束密度方向性珪素鋼及びその製造方法
MX2015002566A MX367870B (es) 2012-08-30 2012-12-11 Acero al silicio orientado por induccion altamente magnetico y un metodo de fabricacion del mismo.
RU2015104491/02A RU2594543C1 (ru) 2012-08-30 2012-12-11 Текстурированная кремнистая сталь с высокой магнитной индукцией и способ ее производства
EP12883627.7A EP2891728B1 (en) 2012-08-30 2012-12-11 High magnetic induction oriented silicon steel and manufacturing method thereof
KR1020157004380A KR101695954B1 (ko) 2012-08-30 2012-12-11 고 자기유도 배향성 규소강 및 그의 생산방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210315658.2A CN102787276B (zh) 2012-08-30 2012-08-30 一种高磁感取向硅钢及其制造方法

Publications (2)

Publication Number Publication Date
CN102787276A true CN102787276A (zh) 2012-11-21
CN102787276B CN102787276B (zh) 2014-04-30

Family

ID=47152860

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210315658.2A Active CN102787276B (zh) 2012-08-30 2012-08-30 一种高磁感取向硅钢及其制造方法

Country Status (8)

Country Link
US (1) US10236105B2 (zh)
EP (1) EP2891728B1 (zh)
JP (1) JP6062051B2 (zh)
KR (1) KR101695954B1 (zh)
CN (1) CN102787276B (zh)
MX (1) MX367870B (zh)
RU (1) RU2594543C1 (zh)
WO (1) WO2014032216A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103540846A (zh) * 2013-08-27 2014-01-29 国家电网公司 一种薄规格、超低铁损、低噪声高磁感取向硅钢片及其制备方法
WO2014032216A1 (zh) * 2012-08-30 2014-03-06 宝山钢铁股份有限公司 一种高磁感取向硅钢及其制造方法
CN103668005A (zh) * 2013-12-12 2014-03-26 武汉钢铁(集团)公司 一种用中温板坯加热温度生产的HiB钢及其生产方法
CN106191409A (zh) * 2016-08-02 2016-12-07 天津市佳利电梯电机有限公司 一种用于电梯电动机转子的硅钢、制备方法及应用
CN106435134A (zh) * 2016-11-02 2017-02-22 浙江华赢特钢科技有限公司 一种硅钢片的生产工艺
CN108010653A (zh) * 2017-12-27 2018-05-08 宁波耀峰液压电器有限公司 一种直流湿式阀用电磁铁
CN110306030A (zh) * 2019-08-07 2019-10-08 包头市威丰稀土电磁材料股份有限公司 一种激光刻痕机在纵剪线上的应用
CN110318005A (zh) * 2018-03-30 2019-10-11 宝山钢铁股份有限公司 一种高磁感取向硅钢及其制造方法
CN110791635A (zh) * 2019-09-30 2020-02-14 鞍钢股份有限公司 一种制备高磁感取向硅钢的方法
CN112391512A (zh) * 2019-08-13 2021-02-23 宝山钢铁股份有限公司 一种高磁感取向硅钢及其制造方法
CN113042532A (zh) * 2021-03-12 2021-06-29 武汉钢铁有限公司 一种含Bi高磁感取向硅钢热轧带钢边部质量控制方法
CN115055911A (zh) * 2021-11-23 2022-09-16 全球能源互联网研究院有限公司 一种耐热型极低损耗取向硅钢及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695619B (zh) * 2012-09-27 2016-02-24 宝山钢铁股份有限公司 一种高磁感普通取向硅钢的制造方法
CN107881411B (zh) * 2016-09-29 2019-12-31 宝山钢铁股份有限公司 一种低噪音变压器用低铁损取向硅钢产品及其制造方法
RU2701606C1 (ru) * 2019-04-29 2019-09-30 Общество с ограниченной ответственностью "ВИЗ-Сталь" Способ производства анизотропной электротехнической стали с высокой проницаемостью
CN111961958B (zh) * 2020-07-13 2021-11-23 湖南华菱涟钢特种新材料有限公司 低硬度50w800电工钢以及生产方法
CN113930593B (zh) * 2021-10-26 2024-01-16 无锡普天铁心股份有限公司 一种低损耗宽料取向硅钢的生产方法
CN114717480B (zh) * 2022-04-14 2023-03-03 无锡普天铁心股份有限公司 一种b8≥1.90t中温普通取向硅钢及制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143746A (ja) * 1997-07-25 1999-02-16 Kawasaki Steel Corp 極めて鉄損の低い方向性電磁鋼板及びその製造方法
CN102453838A (zh) * 2010-10-25 2012-05-16 宝山钢铁股份有限公司 一种较高磁感的高强度无取向电工钢及其制造方法
CN102471819A (zh) * 2009-07-17 2012-05-23 新日本制铁株式会社 方向性电磁钢板的制造方法
CN102471818A (zh) * 2009-07-13 2012-05-23 新日本制铁株式会社 方向性电磁钢板的制造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2603130B2 (ja) * 1989-05-09 1997-04-23 新日本製鐵株式会社 高磁束密度方向性電磁鋼板の製造法
JPH0784615B2 (ja) * 1990-07-27 1995-09-13 川崎製鉄株式会社 磁束密度に優れる方向性けい素鋼板の製造方法
JPH0826399B2 (ja) 1991-05-14 1996-03-13 新日本製鐵株式会社 一方向性電磁鋼板の1次再結晶焼鈍方法
JP3598590B2 (ja) 1994-12-05 2004-12-08 Jfeスチール株式会社 磁束密度が高くかつ鉄損の低い一方向性電磁鋼板
JPH08232020A (ja) 1995-02-27 1996-09-10 Nippon Steel Corp 方向性電磁鋼板の製造方法
JPH09137223A (ja) * 1995-11-10 1997-05-27 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板の製造方法
US5885371A (en) * 1996-10-11 1999-03-23 Kawasaki Steel Corporation Method of producing grain-oriented magnetic steel sheet
US6039818A (en) * 1996-10-21 2000-03-21 Kawasaki Steel Corporation Grain-oriented electromagnetic steel sheet and process for producing the same
IT1290173B1 (it) * 1996-12-24 1998-10-19 Acciai Speciali Terni Spa Procedimento per la produzione di lamierino di acciaio al silicio a grano orientato
JP3921806B2 (ja) * 1998-04-24 2007-05-30 Jfeスチール株式会社 方向性珪素鋼板の製造方法
JP3357611B2 (ja) * 1998-10-01 2002-12-16 川崎製鉄株式会社 鉄損の極めて低い高磁束密度方向性電磁鋼板の製造方法
US6309473B1 (en) * 1998-10-09 2001-10-30 Kawasaki Steel Corporation Method of making grain-oriented magnetic steel sheet having low iron loss
JP4123652B2 (ja) * 1999-10-05 2008-07-23 Jfeスチール株式会社 方向性電磁鋼板の製造方法
IT1316030B1 (it) * 2000-12-18 2003-03-26 Acciai Speciali Terni Spa Procedimento per la fabbricazione di lamierini a grano orientato.
JP2002220642A (ja) * 2001-01-29 2002-08-09 Kawasaki Steel Corp 鉄損の低い方向性電磁鋼板およびその製造方法
JP2002241906A (ja) * 2001-02-09 2002-08-28 Kawasaki Steel Corp 被膜特性および磁気特性に優れた方向性電磁鋼板
US6676771B2 (en) * 2001-08-02 2004-01-13 Jfe Steel Corporation Method of manufacturing grain-oriented electrical steel sheet
PL1752548T3 (pl) * 2005-08-03 2017-08-31 Thyssenkrupp Steel Europe Ag Sposób wytwarzania taśmy elektrotechnicznej o zorientowanych ziarnach
EP1752549B1 (de) * 2005-08-03 2016-01-20 ThyssenKrupp Steel Europe AG Verfahren zur Herstellung von kornorientiertem Elektroband
JP4598702B2 (ja) * 2006-03-23 2010-12-15 新日本製鐵株式会社 磁気特性が優れた高Si含有方向性電磁鋼板の製造方法
ITRM20070218A1 (it) * 2007-04-18 2008-10-19 Ct Sviluppo Materiali Spa Procedimento per la produzione di lamierino magnetico a grano orientato
EP2578706B1 (en) * 2010-05-25 2016-06-08 Nippon Steel & Sumitomo Metal Corporation Method of manufacturing grain-oriented electrical steel sheet
JP5696380B2 (ja) * 2010-06-30 2015-04-08 Jfeスチール株式会社 方向性電磁鋼板の鉄損改善装置および鉄損改善方法
JP5919617B2 (ja) * 2010-08-06 2016-05-18 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
CN102787276B (zh) * 2012-08-30 2014-04-30 宝山钢铁股份有限公司 一种高磁感取向硅钢及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143746A (ja) * 1997-07-25 1999-02-16 Kawasaki Steel Corp 極めて鉄損の低い方向性電磁鋼板及びその製造方法
CN102471818A (zh) * 2009-07-13 2012-05-23 新日本制铁株式会社 方向性电磁钢板的制造方法
CN102471819A (zh) * 2009-07-17 2012-05-23 新日本制铁株式会社 方向性电磁钢板的制造方法
CN102453838A (zh) * 2010-10-25 2012-05-16 宝山钢铁股份有限公司 一种较高磁感的高强度无取向电工钢及其制造方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014032216A1 (zh) * 2012-08-30 2014-03-06 宝山钢铁股份有限公司 一种高磁感取向硅钢及其制造方法
US10236105B2 (en) 2012-08-30 2019-03-19 Baoshan Iron & Steel Co., Ltd High magnetic induction oriented silicon steel and manufacturing method thereof
CN103540846A (zh) * 2013-08-27 2014-01-29 国家电网公司 一种薄规格、超低铁损、低噪声高磁感取向硅钢片及其制备方法
CN103668005A (zh) * 2013-12-12 2014-03-26 武汉钢铁(集团)公司 一种用中温板坯加热温度生产的HiB钢及其生产方法
CN103668005B (zh) * 2013-12-12 2015-10-14 武汉钢铁(集团)公司 一种用中温板坯加热温度生产的HiB钢及其生产方法
CN106191409B (zh) * 2016-08-02 2019-01-11 天津市佳利电梯电机有限公司 一种用于电梯电动机转子的硅钢、制备方法及应用
CN106191409A (zh) * 2016-08-02 2016-12-07 天津市佳利电梯电机有限公司 一种用于电梯电动机转子的硅钢、制备方法及应用
CN106435134B (zh) * 2016-11-02 2018-07-06 浙江华赢特钢科技有限公司 一种硅钢片的生产工艺
CN106435134A (zh) * 2016-11-02 2017-02-22 浙江华赢特钢科技有限公司 一种硅钢片的生产工艺
CN108010653A (zh) * 2017-12-27 2018-05-08 宁波耀峰液压电器有限公司 一种直流湿式阀用电磁铁
CN110318005A (zh) * 2018-03-30 2019-10-11 宝山钢铁股份有限公司 一种高磁感取向硅钢及其制造方法
CN110318005B (zh) * 2018-03-30 2021-12-17 宝山钢铁股份有限公司 一种高磁感取向硅钢及其制造方法
CN110306030A (zh) * 2019-08-07 2019-10-08 包头市威丰稀土电磁材料股份有限公司 一种激光刻痕机在纵剪线上的应用
CN112391512A (zh) * 2019-08-13 2021-02-23 宝山钢铁股份有限公司 一种高磁感取向硅钢及其制造方法
CN112391512B (zh) * 2019-08-13 2022-03-18 宝山钢铁股份有限公司 一种高磁感取向硅钢及其制造方法
CN110791635A (zh) * 2019-09-30 2020-02-14 鞍钢股份有限公司 一种制备高磁感取向硅钢的方法
CN113042532A (zh) * 2021-03-12 2021-06-29 武汉钢铁有限公司 一种含Bi高磁感取向硅钢热轧带钢边部质量控制方法
CN115055911A (zh) * 2021-11-23 2022-09-16 全球能源互联网研究院有限公司 一种耐热型极低损耗取向硅钢及其制备方法

Also Published As

Publication number Publication date
JP2015529285A (ja) 2015-10-05
EP2891728A1 (en) 2015-07-08
MX2015002566A (es) 2015-09-23
CN102787276B (zh) 2014-04-30
KR101695954B1 (ko) 2017-01-13
US20150206633A1 (en) 2015-07-23
EP2891728B1 (en) 2019-10-16
KR20150036724A (ko) 2015-04-07
WO2014032216A1 (zh) 2014-03-06
JP6062051B2 (ja) 2017-01-18
EP2891728A4 (en) 2016-08-31
US10236105B2 (en) 2019-03-19
RU2594543C1 (ru) 2016-08-20
MX367870B (es) 2019-09-10

Similar Documents

Publication Publication Date Title
CN102787276B (zh) 一种高磁感取向硅钢及其制造方法
CN101768697B (zh) 用一次冷轧法生产取向硅钢的方法
CN107208230B (zh) 无取向性电磁钢板及其制造方法以及马达铁芯
CN101395284B (zh) 磁特性非常优异的方向性电磁钢板的制造方法
CN103695619B (zh) 一种高磁感普通取向硅钢的制造方法
CN100381598C (zh) 一种取向硅钢及其生产方法和装置
TWI481724B (zh) Manufacturing method of non - directional electromagnetic steel sheet
JP6844125B2 (ja) 方向性電磁鋼板の製造方法
CN102471818B (zh) 方向性电磁钢板的制造方法
CN112391512B (zh) 一种高磁感取向硅钢及其制造方法
CN107974543B (zh) 一种厚度≤0.20mm低温高磁感取向硅钢的生产方法
CN103805918B (zh) 一种高磁感取向硅钢及其生产方法
CN102605267B (zh) 一种低温加热工艺优化的高磁感取向电工钢板及生产方法
CN104937118A (zh) 磁特性优异的半工艺无取向性电磁钢板的制造方法
EP2025767A1 (en) Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
CN103668005A (zh) 一种用中温板坯加热温度生产的HiB钢及其生产方法
CN102747291A (zh) 一种高频低铁损磁性优良的无取向硅钢薄带及生产方法
CN105274427A (zh) 一种高磁感取向硅钢及生产方法
CN106399819A (zh) 一种取向硅钢及其制备方法
CN104726796A (zh) 取向电工钢板及其制造方法
CN108359903B (zh) 一种低合金高强钢及其大热输入焊接热影响区韧化方法
CN104726662A (zh) 取向电工钢板及其制造方法
CN114277309A (zh) 一种高磁感取向硅钢及其制造方法
JP4240736B2 (ja) 鉄損が低くかつ磁束密度が高い無方向性電磁鋼板およびその製造方法
CN114277308A (zh) 一种高磁感取向硅钢及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant