CN102754248B - 含有剥离微管和空间受控附着纳米颗粒和纳米层的高性能能量存储和收集装置 - Google Patents

含有剥离微管和空间受控附着纳米颗粒和纳米层的高性能能量存储和收集装置 Download PDF

Info

Publication number
CN102754248B
CN102754248B CN201080057642.5A CN201080057642A CN102754248B CN 102754248 B CN102754248 B CN 102754248B CN 201080057642 A CN201080057642 A CN 201080057642A CN 102754248 B CN102754248 B CN 102754248B
Authority
CN
China
Prior art keywords
oxidation
carbon nanotube
electrode
walled carbon
collection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080057642.5A
Other languages
English (en)
Chinese (zh)
Other versions
CN102754248A (zh
Inventor
克莱夫·P·博什尼亚克
屈特·W·斯沃格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Designed Nanotubes LLC
Original Assignee
Designed Nanotubes LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43898008&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102754248(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Designed Nanotubes LLC filed Critical Designed Nanotubes LLC
Publication of CN102754248A publication Critical patent/CN102754248A/zh
Application granted granted Critical
Publication of CN102754248B publication Critical patent/CN102754248B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
CN201080057642.5A 2009-12-18 2010-12-14 含有剥离微管和空间受控附着纳米颗粒和纳米层的高性能能量存储和收集装置 Active CN102754248B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US28802509P 2009-12-18 2009-12-18
US61/288,025 2009-12-18
PCT/US2010/060349 WO2011075489A1 (en) 2009-12-18 2010-12-14 High performance energy storage and collection devices containing exfoliated microtubules and spatially controlled attached nanoscale particles and layers

Publications (2)

Publication Number Publication Date
CN102754248A CN102754248A (zh) 2012-10-24
CN102754248B true CN102754248B (zh) 2017-10-13

Family

ID=43898008

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080057642.5A Active CN102754248B (zh) 2009-12-18 2010-12-14 含有剥离微管和空间受控附着纳米颗粒和纳米层的高性能能量存储和收集装置

Country Status (8)

Country Link
US (1) US8475961B2 (enExample)
EP (1) EP2514008B1 (enExample)
JP (2) JP6093570B2 (enExample)
KR (1) KR101749043B1 (enExample)
CN (1) CN102754248B (enExample)
CA (1) CA2783974C (enExample)
ES (1) ES2734883T3 (enExample)
WO (1) WO2011075489A1 (enExample)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8940438B2 (en) * 2009-02-16 2015-01-27 Samsung Electronics Co., Ltd. Negative electrode including group 14 metal/metalloid nanotubes, lithium battery including the negative electrode, and method of manufacturing the negative electrode
US9761380B2 (en) * 2010-07-29 2017-09-12 Nokia Technologies Oy Apparatus and associated methods
EP2651821A1 (en) 2010-12-14 2013-10-23 Styron Europe GmbH Improved elastomer formulations
WO2013011516A1 (en) 2011-07-20 2013-01-24 Vulcan Automotive Industries Ltd Funcionalized carbon nanotube composite for use in lead acid battery
KR101972795B1 (ko) 2011-08-29 2019-08-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 리튬 이온 전지용 양극 활물질의 제작 방법
CA2859113C (en) * 2011-11-15 2020-04-14 Denki Kagaku Kogyo Kabushiki Kaisha Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery
GB2501871B8 (en) * 2012-05-03 2022-08-17 Dyson Technology Ltd Hybrid Capacitor
US20170292063A1 (en) 2016-04-07 2017-10-12 Molecular Rebar Design, Llc Nanotube mediation of degradative chemicals for oil-field applications
US11081684B2 (en) * 2017-05-24 2021-08-03 Honda Motor Co., Ltd. Production of carbon nanotube modified battery electrode powders via single step dispersion
CN116253317B (zh) * 2023-02-06 2025-08-29 星源材质(南通)新材料科技有限公司 一种锂盐接枝的碳纳米管的制备方法、碳纳米管及碳纳米管悬浮液

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050006623A1 (en) * 2003-07-07 2005-01-13 Wong Stanislaus S. Carbon nanotube adducts and methods of making the same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3415920A (en) 1965-08-19 1968-12-10 Dow Chemical Co Multilayer extrusion process
US5094793A (en) 1990-12-21 1992-03-10 The Dow Chemical Company Methods and apparatus for generating interfacial surfaces
KR100527322B1 (ko) * 1997-05-06 2006-01-27 소니 가부시끼 가이샤 폴리머겔전해질형성용시트,이를사용한폴리머겔전해질및그의제법
JPH11329414A (ja) * 1998-03-31 1999-11-30 Aventis Res & Technol Gmbh & Co Kg リチウム電池および電極
JP2002519826A (ja) * 1998-03-31 2002-07-02 セラニーズ・ヴェンチャーズ・ゲーエムベーハー リチウム電池および電極
TWI236778B (en) * 2003-01-06 2005-07-21 Hon Hai Prec Ind Co Ltd Lithium ion battery
JP4659367B2 (ja) 2003-02-19 2011-03-30 パナソニック株式会社 電池用電極およびその製造法
US20040160156A1 (en) * 2003-02-19 2004-08-19 Matsushita Electric Industrial Co., Ltd. Electrode for a battery and production method thereof
JP2004319661A (ja) * 2003-04-15 2004-11-11 Fujikura Ltd 光電変換素子用基材およびその製造方法ならびに光電変換素子およびその製造方法
WO2006059794A2 (en) * 2004-12-02 2006-06-08 Kabushiki Kaisha Ohara All solid lithium ion secondary battery and a solid electrolyte therefor
JP4525474B2 (ja) * 2005-06-06 2010-08-18 株式会社豊田中央研究所 リチウム二次電池用活物質及びその製造方法、リチウム二次電池
US20060286456A1 (en) * 2005-06-20 2006-12-21 Zhiguo Fu Nano-lithium-ion batteries and methos for manufacturing nano-lithium-ion batteries
FR2895572B1 (fr) * 2005-12-23 2008-02-15 Commissariat Energie Atomique Materiau a base de nanotubes de carbone et de silicium utilisable dans des electrodes negatives pour accumulateur au lithium
CN101164872B (zh) * 2006-10-20 2012-05-09 索尼株式会社 单层碳纳米管的制造方法
JP5352069B2 (ja) * 2007-08-08 2013-11-27 トヨタ自動車株式会社 正極材料、正極板、二次電池、及び正極材料の製造方法
KR100913178B1 (ko) * 2007-11-22 2009-08-19 삼성에스디아이 주식회사 리튬 이차 전지용 활물질 및 이를 포함하는 리튬 이차 전지
JP2009196828A (ja) * 2008-02-19 2009-09-03 Inoac Corp カーボンナノチューブ含有粉末の製造方法及びカーボンナノチューブ含有粉末並びにカーボンナノチューブ含有再分散液
US20110039157A1 (en) 2008-04-30 2011-02-17 Sumitomo Bakelite Co., Ltd. Anodic carbon material for lithium secondary battery, method for manufacturing the same, lithium secondary battery anode, and lithium secondary battery
EP2379325B1 (en) 2008-12-18 2023-07-26 Molecular Rebar Design, LLC Exfoliated carbon nanotubes, methods for production thereof and products obtained therefrom

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050006623A1 (en) * 2003-07-07 2005-01-13 Wong Stanislaus S. Carbon nanotube adducts and methods of making the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Coaxial MnO2/Carbon Nanotube Array Electrodes for High-Performance Lithium Batteries;Arava Leela Mohana Reddy et.al;《NANO LETTERS》;20090202;1002-1006 *

Also Published As

Publication number Publication date
ES2734883T3 (es) 2019-12-12
JP2016096131A (ja) 2016-05-26
KR101749043B1 (ko) 2017-06-20
CN102754248A (zh) 2012-10-24
JP6093570B2 (ja) 2017-03-08
CA2783974C (en) 2017-04-25
WO2011075489A1 (en) 2011-06-23
JP2013514630A (ja) 2013-04-25
KR20120109557A (ko) 2012-10-08
CA2783974A1 (en) 2011-06-23
US20110151321A1 (en) 2011-06-23
US8475961B2 (en) 2013-07-02
EP2514008A1 (en) 2012-10-24
EP2514008B1 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
CN102754248B (zh) 含有剥离微管和空间受控附着纳米颗粒和纳米层的高性能能量存储和收集装置
Du et al. The status of representative anode materials for lithium‐ion batteries
US11631838B2 (en) Graphene-enhanced anode particulates for lithium ion batteries
US10629899B1 (en) Production method for electrochemically stable anode particulates for lithium secondary batteries
US9564630B2 (en) Anode active material-coated graphene sheets for lithium batteries and process for producing same
US10020494B2 (en) Anode containing active material-coated graphene sheets and lithium-ion batteries containing same
Ji et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries
US9349542B2 (en) Stacks of internally connected surface-mediated cells and methods of operating same
Lahiri et al. Carbon nanostructures in lithium ion batteries: past, present, and future
JP6583404B2 (ja) リチウムイオン電池用アノード材料、該アノード材料を含む負極及びリチウムイオン電池
Li et al. Encapsulating nanoscale silicon inside carbon fiber as flexible self-supporting anode material for lithium-ion battery
KR20180027636A (ko) 표면-매개된 리튬 이온-교환 에너지 저장 장치
CN105934847B (zh) 电器件
WO2020081379A1 (en) Electrochemically stable anode particulates for lithium secondary batteries and method of production
Jing et al. Cobalt hydroxide carbonate/reduced graphene oxide anodes enabled by a confined step-by-step electrochemical catalytic conversion process for high lithium storage capacity and excellent cyclability with a low variance coefficient
KR20210122020A (ko) 리튬 이온 이차 전지용 정극 재료, 리튬 이온 이차 전지용 정극 및 리튬 이온 이차 전지
Feng et al. Carbon quantum dot-coated VSe2 nanosheets as anodes for high-performance potassium-ion batteries
Chang et al. Enhancing the capacity and stability of a tungsten disulfide anode in a lithium-ion battery using excess sulfur
KR20170120314A (ko) 바나듐 산화물 복합체, 이를 포함하는 리튬 이차전지용 양극 및 이의 제조방법
KR102634269B1 (ko) 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
HK1176747A (en) High performance energy storage and collection devices containing exfoliated microtubules and spatially controlled attached nanoscale particles and layers
John et al. The Role of Nanosized Materials in Lithium Ion Batteries
Wang et al. Nanocarbon/Metal oxide hybrids for lithium ion batteries
Zeb Surface functionalization for the development of nanocomposite anodes for lithium ion batteries
Zhong et al. Nanomaterials in Anodes for Lithium Ion Batteries: Science and Manufacturability

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1176747

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant