CN102742041A - 从低氟含量的金属-有机溶液获得超导带的方法 - Google Patents

从低氟含量的金属-有机溶液获得超导带的方法 Download PDF

Info

Publication number
CN102742041A
CN102742041A CN2010800631422A CN201080063142A CN102742041A CN 102742041 A CN102742041 A CN 102742041A CN 2010800631422 A CN2010800631422 A CN 2010800631422A CN 201080063142 A CN201080063142 A CN 201080063142A CN 102742041 A CN102742041 A CN 102742041A
Authority
CN
China
Prior art keywords
salt
described method
combination
earth metal
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800631422A
Other languages
English (en)
Inventor
苏珊娜·里卡特米罗
哈维尔·帕尔默帕里西奥
阿尔贝托·波马尔巴尔韦托
特雷莎·普伊赫莫利纳
哈维尔·奥夫拉多尔斯贝伦格尔
安娜·帕劳马索利弗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Publication of CN102742041A publication Critical patent/CN102742041A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/006Compounds containing, besides copper, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0324Processes for depositing or forming copper oxide superconductor layers from a solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0381Processes for depositing or forming copper oxide superconductor layers by evaporation, e.g. MBE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0548Processes for depositing or forming copper oxide superconductor layers by deposition and subsequent treatment, e.g. oxidation of pre-deposited material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

本发明涉及使用在专利ES2259919B1中先前描述的溶液作为起点获得具有10%最大氟含量的金属-有机前体的溶液。该改进使得在单级中能够进行超导层的热处理,即分解(热解)和晶体生长成。另外,低氟含量使毒性和腐蚀的风险最小化。

Description

从低氟含量的金属-有机溶液获得超导带的方法
技术领域
本发明涉及使用在专利ES2259919B1中先前描述的溶液作为起点获得具有10%最大氟含量的金属-有机前体的溶液。该改变使在单级中进行超导层的热处理分解(热解)和晶体生长成为可能。另外,低氟含量减少毒性和腐蚀的风险。
背景技术
高温超导材料具有用于广泛的各种技术的巨大潜力。然而,获得高性能超导体研发方法是基本需求,特别是可无损传送高电流,包括在高磁场下传送的超导体。研发的第一种高温超导体基于BiSrCaCuO类物相,并且它们称为第一代超导体(1G)。这样材料的发展随着用于制备第二代(2G)导体的新技术的发现经历巨大革命,第二代导体基于REBa2Cu3O7类材料(REBCO,其中RE=稀土或钇),称为外延超导体(或涂覆导体)。
近年中,已研发各种方法,以便为高电流和高温应用在许多领域中获得具有高潜力的基于不同多层架构的外延超导体。遵循主要基于在金属衬底上真空沉积外延层的方法的各种策略以便制备这些2G导体。这些衬底可具有由离子束沉积(IBD)在多晶衬底上沉积的织构氧化物模板,或由织构缓冲层组成,该织构缓冲层经热机械处理例如所谓轧制辅助双轴织构(RABiT)复制在衬底中实现的织构。其它引起兴趣的方法是织构缓冲层通过表面氧化外延(SOE)或通过由于倾斜蒸发的沉积(倾斜表面沉积,ISD)实现。
在这些织构衬底获得之后,以多层(其起原子扩散和氧化的缓冲作用)和REBCO超导层(电流在其中传输)的形式进行外延氧化物的沉积。为制备这些多层结构,可使用真空沉积技术(蒸发、激光烧蚀、溅射)或基于金属-有机化学溶液的化学溶液沉积(CSD)。由于研发低成本外延超导体的可能性,因此后者是特别引起兴趣的。
证明可以使用三氟乙酸盐(TFA)前体使YBCO超导体生长作为非常重要的步骤进行已经广泛描述(A.Gupta,R.Jagannathan,E.I.Cooper,E.A.Giess,J.I.Landman,B.W.Hussey,Superconducting oxide films with hightransition temperature prepared from metal trifluoroacetate precursors,Appl.Phys.Lett.52,1988,2077;P.C.Mclntyre,M.J.Cima和M.F.Ng,Metalorganic deposition of high-J Ba YCu O thin films from trifluoroacetateprecursors onto(100)SrTiO3,J.Appl.Phys.68,1990,4183)。这些前体在金属-有机前体分解之后具有BaF2、Y2O3和CuO作为最终产物,并因此防止使薄YBCO膜能够在较低温度生长的BaCO3形成。近来,用于获得无水TFA前体以便获得高质量膜,同时减少加工膜需要的时间并提高前体溶液稳定性的新方法描述在专利ES2259919(B1)和国际专利申请WO2006/103303中。
当前目标之一是考虑环境改善工艺,即使用具有根据毒物学和能量的最小可能影响的前体盐和溶剂。因此描述用于减少前体盐中氟的存在的体系(Dawley,Clem et al,2001;T.Dawley,2002;Xu,Goyal et al,2004;Seleznev and Cima,2005),以及使用各种类型的添加剂减少热处理时间(T.Dawley,2002;Dawley,Clem et al,2004)。
发明内容
本发明提供用于通过使用具有较低氟含量并具有稳定化有机添加剂的金属-有机前体的溶液获得超导材料的方法。考虑到用于半导体层制备的热处理的改善使得可以在单个阶段(single stage)中进行热解和晶体生长,该方法使得能够容易获得高质量超导体材料。另外,低氟含量减少毒性的风险。本发明的第一方面涉及用于获得超导材料的方法,包括从包含至少一种稀土或钇盐、至少一种碱土金属盐和至少一种过渡金属盐的前体溶液沉积,其特性在于与前体盐总重相比按重量计氟最大比例是10%。这意味着与从钇、钡和铜三氟乙酸盐开始的本领域中已知的标准溶液氟含量比较氟含量减少70%。最小氟含量是对应热解层中全部初始钡的氟化钡形成的氟含量。
在优选实施方式中,溶液中金属离子的总浓度在0.5和2.5M之间。
稀土金属盐优选包括选自Y、La、Nd、Sm、Eu、Gd、Dy、Ho、Er、Yb、Lu中的至少一种元素及其任何组合。更优选地,盐为Y、Gd、Eu、Dy及其任何组合。该稀土或钇盐的平衡离子可以是一氟羧酸根、二氟羧酸根、三氟乙酸根、无氟羧酸根或它们的组合。仍更优选地,稀土或钇盐是三氟乙酸盐。在优选实施方式中碱土金属选自Ba、Sr、Ca及其任何组合,并且在更优选实施方式中碱土金属是Ba。在更优选实施方式中,碱土金属盐是无氟羧酸盐。
过渡金属盐优选为Cu,并更优选过渡金属盐是无氟羧酸盐。
在优选实施方式中,溶液包含选自乙酸、丙酮、乙腈、苯、1-丁醇、2-丁醇、2-丁酮、戊酮、叔丁醇、四氯化碳、氯苯、氯仿、环己烷、1,2-二氯乙烷、二乙醚、二甘醇、二甘醇二甲醚、1,2-二甲氧基乙烷、二甲醚、二甲基甲酰胺、二甲基亚砜、二噁烷、乙醇、乙酸乙酯、乙二醇、甘油、庚烷、三酰胺(triamide)、己烷、甲醇、甲基叔丁基醚、二氯甲烷、N-甲基-2-吡咯烷酮、N-甲基吡咯烷酮、硝基甲烷、戊烷、石油醚、1-丙醇、2-丙醇、吡啶、四氢呋喃、甲苯、三乙胺、邻二甲苯、间二甲苯、对二甲苯中的至少一种及其任何组合。在更优选实施方式中,溶剂选自甲醇、乙醇、异丙醇及其任何组合。在仍更优选的实施方式中,溶剂是乙醇。
溶液优选包含用单独或组合或形成聚合链部分的由醇、氨基、醚和羰基官能化的碳链组成的至少一种稳定添加剂。当它是氨基醇时它优选是三乙醇胺,并且当它是脲时它优选是N,N-二甲基脲。仍更优选地,稳定添加剂以按重量计2%到20%的比例添加到溶液。
标准工艺中存在的氟含量减少带来因此的有毒和腐蚀性气体减少,这有利于工艺的工业应用。
初始溶液中添加剂的存在使超导带较不易受到环境条件例如湿度影响。因此,它在更长时间稳定,并且其沉积的环境要求比通常描述的条件降低。
本发明的工艺特征在于它优选包括沉积产物的分解和晶体生长。这样的热处理在单级中进行,更优选在70和900℃之间的温度进行。仍更优选地,该处理特征在于在受控气氛烘箱中进行,并包括:在具有7和100mbar之间的水蒸气压强与0.1和1mbar之间的氧气压强的氮气气氛中进行的到750和820℃之间温度的第一加热;以及在小于8h的一段时间,在1bar的氧气压强的300和500℃之间温度的第二加热,接着冷却到室温。
该方法在5到100℃/min的单温度坡度进行直到750到820℃的温度。
这样,在超导层中发生的开始金属-有机盐的分解或热解和随后晶体结构生长在单级中进行。这意味着工艺的全面简化和可能的大规模应用的处理时间减少。
超导材料优选具有的组成为AA′2Cu3O7-x,其中A是稀土金属或Y(钇),A′是碱土金属并且x在0和1之间,其中更优选地,A选自Y、La、Nd、Sm、Eu、Gd、Dy、Ho、Er、Yb、Lu及其任何组合。仍更优选地,A是钇。A′更优选选自Ba、Sr、Ca及其任何组合。仍更优选地,A′是钡。
超导材料优选具有化学式YBa2Cu3O7-x,其中x在0和1之间。
在优选实施方式中,溶液沉积在单晶或双轴织构衬底(biaxial texturedsubstrate)上,并且在更优选实施方式中,衬底选自:稀土金属盐或氧化物;碱土金属盐或氧化物;过渡金属盐或氧化物;及其任何组合。在仍更优选的实施方式中,衬底选自包括单晶SrTiO3、LaAlO3、锆、稳定锆(stabilised zirconium)(YSZ)、MgO、稀土金属氧化物和双轴织构金属带的列表。
在第二方面中,本发明涉及根据在本发明中上述方法可获得的超导材料。
优选地,超导材料具有化学式YBa2Cu3O7。该材料特征在于更优选在77K并在缺少外部磁场,即具有由样品自身产生的磁场或自动场(autofield)的情况下具有在2和4MA/cm2之间的临界电流。
在第三方面中,本发明涉及溶液,该溶液包含至少一种稀土金属或钇盐、至少一种碱土金属盐和至少一种过渡金属盐,其中这些盐的溶液中氟含量按重量计小于10%。
在优选实施方式中,这些盐也包括稳定添加剂诸如上述的那些。
本发明的第四方面涉及该溶液用于获得超导材料的用途。
在整个说明书和权利要求中,使用词语“包含”及其变体不意图排斥其它技术特性、添加、组成或步骤。对于本领域技术人员来说,本发明的其它目的、优点和特性部分遵循本描述,并部分遵循本发明的实践。下面实施例和附图为说明目的提供并且不意图作为本发明的限制。
附图说明
图1标准无水溶液的热处理。
图2具有低氟含量的改性溶液的热处理。
图3从具有低氟含量的改性溶液生长的YBCO层的SEM图像。
具体实施方式
实施例
本发明在下面通过一些试验来说明,该试验由本发明人进行,说明用于通过使用具有低氟含量的金属-有机前体溶液获得超导材料的特异性和效率。
实施例1
溶液由具有1.5M总金属浓度(Y:Ba:Cu比率1:2:3)的50ml三氟乙酸Y、2,4-戊二酮Ba和乙酸铜制备。这通过称量先前在真空中以70℃在烘箱中干燥16小时的5.35g(1.25×10-2mol)的Y(TFA)3、10.59g(2.5×10-2mol)的Ba(acac)2和6.81g(1.75×10-2mol)的Cu(AcO)2来完成。盐在20ml甲醇中溶解,并且10mL(7.5×10-2mol)的三乙醇胺(TEA)添加在混合物,用甲醇调整最终容积到50mL。
该溶液由旋涂技术沉积在尺寸5×5mm、厚度0.5mm和定向(100)的LaAlO3单晶衬底上。接下来,进行热处理从而实现YBa2Cu3O7-物相的形成。这在烘箱中进行,其中应用迅速的温度升高(25℃/min)直到使温度达到790-815℃范围。该温度维持180分钟(最后30分钟干燥),然后以2.5℃/min的速率进行下降斜坡直到达到室温。在此情况下,O2压力是0.2mbar并且水压是7mbar。由质量流控制器(Bronkhorst High-Tech)容许的气流用于制作混合物,范围为0.012到0.6l/min的N2与0.006和0.03l/min之间的O2。该样品的氧化使用相同干燥气氛进行而不从烘箱移除该样品。温度升高到450℃,载气变为在1bar压力的干燥O2,并且该温度维持90分钟的时间。接下来,下降温度斜坡以300℃/h进行,直到达到室温。产生的层厚度约为275nm。
样品由X-射线衍射、SEM图像和在77K的临界电流与自动场(Jc=3.6×106A/cm2)的测量值来表征。对于参考值,临界电流作为在65K垂直施加于衬底的磁场函数的依赖性被测量。发现在65K和H=1T,Jc=0.45×106A/cm2
实施例2
具有隔膜型罩盖的管形瓶填满6.60g N,N-二甲基脲(7.5×10-2mol),并且向其添加如实施例1中制备的20ml甲醇中YBCO溶液。混合物在室温搅拌并通过0.45μm过滤器过滤。因此制备的混合物保存在Ar气氛中。
含有20%的N,N-二甲基脲的Y、Ba和Cu盐的该溶液在与实施例1中所示相同条件下沉积在LaO衬底上。沉积样品的热处理如实施例1中描述进行,从而导致YBa2Cu3O7相形成。产生的层厚度是200nm。样品由扫描电子显微镜并由X-射线衍射表征(图3)。
实施例3
遵循与实施例1中描述相同的方法,除乙醇用作溶剂之外。
含有20%的TEA的Y、Ba和Cu盐的该溶液在与实施例1中所示相同的条件下沉积在LaO衬底上。沉积样品的热处理如实施例1中描述进行,从而导致YBa2Cu3O7相形成。产生的层厚度是200nm。样品由扫描电子显微镜并由X-射线衍射表征(图3)。
实施例4
遵循与实施例2中描述相同的方法,并且乙醇用作溶剂。
含有20%的TEA的Y、Ba和Cu盐的该溶液在与实施例1中所示相同的条件下沉积在LaO衬底上。沉积样品的热处理如实施例1中描述进行,从而导致YBa2Cu3O7相形成。产生的层厚度是200nm。样品由扫描电子显微镜并由X-射线衍射表征(图3)。

Claims (37)

1.一种获得超导材料的方法,包括从前体溶液进行沉积,所述前体溶液包含至少一种稀土金属或钇盐、至少一种碱土金属盐和至少一种过渡金属盐,其特征在于与所述前体盐的总重相比按重量计氟的最大比例是10%。
2.根据权利要求1所述的方法,其中所述溶液中金属离子的总浓度在0.5到2.5M之间。
3.根据权利要求1或2中任一项所述的方法,其中所述稀土金属盐包括选自Y、La、Nd、Sm、Eu、Gd、Dy、Ho、Er、Yb、Lu中的至少一种元素及其任何组合。
4.根据权利要求3所述的方法,其中所述盐是Y、Gd、Eu、Dy或其任何组合。
5.根据权利要求3或4中任一项所述的方法,其中所述稀土金属或钇盐选自一氟羧酸盐、二氟羧酸盐、三氟乙酸盐、无氟羧酸盐和它们的组合。
6.根据权利要求5所述的方法,其中所述稀土金属或钇盐是三氟乙酸盐。
7.根据权利要求1至6中任一项所述的方法,其中所述碱土金属选自Ba、Sr、Ca和它们的任何组合。
8.根据权利要求7所述的方法,其中所述碱土金属是Ba。
9.根据权利要求7或8中任一项所述的方法,其中所述碱土金属的盐是无氟羧酸盐。
10.根据权利要求1至9中任一项所述的方法,其中所述过渡金属是Cu。
11.根据权利要求10所述的方法,其中所述过渡金属的盐是无氟羧酸盐。
12.根据权利要求1至11中任一项所述的方法,其中所述溶液包含选自乙酸、丙酮、乙腈、苯、1-丁醇、2-丁醇、2-丁酮、戊酮、叔丁醇、四氯化碳、氯苯、氯仿、环己烷、1,2-二氯乙烷、二乙醚、二甘醇、二甘醇二甲醚、1,2-二甲氧基乙烷、二甲醚、二甲基甲酰胺、二甲基亚砜、二噁烷、乙醇、乙酸乙酯、乙二醇、甘油、庚烷、三酰胺、己烷、甲醇、甲基叔丁基醚、二氯甲烷、N-甲基-2-吡咯烷酮、N-甲基吡咯烷酮、硝基甲烷、戊烷、石油醚、1-丙醇、2-丙醇、吡啶、四氢呋喃、甲苯、三乙胺、邻二甲苯、间二甲苯、对二甲苯中的至少一种溶剂及其任何组合。
13.根据权利要求12所述的方法,其中所述溶液包含选自甲醇、乙醇、异丙醇中的至少一种溶剂及其任何组合。
14.根据权利要求13所述的方法,其中所述溶剂是乙醇。
15.根据权利要求1至14中任一项所述的方法,其中所述溶液包含用单独或组合或形成聚合链的一部分的由醇、氨基、醚和羰基官能化的碳链组成的至少一种稳定添加剂。
16.根据权利要求15所述的方法,其中所述添加剂选自包括氨基醇、氨基酸、脲及其任何组合的列表。
17.根据权利要求16所述的方法,其中所述氨基醇是三乙醇胺。
18.根据权利要求16所述的方法,其中所述脲是N,N-二甲基脲。
19.根据权利要求15至18中任一项所述的方法,其中所述稳定添加剂以按重量计2%到20%之间的比例添加到溶液中。
20.根据权利要求1至19中任一项所述的方法,其特征在于它包括所述沉积产物的分解和晶体生长。
21.根据权利要求20所述的方法,其中所述分解和晶体生长发生在70到900℃之间。
22.根据权利要求20或21中任一项所述的方法,其中所述分解和晶体生长在受控气氛的烘箱中进行,并包括:在具有7到100mbar之间的水蒸气压强与0.1到1mbar之间的氧气压强的氮气气氛中进行的到750至820℃之间温度的第一加热;以及在小于8h的一段时间,在1bar的氧气压强下在300到500℃之间温度的第二加热,接着冷却到室温。
23.根据权利要求1至22中任一项所述的方法,其中所述超导材料具有AA′2Cu3O7-x的组成,其中A是稀土金属或Y,A′是碱土金属并且x在0到1之间。
24.根据权利要求1至23中任一项所述的方法,其中A选自Y、La、Nd、Sm、Eu、Gd、Dy、Ho、Er、Yb、Lu及其任何组合。
25.根据权利要求24所述的方法,其中A是Y。
26.根据权利要求23至25中任一项所述的方法,其中A′选自Ba、Sr、Ca及其任何组合。
27.根据权利要求26所述的方法,其中A′是Ba。
28.根据权利要求23至27中任一项所述的方法,其中所述超导材料具有化学式YBa2Cu3O7-x,并且x在0到1之间。
29.根据权利要求1至28中任一项所述的方法,其中所述溶液在单晶衬底或具有双轴织构的衬底上沉积。
30.根据权利要求29所述的方法,其中所述衬底选自:稀土金属盐或氧化物;碱土金属盐或氧化物;过渡金属盐或氧化物;及其任何组合。
31.根据权利要求30所述的方法,其中所述衬底选自包括单晶SrTiO3、LaAlO3、锆、稳定锆(YSZ)、MgO、稀土金属氧化物和双轴织构金属带的列表。
32.一种根据权利要求1至31中任一项所述可获得的超导材料。
33.一种溶液,包含至少一种稀土金属或钇盐、至少一种碱土金属盐、至少一种过渡金属盐,其中这些盐中的氟含量小于10%。
34.根据权利要求33所述的溶液,其中所述溶液另外包含稳定添加剂。
35.根据权利要求1至34中任一项所述的组合物用于获得超导材料的用途。
36.一种根据权利要求1至35中任一项所述可获得的化学式YBa2Cu3O7的超导材料。
37.根据权利要求36所述的超导材料,其特征在于它在77K和自动场具有2到4MA/cm2之间的临界电流密度。
CN2010800631422A 2009-12-04 2010-12-03 从低氟含量的金属-有机溶液获得超导带的方法 Pending CN102742041A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ES200931114A ES2361707B8 (es) 2009-12-04 2009-12-04 Procedimiento de obtencion de cintas superconductoras a partir de soluciones metalorganicas con bajo contenido en fluor
ESP200931114 2009-12-04
PCT/ES2010/070798 WO2011067453A1 (es) 2009-12-04 2010-12-03 Procedimiento de obtención de cintas superconductoras a partir de soluciones metalorgánicas con bajo contenido en flúor

Publications (1)

Publication Number Publication Date
CN102742041A true CN102742041A (zh) 2012-10-17

Family

ID=44114500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800631422A Pending CN102742041A (zh) 2009-12-04 2010-12-03 从低氟含量的金属-有机溶液获得超导带的方法

Country Status (7)

Country Link
US (1) US20130053249A1 (zh)
EP (1) EP2509124A4 (zh)
JP (1) JP2013512846A (zh)
KR (1) KR20120101107A (zh)
CN (1) CN102742041A (zh)
ES (1) ES2361707B8 (zh)
WO (1) WO2011067453A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105009227A (zh) * 2013-02-28 2015-10-28 公益财团法人国际超电导产业技术研究中心 氧化物超导体用组合物、氧化物超导线材以及氧化物超导线材的制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5649626B2 (ja) * 2012-08-31 2015-01-07 株式会社東芝 酸化物超電導体の製造方法
US20160343933A1 (en) * 2013-11-05 2016-11-24 Basf Se Precursor composition for alkaline earth metal containing ceramic layers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06127942A (ja) * 1992-10-23 1994-05-10 Nissan Chem Ind Ltd Ybco系超伝導前駆体の製造方法
US20020056401A1 (en) * 2000-10-23 2002-05-16 Rupich Martin W. Precursor solutions and methods of using same
JP4203606B2 (ja) * 2002-11-08 2009-01-07 財団法人国際超電導産業技術研究センター 酸化物超電導厚膜用組成物及び厚膜テープ状酸化物超電導体
ES2259919B1 (es) 2005-04-01 2007-11-01 Consejo Superior Investig. Cientificas Preparacion de precursores metalorganicos anhidros y su uso para la deposicion y crecimiento de capas y cintas superconductoras.
KR100694850B1 (ko) * 2005-07-01 2007-03-13 학교법인 한국산업기술대학 유기금속전구용액 제조방법 및 이를 이용한유기금속증착법에 의한 박막형 산화물 초전도체 제조방법
WO2008115249A2 (en) * 2006-07-17 2008-09-25 Massachusetts Institute Of Technology Making high jc superconducting films using polymer-nitrate solutions
US20100015340A1 (en) * 2008-07-17 2010-01-21 Zenergy Power Inc. COMPOSITIONS AND METHODS FOR THE MANUFACTURE OF RARE EARTH METAL-Ba2Cu3O7-delta THIN FILMS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105009227A (zh) * 2013-02-28 2015-10-28 公益财团法人国际超电导产业技术研究中心 氧化物超导体用组合物、氧化物超导线材以及氧化物超导线材的制造方法

Also Published As

Publication number Publication date
EP2509124A1 (en) 2012-10-10
EP2509124A4 (en) 2014-01-22
US20130053249A1 (en) 2013-02-28
ES2361707B1 (es) 2012-05-04
KR20120101107A (ko) 2012-09-12
WO2011067453A1 (es) 2011-06-09
ES2361707A1 (es) 2011-06-21
ES2361707B8 (es) 2012-10-30
JP2013512846A (ja) 2013-04-18

Similar Documents

Publication Publication Date Title
CA2575312C (en) Method for producing highly textured, strip-shaped high-temperature superconductors
CN102531567B (zh) 一种改性的低氟溶液法制备高温超导薄膜的方法
US8865628B2 (en) Solution for forming rare-earth superconductive film and production method thereof
US7919434B2 (en) Oxide superconducting film and method of preparing the same
Dawley et al. Thick Sol-gel Derived YBaCuO, 5 Films
CN102742041A (zh) 从低氟含量的金属-有机溶液获得超导带的方法
JP2011528316A (ja) 希土類金属−Ba2Cu3O7−δ薄膜の製造のための組成物及び方法
CN103304232B (zh) 一种采用溶胶-凝胶法合成Tl-2212超导薄膜的制备方法
Apetrii et al. YBCO thin films prepared by fluorine-free polymer-based chemical solution deposition
Dawley et al. High J c YBa 2 Cu 3 O 7-δ films via rapid, low pO 2 pyrolysis
Shi et al. The development of Y Ba2Cu3Ox thin films using a fluorine-free sol–gel approach for coated conductors
CN102569636B (zh) 一种化学溶液法制备钆钡铜氧高温超导薄膜的方法
Wesolowski et al. Nitrate-based metalorganic deposition of CeO 2 on yttria-stabilized zirconia
Paranthaman et al. Epitaxial growth of solution-based rare-earth niobate, RE3NbO7, films on biaxially textured Ni–W substrates
Kim et al. New MOD solution for the preparation of high Jc REBCO superconducting films
Wesolowski et al. Understanding the MOD process between decomposition and YBCO formation
Shoup et al. Low-cost combustion chemical vapor deposition of epitaxial buffer layers and superconductors
Araki et al. Carbon expelling scheme and required conditions for obtaining high-J/sub c/YBa/sub 2/Cu/sub 3/O/sub 7-x/film by metalorganic deposition using trifluoroacetates
Lee et al. New chemical route for YBCO thin films
KR100998310B1 (ko) 유기금속증착용 전구용액 형성방법 및 이를 사용하는초전도 후막 형성방법
JP3612556B2 (ja) アルミナ単結晶基板の表面に形成された超伝導薄膜からなる超伝導体、及びアルミナ単結晶基板の表面に超伝導薄膜を形成する方法
Paranthaman Non-Fluorine Based Bulk Solution Techniques to Grow Superconducting YBa2Cu3O7− δ Films
CN116322282A (zh) 一种基于异位法元素掺杂的高温超导薄膜的制备方法
Romà et al. Preparation of anhydrous TFA solution for deposition of YBa2Cu3O7-x thin films
Xu et al. High Performance of YBCO Films Prepared by Fluorine-Free MOD Method and a Direct Annealing Process

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20121017