CN102737967A - 具有硫族元素掺杂区域的衬底和半导体器件 - Google Patents

具有硫族元素掺杂区域的衬底和半导体器件 Download PDF

Info

Publication number
CN102737967A
CN102737967A CN2012100959673A CN201210095967A CN102737967A CN 102737967 A CN102737967 A CN 102737967A CN 2012100959673 A CN2012100959673 A CN 2012100959673A CN 201210095967 A CN201210095967 A CN 201210095967A CN 102737967 A CN102737967 A CN 102737967A
Authority
CN
China
Prior art keywords
substrate
chalcogen
semiconductor
area
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012100959673A
Other languages
English (en)
Other versions
CN102737967B (zh
Inventor
贝恩德·科尔贝森
格哈德·施密特
汉斯-约阿希姆·舒尔茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of CN102737967A publication Critical patent/CN102737967A/zh
Application granted granted Critical
Publication of CN102737967B publication Critical patent/CN102737967B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • H01L21/2253Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase by ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1012Base regions of thyristors
    • H01L29/1016Anode base regions of thyristors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66136PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66363Thyristors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66893Unipolar field-effect transistors with a PN junction gate, i.e. JFET
    • H01L29/66901Unipolar field-effect transistors with a PN junction gate, i.e. JFET with a PN homojunction gate
    • H01L29/66909Vertical transistors, e.g. tecnetrons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)

Abstract

本发明公开了具有硫族元素掺杂区域的衬底和半导体器件。通过在未掺杂半导体衬底的一侧施加应力以释放衬底中的自间隙以及将硫族元素原子注入衬底的该侧从而对未掺杂半导体衬底进行掺杂。对该衬底进行退火,从而形成含有硫族元素原子的第一半导体区域以及没有硫族元素原子的第二半导体区域。第一半导体区域的掺杂浓度高于第二半导体区域的掺杂浓度。在存在自间隙的情况下,硫族元素原子内扩散至半导体材料还可用于形成功率半导体器件中的场终止区域。

Description

具有硫族元素掺杂区域的衬底和半导体器件
技术领域
本发明涉及半导体器件和衬底,尤其是具有硫族元素掺杂区域的衬底和半导体器件。
背景技术
为了限制诸如IGBT(绝缘栅双极晶体管)和相关的恢复二极管、JFET(结型场效应晶体管)、功率MOSFET(金属氧化物半导体场效应晶体管)以及功率二极管的功率半导体器件中的开关损耗,通常自芯片(die,晶圆)的后侧将场终止区(field stop zone)构建至该构造中。相应地,通过表面掺杂来加强容纳了阻断层的低阻抗基极,从而在阻断电压增加时抑制电场的进一步扩展。
为了确保后侧发射极(诸如关于IGBT)仍然足够有效,用于击穿电荷的电活性场终止区(electrically-active field stop zone)的总量一定不能超过约1·1012cm-2。常规的场终止区的典型穿透深度约为10μm至20μm,在高温工艺期间,例如通过以约1015cm-3来扩散掺杂物质,诸如通过离子注入法注入磷来产生典型的表面浓度。
由于n掺杂高阻抗基材通常用于形成功率半导体器件的场终止区,因此,施主(donor)通常用作掺杂物质。作为用于n掺杂的标准五价元素,诸如磷、砷或锑通常用作场终止注入物。但是,这些元素的缺点在于,为了获得深度为10μm至20μm的扩散,必须使用相对较高的热预算(时间、温度)。但是,高热预算并不经济或与形成在芯片前侧的超结构器件不兼容。在这种结构元件的进一步开发期间,还需要改进的动态特性,从而进一步将场终止区的深度增加到(例如)50μm以上。
诸如硫、硒和碲的硫族元素已被用于制造功率半导体器件的场终止区。硫族元素属于元素周期表的16族,并且具有双施主效应。硫族元素的扩散常数也高于五价元素,从而已经能够以约900℃至1000℃之间的适度工艺温度来实现30μm的穿透深度。这些类型的场终止区对于高达约600V的阻断电压已经足够了。但是,需要更深穿透的场终止区,从而阻断例如1200V以上的更高电压。
也广泛地使用磷掺杂,从而在制造器件之前向半导体衬底(诸如,硅晶片)提供基极n型掺杂。诸如,n掺杂的浮区基材用作起始材料,从而在晶体生长期间调节具体的电阻。作为替换,对于阻抗非常高的起始材料进行中子辐射,从而通过核反应采用所谓的中子嬗变掺杂(NTD)将硅转换成磷。由于中子的捕获面较小,因此,NTD在整个Si件的掺杂非常均匀。可大大降低径向电阻波动,这意味着该材料对于采用高电压的应用是可用的。
但是,浮区材料的应用也有缺点。诸如,浮区材料的应用相对昂贵并且对于可使用的晶片大小也有限制。另一方面,使用Czochralski材料则非常便宜,这种材料可从坩埚拉伸制得,并且能产生大直径的晶片用于存储器或逻辑结构部件。然而,由于硅的高反应性,起始材料的特征在于,较高程度的氧杂质(来自空气)以及碳(来自坩埚材料)。通过1000℃以上合适的热处理去除主要以氧沉淀形式发生的、在晶片深层中的这些杂质,其中在通常没有杂质的一侧形成所谓的剥蚀区(DZ)。该区主要用于制造横向结构部件。通常,标准CZ材料的DZ深度为10μm至20μm,并且适于存储器和逻辑结构部件。
但是,如果该材料用于制造具有垂直超结构的功率半导体部件,则必须调节DZ的深度以匹配漂移区的长度。因此,对于400V至1200V的电压范围,DZ必须延伸的深度至少为40μm至120μm。由于上述关于成本和比例的原因,非常期望这种起始材料何时也用于制造功率半导体器件(诸如,IGBT、JFET、功率MOSFET和二极管)。在前侧已形成单元结构(例如,DMOS单元、阳极等)之后,将剩余的富含沉淀物的材料从DZ去除,从而自器件的后侧执行余下的处理。例如,该余下的处理包括通过足够低的热预算在后侧导入场终止区或发射极。
就这一点来说,具有足够高的DZ深度的CZ材料通常用于半导体器件。这种材料由Monsanto Electronic Materials Company(MEMC)以“MagicDenuded Zone”(MDZ)的标签出售,晶片的直径为6″、8″和12″。通过适当的RTP(快速热处理),晶体在空位位置强烈地过饱和,这样,设置用于通过扩散而去除氧的足够深的下沉(sink)。另一种可能是采用磁拉伸CZ材料(MCZ)。在这种情况下,通过磁场减少了在晶体生长过程中同样被注入的氧,进而防止氧沉淀物的形成。但是,存在的一个问题是由于在功率半导体器件中所采用的起始材料的掺杂材料的浓度而产生的相对较低容限。
在这种情况下,由于用于CZ材料的制造工艺,特定电阻的径向变化在百分之几到10%以上的范围。这是由掺杂物质的径向波动(条纹)引起的,而该波动是由于液相中存在电流以及在熔化物中的掺杂物质的熔断在整个晶片中产生变化所引起的。在Si棒垂直方向上的掺杂变化可能比较严重。另一方面,作为标准,FZ材料通常的规格只允许±15%的变化。
当使用只略微掺杂然后采用靶向质子辐射调节的起始材料时,原始数值的变化可以减少。但是,为了保证辐射的完全穿透,对于增加的漂移区需要非常高的能级。
发明内容
根据对未掺杂半导体衬底进行掺杂的方法的实施方式,该方法包括:向未掺杂半导体衬底的一侧施加应力以释放衬底中的自间隙,向衬底的该侧注入硫族元素原子并对衬底进行退火处理从而形成含有硫族元素原子的第一半导体区域和没有硫族元素原子的第二半导体区域。第一半导体区域的掺杂浓度高于第二半导体区域的掺杂浓度。
根据半导体衬底的实施方式,该衬底包括:第一侧、与第一侧相对的第二侧以及在第一侧与第二侧之间延伸的半导体材料。半导体材料没有有源器件区域但是具有第一和第二区域。第一区域从第一侧延伸一定深度至半导体材料并包括硫族元素掺杂剂原子,该硫族元素掺杂剂原子向第一区域提供基区掺杂浓度(base doping concentration)。第二区域从第一区域延伸至第二侧,并且没有基区掺杂。
根据制造功率半导体部件的方法的实施方式,该方法包括:在邻近半导体衬底第一侧的、半导体衬底的第一区域中形成半导体器件的有源区域,对与第一侧相对的半导体衬底的第二侧施加应力,从而在邻近第二侧的半导体衬底的第二区域中释放自间隙,以及向半导体衬底的第二侧注入硫族元素原子。该方法还包括:对半导体衬底进行退火处理,使得硫族元素原子内扩散至半导体衬底从而在第二区域中形成场终止区,该第二区域从第二侧延伸至半导体衬底。
根据功率半导体部件的实施方式,该部件包括:具有第一侧、邻近第一侧的第一区域、与第一侧相对的第二侧以及邻近第二侧的第二区域的半导体衬底,使得第二区域介于第一区域和第二侧之间。该部件还包括:设置在第一区域中的半导体器件的有源区域以及设置在第二区域中的场终止区。该场终止区包括:向场终止区提供掺杂浓度的硫族元素掺杂剂原子。该硫族元素掺杂剂原子从第二侧向半导体衬底延伸深度至少50μm。
本领域技术人员在阅读下面的详细说明并且观看附图后将认识到附加特征和优点。
附图说明
附图的元素并不一定依照彼此的相对比例。相同的参考标号表示对应的相同部分。除非相互排斥,否则多个所示实施方式的特征可以组合。实施方式通过附图描绘并通过随后的描述详细说明。
图1至图5示出了对衬底进行掺杂的实施方式的不同处理步骤期间未掺杂半导体衬底的透视截面图。
图6为硒扩散至半导体衬底的扩散分布(diffusion profile)图。
图7为IGBT恢复二极管的硒掺杂剂的扩散分布图。
图8为半导体部件的垂直深度所表示的电场的强度图。
图9至图13为根据实施方式在形成场终止区的不同处理步骤期间功率二极管的透视截面图。
图14示出了根据实施方式具有由硫族元素原子形成的场终止区的IGBT的透视截面图。
图15示出了根据实施方式具有由硫族元素原子形成的场终止区的功率MOSFET的透视截面图。
具体实施方式
硫族元素常常在半导体晶格(诸如,Si晶格)中产生簇状构造。与位于晶格内一处的原子隔离相反,硫族元素对在邻近具有其自身类型施主条件的注入表面形成较高阶的络合物(complex)。优选地,硫族元素保存在邻近晶片表面的晶体缺陷上,在该表面上,硫族元素仅在很小程度上呈电活性。因此,在晶体该侧的缺陷的深度以及可能由实际离子注入引起的晶格扰动对随后的扩散传导(diffusion conduct)具有决定性的影响(扩散到该侧或扩散到以这种方式产生的晶格缺陷)。诸如,使用硒作为掺杂物质导致该物质的少量注入剂量在通常(例如)为900℃到1000℃的固化条件下内扩散地电活性。
存在自间隙原子(例如,在硅晶片的情况下存在硅自间隙),硒的扩散机制增强。位于固定晶体位置的硒原子通过自间隙排出至中间晶格,这些原子在该中间晶格中可移动。通过自间隙原子过饱和的晶格越多,由移动性增加所导致硒原子的扩散常数就越大。为了以有限的热预算尽可能获得最深的扩散深度,离子注入产生的点缺陷(间隙)可在合适的温度和时间曲线产生,其具有最高的可能效率(IED=注入增强扩散),伴随着例如在SiO2热氧化或热解TEOS分解过程中在氧化气氛中扩散。这样,晶格通过Si自间隙晶格原子进一步过饱和。这些自间隙晶格原子增强了注入的硫族元素原子的扩散特性。
硫族元素用作双施主,并且与五价元素(诸如,P、As或Sb)相比具有较高的扩散常数,从而在诸如900℃和1000℃之间的同样的处理温度过程中可实现更深的导入深度(introduction depth)。例如,除了质子辐射或作为质子辐射的替代,Se注入和扩散可用于IGBT、JFET、功率MOSFET和二极管,从而在高电压段形成后侧场终止区。
硒间隙地扩散,其中,在由于位于晶格位置上的硒原子通过自间隙被排出至中间晶格(硒原子在中间晶格中移动)使得半导体晶体通过自间隙晶格原子(自间隙)过饱和时,向内的扩散加快。通过(例如)Si原子的晶格的过饱和越强烈,扩散系数就越高。另外,由于提供自间隙(例如,通过热氧化或扩散具有高表面浓度的磷而存在该自间隙),Se或其他硫族元素(诸如,S或Te)的扩散深度通过相当的热预算进一步增加。
同时,在以这种方式生长的氧化物中或含有磷的层的表面区域中,发生强烈的硒(或其他硫族元素)隔离/外扩散。在这种情况下,在向内扩散期间,硒的最大浓度大大降低,这样,由于扩散深度较大,不能再保证有效场终止所需的剂量。但是,增加用于补偿这些损耗的注入剂量在有限的程度内是成功的,原因在于,由于该剂量增加,通过离子注入,Si晶格在该侧愈加非晶质(amorphized),并且在这些情况下,硒或其他硫族元素将在受损的晶体区域中形成非活性簇群的趋势支持并进一步加剧电活性中心上的损耗。该行为将最佳硫族元素剂量设定为约1·1014cm-2并连同隔离或向外扩散引起少量的电活性剂量成分。然而,可考虑其他的注入剂量。
硒具有四个离散能量级,这些能量级与取代集成(substitutionintegrated)Se原子或Se对的简单和双干扰位置相关。在退火后,在900℃以上的温度,该对中心在DLTS(深能级瞬态谱)光谱中几乎完全消失,从而在光谱中的传导带下在250meV(单电荷中心)和496meV(双电荷中心)处普遍存在与单个Se干扰位置相关的能量级。尤其是,当在高掺杂磷表面层中采用磷驱动的向内扩散来形成垂直深度具有较宽最大值的弧形扩散面时,产生隔离的反向定向机制。可采用该效应来调节到达尽可能深的、具有对足够低的能级尽可能平坦的梯度的向内扩散,从而调节高阻抗起始材料的基区掺杂浓度。在一个实施方式中,通过例如来自POCL3或PH3的掺杂源或另一含有磷的气体组合的气相来进行磷的内扩散。这样可产生表面浓度非常高的磷,因此,通过自间隙可有效地过饱和晶格。在另一实施方式中,可进行P注入来释放自间隙。在这种情况下,剂量的数量级在1015cm-2到1016cm-2
最后,高表面浓度的磷可用于后侧发射极的功率二极管。在薄化半导体衬底后,还需要在高温下扩散阳极区域。诸如,可采用RTP或LTA(激光热退火)步骤来形成阳极区域。在一个实施方式中,在例如通过CMP(化学机械抛光)阶段的向内扩散Se后,形成高掺杂表面层,然后在前侧(例如,阳极、IGBT单元结构等)完成处理。然后,例如在确定的薄晶片处理后,可进行薄化和后侧处理。
图1至图5示出了在对未掺杂衬底100进行掺杂的实施方式的不同处理步骤期间的未掺杂衬底100。图1示出了未掺杂半导体衬底100(诸如,未掺杂Si晶片),具有:前侧102、与前侧相对的后侧104、以及在前侧102与后侧104之间延伸的半导体材料106。在该阶段,半导体衬底100是未掺杂的,因此半导体材料106没有诸如二极管和/或晶体管部件(阳极、阴极、发射极、源极、漏极、阴极、栅极等)的有源器件区域。
图2示出了在注入硫族元素原子108(诸如,Se、S或Te原子)期间的半导体衬底100。在一个实施方式中,硫族元素原子108是在至少150keV(例如,170KeV)的能量下以至少6·1013cm-2(例如,7·1013cm-2)的剂量注入的80Se原子。
图3示出了硫族元素原子108注入衬底100的前侧102之后的半导体衬底100。硫族元素原子108穿透的深度为d1,d1主要为注入能量的函数。
图4示出了在衬底100的前侧102上形成应力感应层110之后的半导体衬底100。应力感应层110向衬底100施加应力,使得自间隙(例如,Si衬底情况下的Si自间隙)在衬底100中释放。在一个实施方式中,应力感应层110是在含有PH3的气氛中(例如)在至少900℃的温度下长达至少200分钟所形成的磷玻璃。磷的扩散通过间隙使衬底100过饱和。由于高溶度,相应的高供给磷离子引起晶格应力,该应力改变空位置(空位)和间隙晶格原子之间的平衡,产生对于硫族元素(诸如,硒)扩散有利的条件。
在一个实施方式中,例如通过POCL3或PH3掺杂源或另一含有磷的气体的化合物在气相中扩散磷。例如,在沉积工艺期间,气氛可包括N2、O2和PH3。在各个情况下,随着磷玻璃的生长来基本自动调节磷原子的过度供给。与预先通过离子注入执行的沉积相反,从非耗尽源的扩散导致在随后可永久供给间隙。尽管通过离子注入,以这种方式生成的产品缺陷开始引起扩散常数的相应增高,但是该常数以一定的时间常数再次降低。另一方面,针对过饱和晶格的有效间隙,注入的磷的剂量非常高,通常≥1·1016cm-2
在另一实施方式中,应力感应层110是形成在衬底100上的热氧化层。可在衬底100上形成向衬底100施加应力的任意其他的材料层,从而释放衬底100中的自间隙。由于应力感应层110,一些半导体原子留在晶格点上,其余的原子(自间隙)则没有。图4示出了完整Si晶格在<110>方向上的一部分以及哑铃形Si自间隙的分解图,其中,哑铃形原子未在完整的晶格点上集中。当然,Si自间隙可以有其他的结构。
通过半导体衬底100中存在的自间隙引起硫族元素原子108的加速内扩散。比硫族元素原子单纯的固有扩散(即,在没有自间隙的情况下,硫族元素原子的内扩散)相比,该扩散机制更有效。由于提供基区掺杂浓度的传统固有扩散(诸如磷的固有扩散)不是基于具有点缺陷的晶格的过饱和,因此需要基本上更高的热预算(时间、温度)来实现相同的扩散深度结果。因此,使用本文描述的Se内扩散技术,可利用高电阻率起始材料在低很多的热预算下实现基区掺杂。
图5示出了退火后的半导体衬底100。优选地,在退火前去除应力感应层110,但是,如果需要的话,可保持在合适的位置。在通过自间隙加快的情况下,退火处理使硫族元素原子108内扩散至衬底100。在一个实施方式中,在低于1000℃的温度下退火短于60分钟。退火后,半导体材料106具有第一区域112和第二区域114。第一区域112从前侧102向半导体材料106延伸一定的深度,并且在第一区域112中包括提供基区掺杂浓度的内扩散的硫族元素掺杂剂原子108。第二区域114从第一区域112延伸至衬底100的后侧104,并且没有基区掺杂,因此比第一区域112的电阻高。也就是说,第二区域114保持其固有的特性,即,不具有任何明显的掺杂剂类型。本文所用的术语“没有”意思是不具备、未被接触、缺少或缺乏,或者基本上不具备、未被接触、缺少或缺乏。因此,第二区域114可能含有一些硫族元素原子108,但未达到有意义的浓度。
在一个实施方式中,在将硫族元素原子108注入衬底100后,形成应力感应层110,如图2到图4所示。在另一实施方式中,在注入硫族元素原子108前,形成应力感应层110。根据该实施方式,未掺杂半导体衬底100是未掺杂硅衬底。应力感应层110形成在未掺杂硅衬底100的一侧,从而施加用于释放硅衬底100中硅自间隙的应力。在释放硅自间隙后,去除应力感应层110。在去除应力感应层110后,将硫族元素原子108注入硅衬底100。然后,对硅衬底100进行退火,从而加快硫族元素原子108从顶侧102以至少30μm的深度d2内扩散至硅衬底100,如图5所示。可替换地,可在衬底的后侧104形成应力感应层100,进而将硫族元素原子108注入后侧104。
图6示出了在不具有以及具有高表面磷浓度(即,具有和不具有含有磷的应力感应层)的情况下,在惰性气氛中通过使用扩展电阻(SR)测量获得的硒内扩散的扩散分布图。图6描绘了相对于注入深度(x轴)的Se掺杂剂浓度(y轴)。曲线“A”表示注入Se并经过PH3沉积处理的样品,曲线“B”表示注入Se但未经过PH3沉积处理的样品。在Se注入和退火前,两个样品都没有任何n型基区掺杂浓度,从而消除n基材的作用。使用80Se以剂量为7·1013cm-2并且能量为170keV,对两个样品执行离子注入。尽管在N2气氛中,在950℃下扩散持续30分钟获得参考样品(曲线B),但是对于第二样品(曲线A)预先使用了(例如)通常在MOS处理期间用于多晶硅掺杂的磷沉积。在磷沉积处理期间,气氛包括含有N2、O2和PH3的混合气体。在该示例中,磷在930℃下沉积并且稳定时间为70分钟,从而产生自间隙。然后,在Se注入前,去除产生的磷玻璃。与参考样品一起执行后续的Se导入。
尽管Se导入条件(剂量和能量)相同,但是对于磷涂覆样品(曲线A)产生了注入Se的明显更深的内扩散。这是由于通过PH3沉积生成的磷原子超过1019cm-3的高表面浓度。由于磷的隔离/吸收剂(getter)效果,朝沉积侧的浓度下降。但是,利用导入Se期间存在的自间隙,发生的超深向内扩散的深度约为这里所示实施方式的参考样品的四倍。该示例性Se扩散分布(例如)适于需要芯片厚度为60μm左右的600V功率半导体器件。相反,参考样品(曲线B)的扩散分布实际上在10分钟后到达其最终Se扩散深度,原因为在950℃下的特征IED时间常数为该数量级。然后,仅以约两个数量级的较小固有扩散常数产生进一步的内扩散,也就是说,内扩散基本停止。扩散时间的延长或者随后温度大幅升高都不再明显改变Se原子的深度分布。通过额外的退火阶段,只有注入表面区域中的Se浓度进一步增加。
在例如通过CMP去除高掺杂应力感应层之后,进行标准前侧器件处理以及重金属扩散(如果合适的话),对自由电荷载流子的使用期限进行长期调节。随后可进行晶片薄化以及完成后侧处理,其可通过典型的薄晶片处理来执行,例如通过质子场终止、后侧发射极注入和LTA进行。
图7示出了IGBT恢复二极管的生成的掺杂剂扩散分布图。在这种情况下,阳极(发射极)的硼剂量为2.5·1012cm-2,热预算为1150℃以及200分钟。场终止区的分布(例如)可以是能量为700keV并且剂量为5·1014cm-2的质子辐射的结果。如上所述,由于Se为双施主,因此对掺杂进行调节。SR测量确定的浓度并不对应于空间电荷区中的施主浓度。为了确定这些浓度,必须根据Fermi统计确定Se中心的激发水平。如上所述的两个能量级,使用针对单电荷施主的250meV以及针对双电荷施主的496meV的能量级导致热动力平衡(其可从属于SR测量,因为下面的导电系数测量是在没有形成空间电荷层的情况下进行的)从而对导电带中电子浓度起不同的作用。反过来,由于较深的高能位置,引起单电荷中心95.1%的激发水平以及双电荷中心仅0.1%的激发水平。
因此,SR浓度大致对应于整体取代Se原子。当施加阻断电压时,有源器件中电子的近Fermi水平远远低于平衡值,在有源器件的空间电荷区中,Se中心两次离子化到几乎100%。这就是为什么根据SR测量来应用双浓度,从而计算场强度发展。如图7所示(曲线B),已经考虑到了上述情况,并且与(例如)采用磷作为简单施主的恒定基区掺杂的浓度相比,其中,剂量自身包含在漂移区(曲线A)中。因此,中心掺杂水平在约1.4·1014cm-3的区域中,并因此对应于30Ωcm的开始电阻值,该值对于(例如)600V的恢复二极管来说是可接受的。
图8示出了由结构部件的垂直深度表示的电场强度发展。曲线A对应于内扩散注入的Se原子的样品,曲线B对应于未内扩散Se原子的样品。关于该掺杂水平的雪崩击穿场强度约为230kV/cm,阻断电压约为930V。由于表面区域中浓度降低,在相同阻断电压下,在p+n-转变以及场终止区通过Se掺杂,场强度的减弱量非常的小。这包括在场终止区释放p+n-转变以及nn+-转变,这至少与关于切换稳健性和软性朝着贮存的趋势相关。因此,该实例也示出了,通常,代替恒定基区掺杂级,实现了平坦梯度增加然后再朝着场终止区降低的基区掺杂,在漂移区的中心区域局部最大,这样可为垂直优化提供一定的好处。除了对于预先未掺杂的半导体衬底进行掺杂,本文所描述的硫族元素内扩散技术还可用于在功率半导体器件(诸如,功率二极管、功率MOSFET、IGBT、JFET等)中形成深的场终止区。
图9至图13示出了形成具有场终止区202的垂直功率二极管200,该场终止区是通过将硫族元素原子内扩散至含有自间隙的半导体材料204而形成的。图9示出了在半导体材料204(诸如,Si衬底或外延层)中形成二极管200的阳极区域206的示意图。通过传统工艺将阳极206形成在半导体材料204的前侧208。半导体材料204在阳极206下方的区域形成二极管200的基极区域,其在二极管200的后侧210终止。
图10示出了在注入硫族元素原子212(诸如,Se、S或Te原子)期间的半导体材料204。硫族元素原子212注入与阳极区域206相对的、半导体材料204的后侧210。
图11示出了注入硫族元素原子212之后的半导体材料204。硫族元素原子212将在退火后在二极管200的阴极区域中形成场终止区。
图12示出了形成应力感应层214(诸如,磷玻璃或热氧化)之后的半导体材料204。应力感应层214向半导体材料204的后侧210施加应力,使得释放半导体材料204中的自间隙。可替换地,如上所述,应力感应层214可在注入硫族元素原子212前形成,进而在退火前去除。
图13示出了形成场终止区202之后的二极管200。场终止区202具有自半导体材料204的后侧210的穿透深度(dFS),并通过对半导体材料204进行退火而形成。在通过自间隙加速的情况下,退火使硫族元素原子212更深地内扩散至半导体材料204。这样,该穿透深度大于没有自间隙的情况下通过注入硫族元素原子实现的穿透深度。穿透深度还是退火时间以及温度的函数,其由于在形成场终止区202之前形成了器件区域(阳极、阴极)而受到限制。例如,在没有超过允许的热预算(时间、温度)的情况下,穿透深度距半导体材料204的后侧210可以为60μm或者更深。可在二极管200的相应侧208、210形成阳极金属化216和阴极金属化218,从而分别形成阳极触点(A)和阴极触点(K)。
如果沉积PH3从而形成如上所述的应力感应层214,则以适合产生功率的方式自动内扩散高掺杂n发射极区域。因此,无需额外的注入阶段来形成根据该实施方式的后侧阴极(发射极)。相反,通过从应力感应层214内扩散磷自动形成阴极,其中应力感应层用于在半导体材料204中施加应力从而释放自间隙。在这种情况下,电活性剂量的量级约为1016cm-3,含有磷的应力感应层214的相应表面浓度至少达到1019cm-3到1020cm-3范围内的值。通过来自气相的先前沉积,由(例如)硅中的磷固体颗粒的溶度限制总浓度。在950℃到1000℃左右的沉积温度下,该浓度约为1021cm-3。因此,以这种方式导入的磷的总量在1017cm-2到1018cm-2的量级。
图14示出了具有后侧场终止区302的垂直IGBT 300的实施方式。在半导体材料310(诸如,Si衬底或外延层)的前侧308形成器件300的源极304和栅极区域306。源极区域304包括形成在(p)体区312中的(n+)区域。栅极区域306包括通过栅极介电材料316与周围的半导体材料绝缘的掩埋栅电极314。源电极318接触源极区域304以及体312的重掺杂(p+)区域320。源电极318通过介电层322与栅电极314绝缘。在体区312下方为(n)漂移区324,在漂移区324下方为高掺杂(p+)发射极区域326。发射极区域326接触发射极金属化328。通过传统的工艺步骤形成IGBT300的有源区域和金属化。
在存在自间隙的情况下,通过将硫族元素原子332内扩散至后侧330,在IGBT 300的后侧330形成场终止区302。可在形成发射极金属化328前形成场终止区302。场终止区302的穿透深度(dFS)至少为30μm、至少为50μm或者至少为90μm,例如如图6所示。这种深的场终止区非常适合阻断电场600V、1200V甚至更高。如上所述,场终止区302的深度还是退火温度和持续时间的函数。根据本文所述的实施方式可实现至少为30μm、至少为50μm或至少为90μm的相对深的场终止区302,而没有超过对于保护已形成的器件区域的完整性所需的热预算(时间、温度)。
如果通过从沉积的PH3形成应力感应层来产生高掺杂磷区,则可随后去除高掺杂磷区。这可通过(例如)通常在晶片研磨后进行的旋转蚀刻工艺中的蚀刻来执行。
图15示出了具有后侧场终止区402的垂直功率MOSFET 400的实施方式。在半导体材料408(诸如,Si衬底或外延层)的上部形成反向掺杂的源极404和体区406。在体区406下方形成漂移区410。栅极包括栅极导体412,该栅极导体提供了通过栅极绝缘体414与下面的沟道区域绝缘的栅极触点(G)。绝缘体层416设置在栅极导体412的上方,从而使栅极导体412与提供源极触点(S)的源极金属化418绝缘。在功率MOSFET 400的后侧422形成重掺杂漏极区域420,并且与漏极金属化424接触,从而提供漏极触点(D)。使用传统的工艺步骤形成功率MOSFET 400的有源区域和金属化。
在存在自间隙的情况下,通过将硫族元素原子426内扩散至后侧422,在功率MOSFET 400的后侧422形成场终止区402。可在形成漏极金属化424之前形成场终止区402。场终止区402的穿透深度(dFS)至少为30μm、至少为50μm或者至少为90μm,例如如图6所示并且如上所述。
根据本文所述的实施方式,可制造用于其他类型功率半导体器件的场终止区。例如,JFET或半导体闸流管可包括后侧场终止区,该后侧场终止区是在存在自间隙的情况下通过将硫族元素原子注入到后侧,然后在允许的热预算(时间、温度)内进行退火而形成。同样,可通过多次重复本文所述的处理和/或在沉积(例如,PH3)和硫族元素导入步骤期间改变工艺参数来针对特定场终止分布产生任意期望的场终止区。
使用诸如“下面”、“下方”、“低于”、“上方”、“上面”等空间上相对的术语以便于描述来说明一个元件相对于第二元件的位置。除了与附图中方向不同的方向,这些术语旨在涵盖器件的不同方向。另外,诸如“第一”、“第二”等术语也用于描述各种元件、区域、部分等,并且并不旨在进行限制。在通篇说明书中,相同的术语表示相同的元件。
如本文所使用的,“具有”、“含有”、“包括”、“包含”等术语是开放性术语,其表明存在所述的元件或特征,但并不排除其他的元件或特征。冠词“一(a)”、“一(an)”、以及“该”旨在包括复数以及单数,除非上下文明确表明相反情况。
可以理解的是,本文所描述的多个实施方式的特征可相互组合,除非另外特别注明。
尽管本文已经示出并描述了具体实施方式,但是本领域的技术人员将会意识到,在不脱离本发明范围的情况下,多种备选和/或等同的实现方式可替代示出及描述的具体实施方式。该申请旨在覆盖本文所描述的具体实施方式的任意修改或变化。因此,本发明只受到权力要求及其等同物的限制。

Claims (26)

1.一种对未掺杂半导体衬底进行掺杂的方法,包括:
在所述未掺杂半导体衬底的一侧施加应力,从而释放所述衬底中的自间隙;
将硫族元素原子注入所述衬底的所述侧;以及
对所述衬底进行退火,从而形成含有所述硫族元素原子的第一半导体区域以及没有所述硫族元素原子的第二半导体区域,所述第一半导体区域的掺杂浓度高于所述第二半导体区域的掺杂浓度。
2.根据权利要求1所述的方法,其中,在所述未掺杂半导体衬底的所述侧施加应力包括:在所述侧形成应力感应层,所述应力感应层使所述衬底中的所述自间隙被释放。
3.根据权利要求2所述的方法,其中,所述应力感应层含有磷。
4.根据权利要求3所述的方法,其中,在所述侧形成所述应力感应层包括:在含有PH3的气氛中,在至少900℃的温度下至少200分钟从而在所述侧形成磷玻璃。
5.根据权利要求2所述的方法,其中,在将所述硫族元素原子注入所述衬底的所述侧之后,在所述侧形成所述应力感应层。
6.根据权利要求2所述的方法,其中,在所述侧形成所述应力感应层包括:在所述侧形成氧化层。
7.根据权利要求1所述的方法,其中,所述未掺杂半导体衬底是未掺杂硅衬底,所述方法还包括:
在所述未掺杂硅衬底的一侧形成应力感应层,从而施加释放所述硅衬底中的硅自间隙的应力;
在释放所述硅自间隙后,去除所述应力感应层;
在去除所述应力感应层后,将所述硫族元素原子注入所述硅衬底的所述侧;以及
对所述硅衬底进行退火,从而将所述硫族元素原子从所述侧向所述硅衬底内扩散至少30μm的深度。
8.根据权利要求7所述的方法,其中,对所述硅衬底进行退火,使得所述硫族元素原子从所述侧向所述硅衬底内扩散至少50μm的深度。
9.根据权利要求1所述的方法,其中,所述硫族元素原子以至少为1·1012cm-3的浓度从所述侧向所述衬底内扩散至少80μm的深度。
10.根据权利要求1所述的方法,其中,将所述硫族元素原子注入所述衬底的所述侧包括:在至少为150keV的能量下将剂量至少为6·1013cm-2的硒原子注入所述侧。
11.根据权利要求1所述的方法,其中,所述退火在低于1000℃的温度下执行短于60分钟。
12.一种半导体衬底,包括:
第一侧;
第二侧,与所述第一侧相对;以及
半导体材料,在所述第一侧与所述第二侧之间延伸并且没有有源器件区域,所述半导体材料具有第一区域和第二区域,所述第一区域从所述第一侧延伸一定的深度至所述半导体材料并且包括向所述第一区域提供基区掺杂浓度的硫族元素掺杂剂原子,所述第二区域从所述第一区域延伸至所述第二侧并且没有基区掺杂。
13.根据权利要求12所述的半导体衬底,其中,所述硫族元素掺杂剂原子以至少1·1012cm-3的浓度从所述第一侧向所述半导体材料延伸至少80μm的深度。
14.根据权利要求12所述的半导体衬底,其中,在距所述第一侧50μm的深度处,所述第一区域的基区掺杂浓度为至少1·1014cm-3
15.一种制造功率半导体部件的方法,包括:
在邻近半导体衬底的第一侧的、所述半导体衬底的第一区域中形成半导体器件的有源区域;
在与所述第一侧相对的、所述半导体衬底的第二侧施加应力,从而在邻近所述第二侧的所述半导体衬底的第二区域中释放自间隙;
将硫族元素原子注入所述半导体衬底的所述第二侧;以及
对所述半导体衬底进行退火,使得所述硫族元素原子内扩散至所述半导体衬底,从而在从所述第二侧延伸至所述半导体衬底的所述第二区域中形成场终止区。
16.根据权利要求15所述的方法,其中,在所述半导体衬底的所述第二侧施加应力包括:在所述第二侧形成应力感应层,所述应力感应层使得所述第二区域中的所述自间隙被释放。
17.根据权利要求16所述的方法,其中,在所述第二侧形成所述应力感应层包括:在含有PH3的气氛中,在至少900℃的温度下至少200分钟,在所述第二侧形成磷玻璃。
18.根据权利要求16所述的方法,其中,在将所述硫族元素原子注入所述第二侧之后,在所述第二侧形成所述应力感应层。
19.根据权利要求18所述的方法,其中,所述半导体衬底是硅衬底,所述方法还包括:
在所述硅衬底的第二侧形成应力感应层,从而施加释放所述硅衬底的第二侧中的硅自间隙的应力;
在释放所述硅自间隙后,去除所述应力感应层;
在去除所述应力感应层之后,将所述硫族元素原子注入所述硅衬底的所述第二侧;以及
对所述硅衬底进行退火,从而所述硫族元素内扩散至所述硅衬底以形成所述场终止区。
20.根据权利要求15所述的方法,其中,所述硫族元素原子以至少1·1012cm-3的浓度从所述第二侧向所述衬底内扩散至少80μm的深度。
21.根据权利要求15所述的方法,其中,将所述硫族元素原子注入所述衬底的所述第二侧包括:在为至少150keV的能量下将剂量为至少6·1013cm-2的硒原子注入所述第二侧。
22.根据权利要求15所述的方法,其中,在低于1000℃的温度下执行所述退火短于60分钟。
23.一种功率半导体部件,包括:
半导体衬底,具有第一侧、邻近所述第一侧的第一区域、与所述第一侧相对的第二侧以及邻近所述第二侧的第二区域,其中,所述第二区域介于所述第一区域和所述第二侧之间;
半导体器件的有源区域,位于所述第一区域中;以及
场终止区,位于所述第二区域中,所述场终止区包括向所述场终止区提供掺杂浓度的硫族元素掺杂原子,所述硫族元素掺杂原子从所述第二侧向所述半导体衬底延伸至少50μm的深度。
24.根据权利要求23所述的功率半导体部件,其中,所述有源区域包括以下各项中的至少一个:晶体管基极区域、晶体管源极区域、晶体管阴极区域、二极管阳极。
25.根据权利要求23所述的功率半导体部件,还包括:位于所述第二侧的应力感应层。
26.根据权利要求25所述的功率半导体部件,其中,所述应力感应层含有磷。
CN201210095967.3A 2011-03-30 2012-03-30 具有硫族元素掺杂区域的衬底和半导体器件 Active CN102737967B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/075,475 US8361893B2 (en) 2011-03-30 2011-03-30 Semiconductor device and substrate with chalcogen doped region
US13/075,475 2011-03-30

Publications (2)

Publication Number Publication Date
CN102737967A true CN102737967A (zh) 2012-10-17
CN102737967B CN102737967B (zh) 2015-02-11

Family

ID=46845206

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210095967.3A Active CN102737967B (zh) 2011-03-30 2012-03-30 具有硫族元素掺杂区域的衬底和半导体器件

Country Status (3)

Country Link
US (2) US8361893B2 (zh)
CN (1) CN102737967B (zh)
DE (1) DE102012102341B4 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103268858A (zh) * 2013-05-13 2013-08-28 华南师范大学 一种近红外光电硅材料的制备方法
CN105765726A (zh) * 2013-12-10 2016-07-13 株式会社爱发科 绝缘栅双极晶体管及其制造方法
CN109378269A (zh) * 2018-10-08 2019-02-22 南开大学 一种对半导体表面过饱和掺杂且保持其晶格结构的制备方法
CN109712885A (zh) * 2018-12-17 2019-05-03 成都森未科技有限公司 一种半导体器件缓冲层制造方法
CN109994544A (zh) * 2018-01-03 2019-07-09 宁波达新半导体有限公司 场终止型功率器件的制造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8759935B2 (en) 2011-06-03 2014-06-24 Infineon Technologies Austria Ag Power semiconductor device with high blocking voltage capacity
JP6265594B2 (ja) 2012-12-21 2018-01-24 ラピスセミコンダクタ株式会社 半導体装置の製造方法、及び半導体装置
US9484221B2 (en) * 2014-01-13 2016-11-01 Infineon Technologies Ag Bipolar semiconductor device and method of manufacturing thereof
US9679774B2 (en) * 2014-03-18 2017-06-13 Infineon Technologies Ag Method for removing crystal originated particles from a crystalline silicon body
US9312338B2 (en) 2014-06-30 2016-04-12 Infineon Technologies Ag Semiconductor device containing chalcogen atoms and method of manufacturing
US9324783B2 (en) 2014-09-30 2016-04-26 Infineon Technologies Ag Soft switching semiconductor device and method for producing thereof
DE102014115303B4 (de) * 2014-10-21 2019-10-31 Infineon Technologies Ag HALBLEITERVORRICHTUNG MIT HILFSSTRUKTUR EINSCHLIEßLICH TIEFPEGELDOTIERSTOFFEN
DE102014119088A1 (de) * 2014-12-18 2016-06-23 Infineon Technologies Ag Ein Verfahren zum Bilden eines Halbleiterbauelements und eines Halbleitersubstrats
DE102015119648B4 (de) * 2015-11-13 2022-11-10 Infineon Technologies Ag Verfahren zum herstellen einer halbleitervorrichtung
DE102016102861B3 (de) 2016-02-18 2017-05-24 Infineon Technologies Ag Halbleiterbauelemente und Verfahren zum Bilden eines Halbleiterbauelements
DE102016112139B3 (de) * 2016-07-01 2018-01-04 Infineon Technologies Ag Verfahren zum Reduzieren einer Verunreinigungskonzentration in einem Halbleiterkörper
DE102016118012A1 (de) 2016-09-23 2018-03-29 Infineon Technologies Ag Halbleiterbauelement und Verfahren zum Bilden eines Halbleiterbauelements
JP6678549B2 (ja) 2016-09-27 2020-04-08 株式会社 日立パワーデバイス 半導体装置およびその製造方法、並びに電力変換システム
DE102017117306A1 (de) * 2017-07-31 2019-01-31 Infineon Technologies Ag Verfahren zum Herstellen einer Leistungshalbleitervorrichtung mit einer reduzierten Sauerstoffkonzentration
DE102017118864A1 (de) 2017-08-18 2019-02-21 Infineon Technologies Austria Ag Leistungsdiode
US11295962B2 (en) * 2018-07-10 2022-04-05 The Board Of Trustees Of The Leland Stanford Junior University Low temperature process for diode termination of fully depleted high resistivity silicon radiation detectors that can be used for shallow entrance windows and thinned sensors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050035405A1 (en) * 2003-07-07 2005-02-17 Infineon Technologies Ag Vertical power semiconductor component
US20060035436A1 (en) * 2004-08-12 2006-02-16 Hans-Joachim Schulze Method for producing an n-doped field stop zone in a semiconductor body and semiconductor component having a field stop zone
US20070048906A1 (en) * 2005-08-23 2007-03-01 Han Seung H Method for fabricating semiconductor device
US20080283868A1 (en) * 2007-05-14 2008-11-20 Hans-Joachim Schulze Semiconductor Device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136626A (en) * 1994-06-09 2000-10-24 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
EP1097481B1 (de) 1998-07-17 2004-03-31 Infineon Technologies AG Leistungshalbleiterbauelement für hohe sperrspannungen
DE10217610B4 (de) * 2002-04-19 2005-11-03 Infineon Technologies Ag Metall-Halbleiter-Kontakt, Halbleiterbauelement, integrierte Schaltungsanordnung und Verfahren
US20050253222A1 (en) * 2004-05-17 2005-11-17 Caneau Catherine G Semiconductor devices on misoriented substrates
DE102005031908B3 (de) * 2005-07-07 2006-10-19 Infineon Technologies Ag Halbleiterbauelement mit einer Kanalstoppzone
US7989888B2 (en) * 2006-08-31 2011-08-02 Infineon Technologies Autria AG Semiconductor device with a field stop zone and process of producing the same
DE102007017788A1 (de) 2007-04-16 2008-10-30 Infineon Technologies Ag Verfahren zur Herstellung einer Dotierungszone in einem Halbleiterkörper sowie damit hergestelltes Halbleiterbauelement
US7795064B2 (en) * 2007-11-14 2010-09-14 Jds Uniphase Corporation Front-illuminated avalanche photodiode
US8779462B2 (en) 2008-05-19 2014-07-15 Infineon Technologies Ag High-ohmic semiconductor substrate and a method of manufacturing the same
DE102008025733A1 (de) 2008-05-29 2009-12-10 Infineon Technologies Austria Ag Verfahren zum Herstellen eines Halbleiterkörpers
JP2010016353A (ja) * 2008-06-03 2010-01-21 Sumitomo Electric Ind Ltd AlxGa(1−x)As基板、赤外LED用のエピタキシャルウエハ、赤外LED、AlxGa(1−x)As基板の製造方法、赤外LED用のエピタキシャルウエハの製造方法および赤外LEDの製造方法
WO2009158547A2 (en) * 2008-06-25 2009-12-30 Michael Wang Semiconductor heterojunction photovoltaic solar cell with a charge blocking layer
US8679959B2 (en) * 2008-09-03 2014-03-25 Sionyx, Inc. High sensitivity photodetectors, imaging arrays, and high efficiency photovoltaic devices produced using ion implantation and femtosecond laser irradiation
US8159022B2 (en) 2008-09-30 2012-04-17 Infineon Technologies Austria Ag Robust semiconductor device with an emitter zone and a field stop zone
WO2011014559A2 (en) * 2009-07-31 2011-02-03 Dow Global Technologies Inc. Lattice-matched chalcogenide multi-junction photovoltaic cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050035405A1 (en) * 2003-07-07 2005-02-17 Infineon Technologies Ag Vertical power semiconductor component
US20060035436A1 (en) * 2004-08-12 2006-02-16 Hans-Joachim Schulze Method for producing an n-doped field stop zone in a semiconductor body and semiconductor component having a field stop zone
US20070048906A1 (en) * 2005-08-23 2007-03-01 Han Seung H Method for fabricating semiconductor device
US20080283868A1 (en) * 2007-05-14 2008-11-20 Hans-Joachim Schulze Semiconductor Device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103268858A (zh) * 2013-05-13 2013-08-28 华南师范大学 一种近红外光电硅材料的制备方法
CN103268858B (zh) * 2013-05-13 2015-11-18 华南师范大学 一种近红外光电硅材料的制备方法
CN105765726A (zh) * 2013-12-10 2016-07-13 株式会社爱发科 绝缘栅双极晶体管及其制造方法
CN109994544A (zh) * 2018-01-03 2019-07-09 宁波达新半导体有限公司 场终止型功率器件的制造方法
CN109378269A (zh) * 2018-10-08 2019-02-22 南开大学 一种对半导体表面过饱和掺杂且保持其晶格结构的制备方法
CN109712885A (zh) * 2018-12-17 2019-05-03 成都森未科技有限公司 一种半导体器件缓冲层制造方法

Also Published As

Publication number Publication date
DE102012102341B4 (de) 2021-12-09
US9159783B2 (en) 2015-10-13
US20130119522A1 (en) 2013-05-16
US8361893B2 (en) 2013-01-29
DE102012102341A1 (de) 2012-10-04
CN102737967B (zh) 2015-02-11
US20120248576A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
CN102737967B (zh) 具有硫族元素掺杂区域的衬底和半导体器件
JP7400874B2 (ja) 半導体装置および製造方法
US10109719B2 (en) Power device and fabricating method thereof
US9490338B2 (en) Silicon carbide semiconductor apparatus and method of manufacturing same
CN106062960B (zh) 半导体装置及半导体装置的制造方法
CN104282685B (zh) 功率半导体器件及其制造方法
KR101916931B1 (ko) 반도체 에피택셜 웨이퍼 및 그 제조 방법, 및, 고체 촬상 소자의 제조 방법
CN105280485A (zh) 制造包括场停止区的半导体器件的方法
JP7351380B2 (ja) 半導体装置
CN105723499A (zh) 半导体装置的制造方法
US10079281B2 (en) Semiconductor devices and methods for forming a semiconductor device
EP3082167B1 (en) Semiconductor device manufacturing method
US20180061935A1 (en) Semiconductor device and semiconductor device manufacturing method
WO2021181644A1 (ja) 半導体装置およびその製造方法
US6660569B1 (en) Method for producing a power semiconductor device with a stop zone
KR102198982B1 (ko) 절연 게이트 바이폴라 트랜지스터를 제조하기 위한 방법
US20230125859A1 (en) Method of manufacturing a semiconductor device including ion implantation and semiconductor device
US7138688B2 (en) Doping method and semiconductor device fabricated using the method
WO2022265061A1 (ja) 半導体装置および半導体装置の製造方法
WO2022130479A1 (ja) 半導体装置の製造方法、及び、半導体装置
WO2024056185A1 (en) Method for producing a semiconductor body, semiconductor body and power semiconductor device
CN113451399A (zh) 绝缘栅双极型晶体管及其制备方法
WO2022078908A1 (en) TRENCH SiC POWER SEMICONDUCTOR DEVICE
CN114203823A (zh) 一种金属氧化物半导体型场效应管及其制作方法
KR20070120010A (ko) 반도체 소자의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant