CN102709166A - 降低n型掺杂和非掺杂多晶硅栅极刻蚀后形貌差异的方法 - Google Patents

降低n型掺杂和非掺杂多晶硅栅极刻蚀后形貌差异的方法 Download PDF

Info

Publication number
CN102709166A
CN102709166A CN2012101631384A CN201210163138A CN102709166A CN 102709166 A CN102709166 A CN 102709166A CN 2012101631384 A CN2012101631384 A CN 2012101631384A CN 201210163138 A CN201210163138 A CN 201210163138A CN 102709166 A CN102709166 A CN 102709166A
Authority
CN
China
Prior art keywords
ppoly
polycrystalline silicon
hard mask
mask layer
etch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101631384A
Other languages
English (en)
Other versions
CN102709166B (zh
Inventor
唐在峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huali Microelectronics Corp
Original Assignee
Shanghai Huali Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huali Microelectronics Corp filed Critical Shanghai Huali Microelectronics Corp
Priority to CN201210163138.4A priority Critical patent/CN102709166B/zh
Publication of CN102709166A publication Critical patent/CN102709166A/zh
Priority to US13/721,073 priority patent/US8658502B2/en
Application granted granted Critical
Publication of CN102709166B publication Critical patent/CN102709166B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823842Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/82385Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different shapes, lengths or dimensions

Abstract

本发明提供降低N型掺杂和非掺杂多晶硅栅极刻蚀后形貌差异的方法,包括以下顺序步骤:在具有N型掺杂多晶硅和非掺杂多晶硅的衬底板上沉积一层硬掩膜层,分别形成N型掺杂多晶硅硬掩膜层和非掺杂多晶硅硬掩膜层,对非掺杂多晶硅硬掩膜层进行刻蚀使得其厚度小于N型掺杂多晶硅硬掩膜层。在不同厚度的N型掺杂多晶硅硬掩膜层和非掺杂多晶硅硬掩膜层上沉积一防反射层,对整个器件进行预设定图案进行刻蚀,刻蚀至露出N型掺杂多晶硅为止。去除刻蚀过程留下在器件表面的残留物,后对器件进行刻蚀分别形成N型掺杂多晶硅栅极和非掺杂多晶硅栅极。

Description

降低N型掺杂和非掺杂多晶硅栅极刻蚀后形貌差异的方法
技术领域
本发明涉及微电子技术领域,尤其涉及一种改进N型掺杂与非掺杂多晶硅栅极刻蚀后形貌差异的方法。
背景技术
在65nm及以下的工艺技术中,一般要求器件中多晶硅栅极由N型掺杂和非掺杂两种多晶硅组成。由于受N型离子掺杂的影响,N型掺杂多晶硅的刻蚀速率大于非掺杂的多晶硅刻蚀速率。
自动终点检测系统确认多晶硅栅极刻蚀结束的依据是N型掺杂与非掺杂多晶硅栅极全部刻蚀的完成,当N型掺杂多晶硅由于较快的刻蚀速率提前完成刻蚀时,为进行非掺杂多晶硅的刻蚀,等离子体并未停止轰击,会造成N型掺杂多晶硅栅极底部的损伤,形成缺陷(under-cut)。在这样的工艺条件下,就会造成N型半导体与P型半导体器件之间的差异,影响产品的整体性能。
65nm和55nm级多晶硅栅极普遍的刻蚀过程包括:步骤一:多晶硅栅极生长之后,硅片表面再生长一层用作刻蚀阻挡层的硬掩膜层。步骤二:经过光刻,涂上运用于多晶硅栅极刻蚀的光刻胶。步骤三:开始进入刻蚀步骤,首先是刻蚀防反射层。步骤四:刻蚀硬掩模层。步骤五:在刻蚀机台中,去光刻胶。步骤六:刻蚀多晶硅形成多晶硅栅极。在形成多晶硅栅极的刻蚀过程中,由于N型掺杂的多晶硅刻蚀速率大于非掺杂的多晶硅刻蚀,在刻蚀的过程中,两者的刻蚀形貌会形成差异。
发明内容
本发明提供一种改进N型掺杂与非掺杂多晶硅栅极刻蚀后形貌差异的方法,利用形成N型掺杂多晶硅栅极上较厚的硬掩膜层,来弥补由于N型掺杂多晶硅刻蚀速率大于非掺杂多晶硅刻蚀速率而造成N型与非掺杂多晶硅栅极刻蚀后形貌差异的方法。
为了实现上述目的,本发明提供降低N型掺杂和非掺杂多晶硅栅极刻蚀后形貌差异的方法,其特征在于,包括以下顺序步骤:
步骤1:在具有N型掺杂多晶硅和非掺杂多晶硅的衬底板上沉积一层硬掩膜层,分别形成N型掺杂多晶硅硬掩膜层和非掺杂多晶硅硬掩膜层,对非掺杂多晶硅硬掩膜层进行刻蚀使得其厚度小于N型掺杂多晶硅硬掩膜层。
步骤2:在不同厚度的N型掺杂多晶硅硬掩膜层和非掺杂多晶硅硬掩膜层上沉积一防反射层,对整个器件进行预设定图案进行刻蚀,刻蚀至露出N型掺杂多晶硅为止。
步骤3:去除刻蚀过程留下在器件表面的残留物,后对器件进行刻蚀分别形成N型掺杂多晶硅栅极和非掺杂多晶硅栅极。
本发明提供的一优选实施例中,其中所述非掺杂多晶硅硬掩膜层和N型掺杂多晶硅硬掩膜层之间的厚度差值通过以下公式计算:
T HM _ Ppoly = ER HM _ HM ER Ppoly _ HM × T Ppoly _ etch
其中:THM_Ppoly为厚度差;ERHM_HM为硬掩膜层刻蚀速度;ERPpoly_HM为非掺杂多晶硅刻蚀速度;TPpoly_etch为需要被刻蚀的非掺杂多晶硅的厚度,TPpoly_etch通过以下公式计算:
TPpoly_etch=TPpoly_remain
其中:TPpoly_remain为常规技术中非掺杂多晶硅刻蚀剩余量,TPpoly_remain通过以下公式计算:
T Ppoly _ remain = T poly - ER Ppoly _ poly ER Npoly _ poly × T poly
其中:Tpoly为多晶硅总厚度,ERPpoly_poly为非掺杂多晶硅刻蚀速率,ERNpoly_poly为N型掺杂多晶硅刻蚀速率。
本发明提供的一优选实施例中,其中所述非掺杂多晶硅硬掩膜层刻蚀时间通过以下公式计算:
Time HM _ etch = T HM _ Ppoly ER HM _ HM
其中:TimeHM_etch为非掺杂多晶硅硬掩膜层刻蚀时间,ERHM_HM为硬掩膜层刻蚀速率,THM_Ppoly为需要被刻蚀除去非掺杂多晶硅硬掩膜层的厚度,THM_Ppoly通过以下公式计算:
T HM _ Ppoly = ER HM _ HM EM Ppoly _ HM × T Ppoly _ etch
其中:THM_Ppoly为厚度差;ERHM_HM为硬掩膜层刻蚀速度;ERPpoly_HM为非掺杂多晶硅刻蚀速度;TPpoly_etch为需要被刻蚀的非掺杂多晶硅的厚度,TPpoly_etch通过以下公式计算:
TPpoly_etch=TPpoly_remain
其中:TPpoly_remain为常规技术中非掺杂多晶硅刻蚀剩余,TPpoly_remain通过以下公式计算:
T Ppoly _ remain = T poly - ER Ppoly _ poly ER Npoly _ poly × T poly
其中:Tpoly为多晶硅总厚度,ERPpoly_poly为非掺杂多晶硅刻蚀速率,ERNpoly_poly为N型掺杂多晶硅刻蚀速率。
本发明提供的方法能有效改善N型掺杂与非掺杂多晶硅栅极刻蚀后形貌差异。
附图说明
图1是本发明实施例中对非掺杂多晶硅硬掩膜层进行刻蚀的结构示意图。
图2是本发明实施例中形成不同厚度硅硬掩膜层后的结构示意图。
图3是本发明实施例中沉积防反射层后的结构示意图。
图4是本发明实施例中完成刻蚀硬掩膜层后的结构示意图。
图5是本发明实施例中形成N型掺杂多晶硅栅极和非掺杂多晶硅栅极后的结构示意图。
具体实施方式
本发明提供一种改进N型掺杂与非掺杂多晶硅栅极刻蚀后形貌差异的方法,利用形成N型掺杂多晶硅栅极上较厚的硬掩膜层,来弥补由于N型掺杂多晶硅刻蚀速率大于非掺杂多晶硅刻蚀速率而造成N型与非掺杂多晶硅栅极刻蚀后形貌差异。
以下通过实施例对本发明提供的方法做进一步详细说明,以便更好理解本发明创造,但实施例的内容并不限制本发明创造的保护范围。
如图1所示,在具有N型掺杂多晶硅31和非掺杂多晶硅32的衬底板1上沉积一层硬掩膜层41、42,分别形成N型掺杂多晶硅硬掩膜层41和非掺杂多晶硅硬掩膜层42,对非掺杂多晶硅硬掩膜层42进行刻蚀使得其厚度小于N型掺杂多晶硅硬掩膜层41,所形成的结构如图2所示。
如图3所示,在不同厚度的N型掺杂多晶硅硬掩膜层41和非掺杂多晶硅硬掩膜层42上沉积一防反射层5。对整个器件进行预设定图案进行刻蚀,刻蚀至露出N型掺杂多晶硅31为止,形成的结构如图4所示。
去除刻蚀过程留下在器件表面的残留物,后对器件进行刻蚀分别形成N型掺杂掺杂多晶硅栅极41和非掺杂多晶硅栅极42,形成的结构如图5所示。
在多晶硅栅极刻蚀步骤中,由于N型掺杂掺杂多晶硅31与非掺杂多晶硅32之间存在刻蚀速率差。需要确定当N型掺杂掺杂多晶硅栅极刻蚀结束时,非掺杂多晶硅栅极还剩余的量,该剩余量通过以下公式计算得出:
T Ppoly _ remain = T poly - ER Ppoly _ poly ER Npoly _ poly × T poly - - - ( 1 )
其中,TPpoly_remain为常规技术中非掺杂多晶硅刻蚀剩余,Tpoly为多晶硅总厚度,ERPpoly_poly为非掺杂多晶硅刻蚀速率,ERNpoly_poly为N型掺杂多晶硅刻蚀速率。
由于非掺杂多晶硅剩余量就等于硬掩膜层刻蚀中需要被刻蚀非掺杂多晶硅的厚度TPpoly_etch,所以
TPpoly_etch=TPpoly_remain                         (2)
在硬掩膜层刻蚀步骤中,通过硬掩膜层刻蚀速率与非掺杂多晶硅刻蚀速率差,确定非掺杂多晶硅栅极上局部硬掩膜层被刻蚀的量,即非掺杂多晶硅硬掩膜层和N型掺杂多晶硅硬掩膜层之间的厚度差值THM_Ppoly,该厚度差值通过以下公式计算得出:
T HM _ Ppoly = ER HM _ HM ER Ppoly _ HM × T Ppoly _ etch - - - ( 2 )
其中:ERHM_HM为硬掩膜层刻蚀速度;ERPpoly_HM为非掺杂多晶硅刻蚀速度。
通过计算得出的厚度差值THM_Ppoly和硬掩膜层的刻蚀速率,可以计算出非掺杂多晶硅栅极上局部硬掩膜层刻蚀时间TimeHM_etch,刻蚀时间TimeHM_etch通过以下公式计算得出:
Time HM _ etch = T HM _ Ppoly ER HM _ HM - - - ( 4 )
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (3)

1.降低N型掺杂和非掺杂多晶硅栅极刻蚀后形貌差异的方法,其特征在于,包括以下顺序步骤:
步骤1:在具有N型掺杂多晶硅和非掺杂多晶硅的衬底板上沉积一层硬掩膜层,分别形成N型掺杂多晶硅硬掩膜层和非掺杂多晶硅硬掩膜层,对非掺杂多晶硅硬掩膜层进行刻蚀使得其厚度小于N型掺杂多晶硅硬掩膜层;
步骤2:在不同厚度的N型掺杂多晶硅硬掩膜层和非掺杂多晶硅硬掩膜层上沉积一防反射层,对整个器件进行预设定图案进行刻蚀,刻蚀至露出N型掺杂多晶硅为止;
步骤3:去除刻蚀过程留下在器件表面的残留物,后对器件进行刻蚀分别形成N型掺杂多晶硅栅极和非掺杂多晶硅栅极。
2.根据权利要求1所述方法,其特征在于,所述非掺杂多晶硅硬掩膜层和N型掺杂多晶硅硬掩膜层之间的厚度差值通过以下公式计算:
T HM _ Ppoly = ER HM _ HM ER Ppoly _ HM × T Ppoly _ etch
其中:THM_Ppoly为厚度差,
ERHM_HM为硬掩膜层刻蚀速度,
ERPpoly_HM为非掺杂多晶硅刻蚀速度,
TPpoly_etch为需要被刻蚀的非掺杂多晶硅的厚度,TPpoly_etch通过以下公式计算:
TPpoly_etch=TPpoly_remain
其中:TPpoly_remain为常规技术中非掺杂多晶硅刻蚀剩余量,TPpoly_remain通过以下公式计算:
T Ppoly _ remain = T poly - ER Ppoly _ poly ER Npoly _ poly × T poly
其中:Tpoly为多晶硅总厚度,
ERPpoly_poly为非掺杂多晶硅刻蚀速率,
ERNpoly_poly为N型掺杂多晶硅刻蚀速率。
3.根据权利要求1所述方法,其特征在于,所述非掺杂多晶硅硬掩膜层刻蚀时间通过以下公式计算:
Time HM _ etch = T HM _ Ppoly ER HM _ HM
其中:TimeHM_etch为非掺杂多晶硅硬掩膜层刻蚀时间,
ERHM_HM为硬掩膜层刻蚀速率,
THM_Ppoly为需要被刻蚀除去非掺杂多晶硅硬掩膜层的厚度,THM_Ppoly通过以下公式计算:
T HM _ Ppoly = ER HM _ HM EM Ppoly _ HM × T Ppoly _ etch
其中:THM_Ppoly为厚度差,
ERHM_HM为硬掩膜层刻蚀速度,
ERPpoly_HM为非掺杂多晶硅刻蚀速度,
TPpoly_etch为需要被刻蚀的非掺杂多晶硅的厚度,TPpoly_etch通过以下公式计算:
TPpoly_etch=TPpoly_remain
其中:TPpoly_remain为常规技术中非掺杂多晶硅刻蚀剩余,TPpoly_remain通过以下公式计算:
T Ppoly _ remain = T poly - ER Ppoly _ poly ER Npoly _ poly × T poly
其中:Tpoly为多晶硅总厚度,
ERPpoly_poly为非掺杂多晶硅刻蚀速率,
ERNpoly_poly为N型掺杂多晶硅刻蚀速率。
CN201210163138.4A 2012-05-22 2012-05-22 降低n型掺杂和非掺杂多晶硅栅极刻蚀后形貌差异的方法 Active CN102709166B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201210163138.4A CN102709166B (zh) 2012-05-22 2012-05-22 降低n型掺杂和非掺杂多晶硅栅极刻蚀后形貌差异的方法
US13/721,073 US8658502B2 (en) 2012-05-22 2012-12-20 Method for reducing morphological difference between N-doped and undoped polysilicon gates after etching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210163138.4A CN102709166B (zh) 2012-05-22 2012-05-22 降低n型掺杂和非掺杂多晶硅栅极刻蚀后形貌差异的方法

Publications (2)

Publication Number Publication Date
CN102709166A true CN102709166A (zh) 2012-10-03
CN102709166B CN102709166B (zh) 2015-05-20

Family

ID=46901837

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210163138.4A Active CN102709166B (zh) 2012-05-22 2012-05-22 降低n型掺杂和非掺杂多晶硅栅极刻蚀后形貌差异的方法

Country Status (2)

Country Link
US (1) US8658502B2 (zh)
CN (1) CN102709166B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102867743A (zh) * 2012-09-17 2013-01-09 上海华力微电子有限公司 改善掺杂与非掺杂多晶硅栅极刻蚀形貌差异的方法
CN109887842A (zh) * 2019-01-08 2019-06-14 上海华虹宏力半导体制造有限公司 多晶硅的刻蚀方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1186334A (zh) * 1996-12-26 1998-07-01 Lg半导体株式会社 具有双栅极半导体器件的制造方法
CN1619817A (zh) * 2003-11-12 2005-05-25 三星电子株式会社 具有不同栅极介质的半导体器件及其制造方法
US20070048987A1 (en) * 2005-07-28 2007-03-01 Kabushiki Kaisha Toshiba Manufacturing method of semiconductor device
US20070096195A1 (en) * 2005-10-31 2007-05-03 Jan Hoentschel Technique for providing multiple stress sources in nmos and pmos transistors
US20070128783A1 (en) * 2005-12-06 2007-06-07 Shyh-Fann Ting Method for fabricating strained-silicon cmos transistors
US20080169508A1 (en) * 2007-01-11 2008-07-17 International Business Machines Corporation Stressed soi fet having doped glass box layer
US7709308B2 (en) * 2005-11-30 2010-05-04 Samsung Electronics Co., Ltd. Semiconductor devices and methods of fabricating the same including forming a fin with first and second gates on the sidewalls

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5963568A (en) * 1996-07-01 1999-10-05 Xerox Corporation Multiple wavelength, surface emitting laser with broad bandwidth distributed Bragg reflectors
US6813290B1 (en) * 1999-11-25 2004-11-02 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device and method for fabricating the same
JP2008091713A (ja) * 2006-10-03 2008-04-17 Matsushita Electric Ind Co Ltd 二波長半導体レーザ装置
US8211786B2 (en) * 2008-02-28 2012-07-03 International Business Machines Corporation CMOS structure including non-planar hybrid orientation substrate with planar gate electrodes and method for fabrication

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1186334A (zh) * 1996-12-26 1998-07-01 Lg半导体株式会社 具有双栅极半导体器件的制造方法
CN1619817A (zh) * 2003-11-12 2005-05-25 三星电子株式会社 具有不同栅极介质的半导体器件及其制造方法
US20070048987A1 (en) * 2005-07-28 2007-03-01 Kabushiki Kaisha Toshiba Manufacturing method of semiconductor device
US20070096195A1 (en) * 2005-10-31 2007-05-03 Jan Hoentschel Technique for providing multiple stress sources in nmos and pmos transistors
US7709308B2 (en) * 2005-11-30 2010-05-04 Samsung Electronics Co., Ltd. Semiconductor devices and methods of fabricating the same including forming a fin with first and second gates on the sidewalls
US20070128783A1 (en) * 2005-12-06 2007-06-07 Shyh-Fann Ting Method for fabricating strained-silicon cmos transistors
US20080169508A1 (en) * 2007-01-11 2008-07-17 International Business Machines Corporation Stressed soi fet having doped glass box layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102867743A (zh) * 2012-09-17 2013-01-09 上海华力微电子有限公司 改善掺杂与非掺杂多晶硅栅极刻蚀形貌差异的方法
CN102867743B (zh) * 2012-09-17 2015-04-29 上海华力微电子有限公司 改善掺杂与非掺杂多晶硅栅极刻蚀形貌差异的方法
CN109887842A (zh) * 2019-01-08 2019-06-14 上海华虹宏力半导体制造有限公司 多晶硅的刻蚀方法

Also Published As

Publication number Publication date
CN102709166B (zh) 2015-05-20
US8658502B2 (en) 2014-02-25
US20130316539A1 (en) 2013-11-28

Similar Documents

Publication Publication Date Title
CN110620040B (zh) 一种用于提高生产中工艺稳定性的方法
JP2022501837A (ja) 結晶シリコン太陽電池およびその製造方法
US20100075503A1 (en) Integral patterning of large features along with array using spacer mask patterning process flow
US8894869B2 (en) Lithography process using directed self assembly
CN110168742A (zh) 用于制造具有背侧多晶硅钝化接触的光伏电池的方法
CN109417101A (zh) 具有区分开的p型和n型区架构的太阳能电池的金属化
CN115172148A (zh) 一种太阳能电池的制备方法
CN103972076A (zh) 一种自对准双层图形的形成方法
CN102709166A (zh) 降低n型掺杂和非掺杂多晶硅栅极刻蚀后形貌差异的方法
CN103928312B (zh) 图案的形成方法
CN105742237B (zh) 双结构接触孔同步刻蚀工艺
CN103137559B (zh) 伪多晶硅的移除方法及cmos金属栅极的制作方法
CN102543706B (zh) 一种不同多晶硅栅电极厚度的集成工艺
KR101161807B1 (ko) 플라즈마 도핑과 확산을 이용한 후면접합 태양전지의 제조방법 및 그 태양전지
CN101562134B (zh) 隧道窗口制备方法
CN102867743B (zh) 改善掺杂与非掺杂多晶硅栅极刻蚀形貌差异的方法
CN104979175A (zh) 栅极及晶体管的形成方法
CN103050382A (zh) 半导体器件的制造方法
CN108074798B (zh) 一种自对准曝光半导体结构的制作方法
CN102403234B (zh) 利用自对准技术制备具有高k金属栅的鳍形场效应晶体管的方法
CN102082082A (zh) 填充高深宽比沟槽的外延工艺方法
CN103177955B (zh) 一种实现可剥离侧壁的制程方法
CN103578949B (zh) 栅极多晶硅和多晶硅电阻集成制作方法
CN102437117B (zh) 一种新的硅化物和金属前介质集成工艺及该形成的结构
US11810790B2 (en) Method for forming semiconductor structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant