CN102676714B - Trt高炉顶压控制布料过程前馈控制仿真方法及系统 - Google Patents

Trt高炉顶压控制布料过程前馈控制仿真方法及系统 Download PDF

Info

Publication number
CN102676714B
CN102676714B CN201210182278.6A CN201210182278A CN102676714B CN 102676714 B CN102676714 B CN 102676714B CN 201210182278 A CN201210182278 A CN 201210182278A CN 102676714 B CN102676714 B CN 102676714B
Authority
CN
China
Prior art keywords
cloth
stator blade
module
aperture
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210182278.6A
Other languages
English (en)
Other versions
CN102676714A (zh
Inventor
万磊
李清忠
叶理德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wisdri Engineering and Research Incorporation Ltd
Original Assignee
Wisdri Engineering and Research Incorporation Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wisdri Engineering and Research Incorporation Ltd filed Critical Wisdri Engineering and Research Incorporation Ltd
Priority to CN201210182278.6A priority Critical patent/CN102676714B/zh
Publication of CN102676714A publication Critical patent/CN102676714A/zh
Application granted granted Critical
Publication of CN102676714B publication Critical patent/CN102676714B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明提供一种TRT高炉顶压控制布料过程前馈控制仿真方法及系统,由于高炉布料属于可提前预知的干扰,因此理论上可以通过对布料过程的分析提前控制静叶的开度以消除布料对高炉顶压的影响。布料时由于炉料到达料面时减小了料面的孔隙度,使其透气性变差,煤气流动阻力增大,因此到达炉顶的煤气流量减小,如果此时静叶开度不变,便造成了炉顶压力的陡降。采用前馈控制,即是在布料时根据炉料类型、布料时间、布料档位及周期等计算出煤气流量的减小量,同时根据静叶的流量特性曲线计算出静叶所对应该煤气减小量的开度,在布料时提前利用该曲线控制静叶开度,则可以很好的消除布料过程对炉顶压力的影响。

Description

TRT高炉顶压控制布料过程前馈控制仿真方法及系统
技术领域
本发明涉及冶金行业中TRT高炉顶压控制领域。
背景技术
TRT是Top Gas Pressure Recovery Turbine unit的缩写,被称作高炉煤气余压发电装置,它利用高炉产生的高温高压煤气推动透平机,进而带动发电机发电。据统计,TRT可回收高炉煤气中30%-40%的能量。与高炉传统的减压阀组相比,可更好的稳定高炉顶压,还极大的减小了减压阀组带来的噪声污染。TRT不仅能为钢铁企业带来巨大的经济效益,同时也是节能减排的标杆工程。典型的TRT工艺流程如附图1所示。
TRT在控制高炉顶压的过程中,正常情况下只需常规PID即可较好的稳定高炉顶压,但是高炉在布料时会对高炉顶压造成强烈的扰动,此时仅靠常规PID控制已不能将顶压波动维持在一个较小的范围,这样势必对高炉的正常生产产生一定的影响,但目前并没有很好的控制方案解决布料过程对炉顶压力的影响,同时由于高炉生产的连续性等特殊要求,如果工程师在线测试不同的控制方案,则肯定会对高炉的正常产生较大的影响,甚至发生各种比较危险的后果。
发明内容
本发明要解决的技术问题是:提供一种TRT高炉顶压控制布料过程前馈控制仿真方法及系统,能够在仿真系统中进行调试,避免直接在生产线上测试造成影响。
本发明为解决上述技术问题所采取的技术方案为:一种TRT高炉顶压控制布料过程前馈仿真方法,其特征在于:它包括以下步骤:
1)针对TRT系统的各组成部分,分别建立各部件类仿真模块,并为各部件类仿真模块编辑和设计参数、接口;
2)通过各部件类仿真模块的接口将部件类仿真模块按实际TRT系统进行连接,并调节各模块参数使系统达到稳态;
3)分析实际TRT系统布料过程的特点和控制方法,增加2个程序类仿真模块,分别为布料干扰模块和前馈控制模块;布料干扰模块用于仿真布料过程对高炉顶压的影响;前馈控制模块用于仿真实际PLC控制器对静叶的控制;
其中前馈控制模块在布料时根据炉料类型、布料时间、布料档位及周期计算出煤气流量的减小量,同时根据静叶的流量特性曲线计算出静叶所对应该煤气减小量的开度,在布料时提前利用静叶的流量特性曲线控制静叶开度;
4)设置系统仿真参数,进行仿真运算。
按上述方案,所述步骤1)中的部件类仿真模块包括:
边界A:为第一定压节点,模拟进入高炉的热风的压力;
管道A:包括a节管道,每节管道包括一个固定开度的阀门和一个容器;
高炉模型:包括上容器和下容器,上容器和下容器之间由第一调节阀连接;设置第一调节阀的初始开度,且第一调节阀的开度由所述的布料干扰模块控制;
管道B:包括b节管道,每节管道包括一个固定开度的阀门和一个容器;
静叶:包括第二调节阀,第二调节阀的开度由所述的前馈控制模块控制;
边界B:为第二定压节点,模拟经过静叶之后的管网煤气压力;
边界A、管道A、高炉模型、管道B、静叶和边界B顺次连接。
按上述方案,所述的前馈控制模块具体控制过程为:
设                                               
Figure 2012101822786100002DEST_PATH_IMAGE002
为单位时间内由于布料所引起的通过第一调节阀的煤气减少量;
Figure 2012101822786100002DEST_PATH_IMAGE004
Figure 2012101822786100002DEST_PATH_IMAGE006
时刻通过第一调节阀的煤气减少总量;
Figure 2012101822786100002DEST_PATH_IMAGE008
为布料周期;
Figure 2012101822786100002DEST_PATH_IMAGE010
为流量修正系数,与布料档位、周期等有关;
随着布料的进行,料面的孔隙度随时间逐渐恢复,通过料面的煤气量则也会随之逐渐恢复,设单位时间内该恢复系数为
Figure 2012101822786100002DEST_PATH_IMAGE012
Figure DEST_PATH_IMAGE012A
与炉料类型及布料档位有关,当时间
Figure 2012101822786100002DEST_PATH_IMAGE014
时:
Figure 2012101822786100002DEST_PATH_IMAGE016
当时间
Figure 2012101822786100002DEST_PATH_IMAGE018
时:
根据上述公式可计算出在整个布料周期
Figure DEST_PATH_IMAGE008A
以及布料完成的一段时间内通过第一调节阀的煤气减少量
Figure DEST_PATH_IMAGE004A
,根据及静叶的流量特性曲线计算出静叶所对应的开度,提前控制静叶开度。
按上述方案,它还包括步骤5)将仿真结果与预期效果比较,对系统仿真参数进行调试,以获得最佳控制参数。
一种TRT高炉顶压控制布料过程前馈控制仿真系统,其特征在于:它包括部件类模块和程序类模块;
其中部件类仿真模块包括:
边界A:为第一定压节点,模拟进入高炉的热风的压力;
管道A:包括a节管道,每节管道包括一个固定开度的阀门和一个容器;
高炉模型:包括上容器和下容器,上容器和下容器之间由第一调节阀连接;设置第一调节阀的初始开度,且第一调节阀的开度由所述的布料干扰模块控制;
管道B:包括b节管道,每节管道包括一个固定开度的阀门和一个容器;
静叶:包括第二调节阀,第二调节阀的开度由所述的前馈控制模块控制;
边界B:为第二定压节点,模拟经过静叶之后的管网煤气压力;
边界A、管道A、高炉模型、管道B、静叶和边界B顺次连接;
程序类模块包括:
布料干扰模块,用于仿真布料过程对高炉顶压的影响;
前馈控制模块,用于仿真实际PLC控制器对静叶的控制,在布料时根据炉料类型、布料时间、布料档位及周期计算出煤气流量的减小量,同时根据静叶的流量特性曲线计算出静叶所对应该煤气减小量的开度,在布料时提前利用静叶的流量特性曲线控制静叶开度。
按上述方案,它是基于Modelica语言建立的。
本发明的工作原理为:由于高炉布料属于可提前预知的干扰,因此理论上可以通过对布料过程的分析提前控制静叶的开度以消除布料对高炉顶压的影响。布料时由于炉料到达料面时减小了料面的孔隙度,使其透气性变差,煤气流动阻力增大,因此到达炉顶的煤气流量减小,如果此时静叶开度不变,便造成了炉顶压力的陡降。采用前馈控制,即是在布料时根据炉料类型、布料时间、布料档位及周期等计算出煤气流量的减小量,同时根据静叶的流量特性曲线计算出静叶所对应该煤气减小量的开度,在布料时提前利用该曲线控制静叶开度,则可以很好的消除布料过程对炉顶压力的影响。
本发明的有益效果为:
1、通过对高炉布料过程建立前馈仿真系统和使用仿真方法,通过在仿真系统中进行调试,以确定更为合理的控制方案,避免直接在线测试不同的前馈控制方案,对高炉的正常产生的影响。
2、选用Modelica语言建立本仿真系统,与其他建模软件相比,能更加方便对物理系统进行建模,且能很好的对流量、压力这对强耦合参数进行求解,因而能够更真实、全面的反映TRT系统的运行情况。
附图说明
图1为典型TRT工艺流程示意图。
图2为TRT高炉顶压控制模型图。
图3为布料过程顶压波动曲线。
图4为前馈控制时炉顶压力设定值和过程值曲线。
图5为前馈控制时静叶动作曲线。
图6为前馈控制流程图。
具体实施方式
图2为TRT高炉顶压控制模型图,即整个TRT简化模型的拓扑结构,边界A产生一个稳定的气体流量,经过管道A进入高炉,气体在高炉内通过料层从炉顶流出,并经过一段长管道B流入透平机中的静叶,最后流出到边界B。
高炉被料层分为上下两个空间,可等效为两个密闭的大容器,即上容器和下容器,而料层则可等效为一个阀门,即第一调节阀,布料过程中降低了料层的孔隙度,就相当于第一阀门开度减小的过程,此时通过第一阀门进入炉顶的气量减小,造成炉顶压力降低下降,即上容器压力降低;待布料完成原料反应一段时间之后,孔隙度又会增大,相当于第一阀门开度增大,气量增大,炉顶压力上升。而高炉布料由于原料的品种不同会造成单位时间内煤气减少量及单位时间恢复系数的不同,通过设置模型中这两个参数可以达到仿真布料品种不同的目的。
对于实际TRT而言,高炉炉顶到静叶将有几百米的管道,因此通过静叶调节炉顶压力存在一个明显的大滞后。对于煤气传输管道,由于管道较长,对整个系统有两个影响,一是煤气在管道传输中的压损,二是由于煤气为可压缩气体,长管道在整个流体系统中起到一个缓冲的作用。对于一个单独的容器,是一个一阶系统,而管道B并不是一根直管道,不能直接等效为一个大容器,中间会有一些阻力元件,本系统将其等效为几个容器中间隔着阻力元件,形成一个高阶系统。
1997年,瑞典非盈利组织Modelica协会开发出一种适用于大规模复杂异构物理系统建模的面向对象语言Modelica。Modelica被称作统一的面向对象物理系统建模语言,对来自不同领域的系统采用统一的方式描述,彻底实现了不同领域模型之间的无缝集成和数据交换。
Modelica仿真语言的核心是方程,它利用方程对各种物理现象进行描述,工程师无需过多的关注于仿真算法,只需对需要仿真的对象进行数学方程描述,利用Modelica的仿真工具将各个仿真对象连接起来,相关的Modelica工具能够决定如何自动求解方程变量,无需人工干预,故最终对物理对象仿真的过程就演化为仿真工具对大型方程组求解的过程。
本实施例的TRT高炉顶压控制布料过程前馈仿真系统基于Modelica语言建立,它包括部件类模块和程序类模块。
其中部件类仿真模块包括:
边界A:为第一定压节点,模拟进入高炉的热风的压力;一般为恒定值,本实施例中设置PA=300kPa。
管道A:包括a节管道,每节管道包括一个固定开度的阀门和一个容器;本实施例中a=3。
高炉模型:包括上容器和下容器,上容器和下容器之间由第一调节阀连接;设置第一调节阀的初始开度,且第一调节阀的开度由所述的布料干扰模块控制;设置第一调节阀的初始开度,本实施例中第一阀门初始开度为70%。
管道B:包括b节管道,每节管道包括一个固定开度的阀门和一个容器;本实施例中b=2。
静叶:包括第二调节阀,第二调节阀的开度由所述的前馈控制模块控制。
边界B:为第二定压节点,模拟经过静叶之后的管网煤气压力;该值基本为恒定值,本实施例中设置PB=100kPa。
边界A、管道A、高炉模型、管道B、静叶和边界B顺次连接。
在具体的模块设计时,对于容器的设计:
容器为圆柱形,其直径为
Figure 2012101822786100002DEST_PATH_IMAGE024
,高度为
Figure DEST_PATH_IMAGE026
,该容器设计有两个接口,一个进口
Figure DEST_PATH_IMAGE028
,一个出口
Figure DEST_PATH_IMAGE030
,用于前后连接,每个接口内部均包含两个变量,流量
Figure DEST_PATH_IMAGE032
和压力
Figure DEST_PATH_IMAGE034
,该接口在与前后模块连接时自动产生连接方程。容器模型内部具有如下方程:
1)进出口压力相等:
Figure DEST_PATH_IMAGE036
2)进出口流量差等于容器内压力的变化量:
Figure DEST_PATH_IMAGE038
上式中,
Figure DEST_PATH_IMAGE040
为进口压力,
Figure DEST_PATH_IMAGE042
为出口压力,
Figure DEST_PATH_IMAGE044
为进口流量,为出口流量,
Figure DEST_PATH_IMAGE048
为容器内压力差。
对于管道而言,之所以考虑为阀门加容器的形式来模拟管道的特性,是由于气体具有可压缩特性,在长管道中流动时除了有压力损失,长管道对气体还有一个缓冲的作用。因此考虑加上固定开度的阀门,用于模拟气体在管道中流动所产生的压损,压损的简化公式为
Figure DEST_PATH_IMAGE050
,而容器则具有缓冲的作用。
Figure DEST_PATH_IMAGE052
为管道压损,k为流量修正系数,q为流量。
按上述方法,根据各部件类仿真模块的实际尺寸和要求分别对它们进行设计。
程序类模块包括:
布料干扰模块,用于仿真布料过程对高炉顶压的影响,并控制第一阀门开度;布料过程第一阀门开度由布料干扰模块控制,开度先逐渐降低,随着料面的反应开度又逐渐增加,最终开度为其设定的初始开度,本实施例中为70%。先将部件类仿真模块各参数调节至稳态,然后加入布料过程的干扰,本实施例中设置布料从第500s开始,整个布料周期持续210s,若静叶固定在稳态时的开度不参与调节(即不增加前馈控制),由此得到的高炉顶压波动如图3所示,其中横坐标为时间轴,纵坐标为高炉顶压,从图中可知,在布料的干扰下,高炉顶压由206kPa下降至187.5kPa,下降了18.5kPa,此仿真结果用于与加入前馈控制进行比较。
前馈控制模块,用于仿真实际PLC控制器对静叶的控制,在布料时根据炉料类型、布料时间、布料档位及周期计算出煤气流量的减小量,同时根据静叶的流量特性曲线计算出静叶所对应该煤气减小量的开度,在布料时提前利用静叶的流量特性曲线控制静叶开度。
TRT高炉顶压控制布料过程前馈控制仿真方法,包括以下步骤:
1)针对TRT系统的各组成部分,分别建立各部件类仿真模块,并为各部件类仿真模块编辑和设计参数、接口;部件类仿真模块包括边界A、管道A、高炉模型、管道B、静叶和边界B。
2)通过各部件类仿真模块的接口将部件类仿真模块按实际TRT系统进行连接,并调节各模块参数使系统达到稳态。
3)分析实际TRT系统布料过程的特点和控制方法,增加2个程序类仿真模块,分别为布料干扰模块和前馈控制模块;布料干扰模块用于仿真布料过程对高炉顶压的影响;前馈控制模块用于仿真实际PLC控制器对静叶的控制。
其中前馈控制模块的控制流程如图6所示,在布料时根据炉料类型、布料时间、布料档位及周期计算出煤气流量的减小量,同时根据静叶的流量特性曲线计算出静叶所对应该煤气减小量的开度,在布料时提前利用静叶的流量特性曲线控制静叶开度。
假设为单位时间内由于布料所引起的通过料面的煤气减少量,
Figure DEST_PATH_IMAGE004AAA
Figure DEST_PATH_IMAGE006A
时刻通过料面的煤气减少总量,
Figure DEST_PATH_IMAGE008AA
为布料周期,
Figure DEST_PATH_IMAGE010AA
为流量修正系数,
Figure DEST_PATH_IMAGE010AAA
与布料档位、周期等有关。随着布料的进行,所布炉料由于时时刻刻都在炉内发生各种复杂的物理化学反应,料面的孔隙度会随时间逐渐恢复,因此通过料面的煤气量则也会随之逐渐恢复,设单位时间内该恢复系数为
Figure DEST_PATH_IMAGE012AA
Figure DEST_PATH_IMAGE012AAA
与炉料类型及布料档位有关。当时间
Figure DEST_PATH_IMAGE014A
时:
Figure DEST_PATH_IMAGE016A
当时间时:
Figure DEST_PATH_IMAGE020A
根据上述公式可计算出在整个布料周期以及布料完成的一段时间内通过料面的煤气减少量
Figure DEST_PATH_IMAGE004AAAA
,根据该煤气减少量
Figure DEST_PATH_IMAGE004AAAAA
及静叶的流量特性曲线计算出静叶所对应的开度,提前控制静叶开度。
4)设置系统仿真参数,进行仿真运算。
5)将仿真结果与预期效果比较,对系统仿真参数进行调试,以获得最佳控制参数,具体是:比较高炉顶压的过程值与其设定值,对前馈投入时间进行调试,使得高炉顶压的过程值更接近其设定值。
本实施例设置在第500s开始加料,而前馈控制提前100s(该时间可根据实际情况做出相应调整)即在第400s时开始控制静叶开度调节之后顶压波动及静叶动作曲线如图4、图5所示。从图中可以看出,由于在400s时提前减小静叶开度,而到第500s才开始加料,故图4中显示顶压在400s就开始上升,在第500s时由于受到布料影响,顶压不再上升,反而开始下降,布料快结束时,再次提前增大静叶开度以消除布料结束后煤气流量恢复对顶压造成的扰动。整个调节过程中高炉顶压误差为+2/-0.5kPa,静叶开度范围在25%~62%之间。高炉顶压误差与未加入前馈控制相比(即图3),效果更好。为了能得到更好的效果,还可以重新对前馈投入时间、高炉容积等参数进行设定,再将不同参数得到的仿真结果反复比较。

Claims (4)

1.一种TRT高炉顶压控制布料过程前馈控制仿真方法,其特征在于:它包括以下步骤:
1)针对TRT系统的各组成部分,分别建立各部件类仿真模块,并为各部件类仿真模块编辑和设计参数、接口;
2)通过各部件类仿真模块的接口将部件类仿真模块按实际TRT系统进行连接,并调节各模块参数使系统达到稳态;
3)分析实际TRT系统布料过程的特点和控制方法,增加2个程序类仿真模块,分别为布料干扰模块和前馈控制模块;布料干扰模块用于仿真布料过程对高炉顶压的影响;前馈控制模块用于仿真实际PLC控制器对静叶的控制;
其中前馈控制模块在布料时根据炉料类型、布料时间、布料档位及周期计算出煤气流量的减小量,同时根据静叶的流量特性曲线计算出静叶所对应该煤气减小量的开度,在布料时提前利用静叶的流量特性曲线控制静叶开度;
4)设置系统仿真参数,进行仿真运算;
所述步骤1)中的部件类仿真模块包括:
边界A:为第一定压节点,模拟进入高炉的热风的压力;
管道A:包括a节管道,每节管道包括一个固定开度的阀门和一个容器;
高炉模型:包括上容器和下容器,上容器和下容器之间由第一调节阀连接;设置第一调节阀的初始开度,且第一调节阀的开度由所述的布料干扰模块控制;
管道B:包括b节管道,每节管道包括一个固定开度的阀门和一个容器;
静叶:包括第二调节阀,第二调节阀的开度由所述的前馈控制模块控制;
边界B:为第二定压节点,模拟经过静叶之后的管网煤气压力;
边界A、管道A、高炉模型、管道B、静叶和边界B顺次连接;
在具体的模块设计时,对于容器的设计:
容器为圆柱形,其直径为D,高度为L,该容器设计有两个接口,一个进口Fleft,一个出口Fright,用于前后连接,每个接口内部均包含两个变量,流量q和压力p,该接口在与前后模块连接时自动产生连接方程;容器模型内部具有如下方程:
1)进出口压力相等:Fleft.p=Fright.p;
2)进出口流量差等于容器内压力的变化量
上式中,Fleft.p为进口压力,Fright.p为出口压力,Fleft.q为进口流量,Fright.q为出口流量,Fright.p′为容器内压力差;
所述的前馈控制模块具体控制过程为:
设F0为单位时间内由于布料所引起的通过第一调节阀的煤气减少量;F1为t时刻通过第一调节阀的煤气减少总量;T为布料周期;k为流量修正系数,k与布料档位和周期有关;
随着布料的进行,料面的孔隙度随时间逐渐恢复,通过料面的煤气量则也会随之逐渐恢复,设单位时间内该恢复系数为x,x与炉料类型及布料档位有关,当时间t≤T时:
F1=k*F0*(1-xt)/(1-x),
当时间t>T时:
F1=k*F0*(1-xT)*(1-x)t-T-1
根据上述公式可计算出在整个布料周期T以及布料完成的一段时间内通过第一调节阀的煤气减少量F1,根据F1及静叶的流量特性曲线计算出静叶所对应的开度,提前控制静叶开度。
2.根据权利要求1所述的TRT高炉顶压控制布料过程前馈控制仿真方法,其特征在于:它还包括步骤5)将仿真结果与预期效果比较,对系统仿真参数进行调试,以获得最佳控制参数。
3.一种用于实现权利要求1所述的TRT高炉顶压控制布料过程前馈控制仿真方法的TRT高炉顶压控制布料过程前馈控制仿真系统,其特征在于:它包括部件类模块和程序类模块;
其中部件类仿真模块包括:
边界A:为第一定压节点,模拟进入高炉的热风的压力;
管道A:包括a节管道,每节管道包括一个固定开度的阀门和一个容器;
高炉模型:包括上容器和下容器,上容器和下容器之间由第一调节阀连接;设置第一调节阀的初始开度,且第一调节阀的开度由所述的布料干扰模块控制;
管道B:包括b节管道,每节管道包括一个固定开度的阀门和一个容器;
静叶:包括第二调节阀,第二调节阀的开度由所述的前馈控制模块控制;
边界B:为第二定压节点,模拟经过静叶之后的管网煤气压力;
边界A、管道A、高炉模型、管道B、静叶和边界B顺次连接;
程序类模块包括:
布料干扰模块,用于仿真布料过程对高炉顶压的影响,并控制第一调节阀的开度;
前馈控制模块,用于仿真实际PLC控制器对静叶的控制,在布料时根据炉料类型、布料时间、布料档位及周期计算出煤气流量的减小量,同时根据静叶的流量特性曲线计算出静叶所对应该煤气减小量的开度,在布料时提前利用静叶的流量特性曲线控制静叶开度。
4.根据权利要求3所述的TRT高炉顶压控制布料过程前馈控制仿真系统,其特征在于:它是基于Modelica语言建立的。
CN201210182278.6A 2012-06-05 2012-06-05 Trt高炉顶压控制布料过程前馈控制仿真方法及系统 Expired - Fee Related CN102676714B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210182278.6A CN102676714B (zh) 2012-06-05 2012-06-05 Trt高炉顶压控制布料过程前馈控制仿真方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210182278.6A CN102676714B (zh) 2012-06-05 2012-06-05 Trt高炉顶压控制布料过程前馈控制仿真方法及系统

Publications (2)

Publication Number Publication Date
CN102676714A CN102676714A (zh) 2012-09-19
CN102676714B true CN102676714B (zh) 2014-02-12

Family

ID=46809262

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210182278.6A Expired - Fee Related CN102676714B (zh) 2012-06-05 2012-06-05 Trt高炉顶压控制布料过程前馈控制仿真方法及系统

Country Status (1)

Country Link
CN (1) CN102676714B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102982218B (zh) * 2012-12-24 2015-07-15 首钢总公司 获取高炉炉顶节流阀处料流特性的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
google网页公开.TRT高炉顶压稳定性控制优化合理化建议方案.《google网页公开》.2011,一、炉顶压力稳定控制优化的方法,2炉顶布料数模的建立,4)布料和料罐均压数模前馈的实现.
TRT高炉顶压稳定性控制优化合理化建议方案;google网页公开;《google网页公开》;20110731;一、炉顶压力稳定控制优化的方法,2炉顶布料数模的建立,4)布料和料罐均压数模前馈的实现 *
刘国海 等.集散控制与现场总线.《集散控制与现场总线》.机械工业出版社,2011,21页. *
杨春节 等.正常发电工况下TRT中高炉顶压动态模型研究.《热力发电》.2008,第37卷(第3期),26-29页.
正常发电工况下TRT中高炉顶压动态模型研究;杨春节 等;《热力发电》;20081231;第37卷(第3期);26-29页 *

Also Published As

Publication number Publication date
CN102676714A (zh) 2012-09-19

Similar Documents

Publication Publication Date Title
CN105179303B (zh) 一种轴流泵叶轮全工况设计方法
CN101286044B (zh) 一种燃煤锅炉系统蒸汽温度混合建模方法
CN104990669B (zh) 水击压力传感器现场校准装置
CN104061984B (zh) 一种基于实验室多路管道的高速气体流量校准系统及校准方法
CN102563599A (zh) 快速自适应燃煤热值变化的超临界机组机炉协调控制方法
CN102676713B (zh) Trt高炉顶压控制冲压过程前馈反馈仿真方法及系统
CN104101105B (zh) 一种原油加热炉温度的复合控制方法及其装置
CN104793610A (zh) 协调系统前馈控制器参数的确定方法及装置
CN106765520B (zh) 一种实现供热机组最优初压运行的自动控制方法
CN104712378A (zh) 火电机组主蒸汽压力闭环节能控制方法和系统
CN110554617B (zh) 一种自动控制实验教学装置及方法
CN102676714B (zh) Trt高炉顶压控制布料过程前馈控制仿真方法及系统
CN105276561A (zh) 一种锅炉主蒸汽压力的自适应预测控制方法
CN102676717B (zh) Trt高炉顶压控制布料过程前馈反馈仿真方法及系统
CN102707630B (zh) Trt高炉顶压控制布料过程反馈控制仿真方法及系统
CN102676716B (zh) Trt高炉顶压控制冲压过程前馈控制仿真方法及系统
CN108021027A (zh) 一种超临界循环流化床机组输出功率预测系统及方法
CN203980439U (zh) 热计量系统自动水力平衡控制装置
CN109977583B (zh) 一种结合验证模型的磨煤机仿真模型动态参数整定方法
CN102676715B (zh) Trt高炉顶压控制冲压过程反馈控制仿真方法及系统
CN114460985B (zh) 一种基于单片机的储箱增压控制系统及控制方法
CN114471927B (zh) 一种磨煤机入口一次风门开度控制方法
CN109324511A (zh) 一种钢铁企业煤气管网运行优化系统
Ma et al. Intelligent Compensation for the Set Values of PID Controllers to Improve Boiler Superheated Steam Temperature Control
CN204064406U (zh) 一种基于实验室多路管道的高速气体流量校准系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140212

Termination date: 20180605

CF01 Termination of patent right due to non-payment of annual fee