CN102676716B - Trt高炉顶压控制冲压过程前馈控制仿真方法及系统 - Google Patents
Trt高炉顶压控制冲压过程前馈控制仿真方法及系统 Download PDFInfo
- Publication number
- CN102676716B CN102676716B CN201210182276.7A CN201210182276A CN102676716B CN 102676716 B CN102676716 B CN 102676716B CN 201210182276 A CN201210182276 A CN 201210182276A CN 102676716 B CN102676716 B CN 102676716B
- Authority
- CN
- China
- Prior art keywords
- stator blade
- pressure
- module
- punching press
- blast furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明提供TRT高炉顶压控制冲压过程前馈控制仿真方法,包括:1)对TRT系统的各组成部分建立部件类仿真模块,编辑和设计参数、接口;2)通过部件类仿真模块的接口将部件类仿真模块进行连接,调节参数使系统达到稳态;3)分析实际TRT系统冲压过程的特点,增加冲压干扰模块和前馈控制模块;冲压干扰模块用于仿真冲压过程对高炉顶压的影响;前馈控制模块在冲压时根据冲压阀前后的压差和流量系数计算煤气流量,根据静叶的流量特性曲线计算出静叶对应的开度,在冲压时提前控制静叶开度;4)设置系统仿真参数,进行仿真运算。通过此法,在仿真系统中进行调试以确定更合理的控制方案,避免直接在线测试对高炉的正常产生的影响。
Description
技术领域
本发明涉及冶金行业中TRT高炉顶压控制领域。
背景技术
TRT是Top Gas Pressure Recovery Turbine unit的缩写,被称作高炉煤气余压发电装置,它利用高炉产生的高温高压煤气推动透平机,进而带动发电机发电。据统计,TRT可回收高炉煤气中30%-40%的能量。与高炉传统的减压阀组相比,可更好的稳定高炉顶压,还极大的减小了减压阀组带来的噪声污染。TRT不仅能为钢铁企业带来巨大的经济效益,同时也是节能减排的标杆工程。典型的TRT工艺流程如附图1所示。
TRT在控制高炉顶压的过程中,正常情况下只需常规PID即可较好的稳定高炉顶压,但是高炉在冲压时会对高炉顶压造成强烈的扰动,此时仅靠常规PID控制已不能将顶压波动维持在一个较小的范围,这样势必对高炉的正常生产产生一定的影响,但目前并没有很好的控制方案解决冲压过程对炉顶压力的影响,同时由于高炉生产的连续性等特殊要求,如果工程师在线测试不同的控制方案,则肯定会对高炉的正常产生较大的影响,甚至发生各种比较危险的后果。
发明内容
本发明要解决的技术问题是:提供一种TRT高炉顶压控制冲压过程前馈控制仿真方法及系统,能够在仿真系统中进行调试,避免直接在生产线上测试造成影响。
本发明为解决上述技术问题所采取的技术方案为:一种TRT高炉顶压控制冲压过程前馈控制仿真方法,其特征在于:它包括以下步骤:
1)针对TRT系统的各组成部分,分别建立各部件类仿真模块,并为各部件类仿真模块编辑和设计参数、接口;
2)通过各部件类仿真模块的接口将部件类仿真模块按实际TRT系统进行连接,并调节各模块参数使系统达到稳态;
3)分析实际TRT系统冲压过程的特点和控制方法,增加2个程序类仿真模块,分别为冲压干扰模块和前馈控制模块;冲压干扰模块用于仿真冲压过程对高炉顶压的影响;前馈控制模块用于仿真实际PLC控制器对静叶的控制;
其中前馈控制模块在冲压时根据冲压阀前后的压差和煤气流量系数计算出流入冲压罐的煤气流量,同时根据静叶的流量特性曲线计算出静叶所对应该煤气流量的开度,在冲压时提前利用静叶的流量特性曲线控制静叶开度;
4)设置系统仿真参数,进行仿真运算。
按上述方案,所述步骤1)中的部件类仿真模块包括:
边界A:为第一定压节点,模拟进入高炉的热风的压力;
管道A:包括a节管道,每节管道包括一个固定开度的阀门和一个容器;
高炉模型:包括上容器和下容器,上容器和下容器之间由第一调节阀连接;第一调节阀的开度为固定值;
管道B:包括b节管道,每节管道包括一个固定开度的阀门和一个容器;
静叶:包括第二调节阀,第二调节阀的开度由所述的前馈控制模块控制;
边界B:为第二定压节点,模拟经过静叶之后的管网煤气压力;
冲压阀:冲压阀的开关由所述的冲压干扰模块控制;
冲压罐:包括一个容器;
边界A、管道A、高炉模型、管道B、静叶和边界B顺次连接,管道B与静叶之间分出一个分支与冲压阀连接,冲压阀的另一端与冲压罐连接。
按上述方案,所述步骤3)前馈控制模块具体控制方案为:
,
按上述方案,它还包括步骤5)将仿真结果与预期效果比较,对系统仿真参数进行调试,以获得最佳控制参数。
一种TRT高炉顶压控制冲压过程前馈控制仿真系统,其特征在于:它包括部件类模块和程序类模块;
其中部件类模块包括:
边界A:为第一定压节点,模拟进入高炉的热风的压力;
管道A:包括a节管道,每节管道包括一个固定开度的阀门和一个容器;
高炉模型:包括上容器和下容器,上容器和下容器之间由第一调节阀连接;第一调节阀的开度为固定值;
管道B:包括b节管道,每节管道包括一个固定开度的阀门和一个容器;
静叶:包括第二调节阀,第二调节阀的开度由所述的前馈控制模块控制;
边界B:为第二定压节点,模拟经过静叶之后的管网煤气压力;
冲压阀:冲压阀的开关由所述的冲压干扰模块控制;
冲压罐:包括一个容器;
边界A、管道A、高炉模型、管道B、静叶和边界B顺次连接,管道B与静叶之间分出一个分支与冲压阀连接,冲压阀的另一端与冲压罐连接;
程序类模块包括:
冲压干扰模块,用于仿真冲压过程对高炉顶压的影响;
前馈控制模块用于仿真实际PLC控制器对静叶的控制,在冲压时根据冲压阀前后的压差和煤气流量系数计算流入冲压罐的煤气流量,同时根据静叶的流量特性曲线计算出静叶所对应该煤气流量的开度,在冲压时提前利用静叶的流量特性曲线控制静叶开度。
按上述方案,它是基于Modelica语言建立的。
本发明的工作原理为:由于高炉冲压属于可提前预知的干扰,因此理论上可以通过对冲压过程的分析提前控制静叶的开度以消除冲压对高炉顶压的影响。采用前馈控制,即是在冲压时根据冲压阀前后的压差和煤气流量系数计算流入冲压罐的煤气流量,同时根据静叶的流量特性曲线计算出静叶所对应该煤气流量的开度,在冲压时提前利用该曲线控制静叶开度,则可以很好的消除冲压过程对炉顶压力的影响。
本发明的有益效果为:
1、通过对高炉冲压过程建立前馈仿真系统和使用仿真方法,通过在仿真系统中进行调试,以确定更为合理的控制方案,避免直接在线测试不同的前馈控制方案,对高炉的正常产生的影响。
2、选用Modelica语言建立本仿真系统,与其他建模软件相比,能更加方便对物理系统进行建模,且能很好的对流量、压力这对强耦合参数进行求解,因而能够更真实、全面的反映TRT系统的运行情况。
附图说明
图1为典型TRT工艺流程示意图。
图2为TRT高炉顶压控制模型图。
图3为冲压过程顶压波动曲线。
图4为前馈控制时炉顶压力设定值和过程值曲线。
图5为前馈控制时静叶动作曲线。
图6为前馈控制流程图。
具体实施方式
图2为TRT高炉顶压控制模型图,即整个TRT简化模型的拓扑结构,边界A产生一个稳定的气体流量,经过管道A进入高炉,气体在高炉内通过料层从炉顶流出,并经过一段长管道B流入透平机中的静叶,最后流出到边界B;在静叶前有一分支管道接至冲压罐,静叶与冲压罐之间的管道上装有冲压阀,由于冲压阀打开、关闭时对高炉煤气流量有较大的影响,因此炉顶压力会随着冲压阀打开、关闭及冲压阀打开的时间产生波动。本系统和方法正是要模拟冲压阀的开关对高炉顶压的影响,通过尝试对静叶开度的不同的控制方案,使高炉顶压的波动最小,在本系统中得到验证后再利用至实际的生产线上。
高炉被料层分为上下两个空间,可等效为两个密闭的大容器,即上容器和下容器,而料层则可等效为一个阀门,即第一调节阀,在冲压过程中,可认为第一调节阀的开度为固定值。由于冲压阀前的管道压力(即图2中Q点的压力)和冲压罐内压力存在压差,故冲压阀打开后会将炉顶高炉煤气引入料罐造成炉顶流出的煤气流量增大,若此时静叶保持之前开度,则会造成炉顶压力下降,因此需要在冲压时控制静叶开度,减小从静叶处流出的高炉煤气,使炉顶流出的煤气流量相对平稳。
对于实际TRT而言,高炉炉顶到静叶将有几百米的管道,因此通过静叶调节炉顶压力存在一个明显的大滞后。对于煤气传输管道,由于管道较长,对整个系统有两个影响,一是煤气在管道传输中的压损,二是由于煤气为可压缩气体,长管道在整个流体系统中起到一个缓冲的作用。对于一个单独的容器,是一个一阶系统,而管道B并不是一根直管道,不能直接等效为一个大容器,中间会有一些阻力元件,本系统将其等效为几个容器中间隔着阻力元件,形成一个高阶系统。
1997年,瑞典非盈利组织Modelica协会开发出一种适用于大规模复杂异构物理系统建模的面向对象语言Modelica。Modelica被称作统一的面向对象物理系统建模语言,对来自不同领域的系统采用统一的方式描述,彻底实现了不同领域模型之间的无缝集成和数据交换。
Modelica仿真语言的核心是方程,它利用方程对各种物理现象进行描述,工程师无需过多的关注于仿真算法,只需对需要仿真的对象进行数学方程描述,利用Modelica的仿真工具将各个仿真对象连接起来,相关的Modelica工具能够决定如何自动求解方程变量,无需人工干预,故最终对物理对象仿真的过程就演化为仿真工具对大型方程组求解的过程。
本实施例的TRT高炉顶压控制冲压过程前馈仿真系统基于Modelica语言建立,它包括部件类模块和程序类模块。
其中部件类模块包括:
边界A:为第一定压节点PA,用于模拟进入高炉的热风的压力;一般为恒定值,本实施例中设置PA=300kPa。
管道A:包括a节管道,每节管道包括一个固定开度的阀门和一个容器;本实施例中a=3。
高炉模型:包括上容器和下容器,上容器和下容器之间由第一调节阀连接;设置第一调节阀的开度,本实施例中第一阀门的开度固定为70%。
管道B:包括b节管道,每节管道包括一个固定开度的阀门和一个容器;本实施例中b=2。
静叶:包括第二调节阀,第二调节阀的开度由前馈控制模块控制。
边界B:为第二定压节点PB,模拟经过静叶之后的管网煤气压力,该值基本为恒定值,本实施例中设置PB=100kPa。
冲压阀:冲压阀的开、关及开关时间由所述的冲压干扰模块控制。
冲压罐:包括一个容器。
边界A、管道A、高炉模型、管道B、静叶和边界B顺次连接,在静叶前有一分支管道接至冲压罐,静叶与冲压罐之间的管道上装有冲压阀。
在具体的模块设计时,对于容器的设计:
对于管道而言,之所以考虑为阀门加容器的形式来模拟管道的特性,是由于气体具有可压缩特性,在长管道中流动时除了有压力损失,长管道对气体还有一个缓冲的作用。因此考虑加上固定开度的阀门,用于模拟气体在管道中流动所产生的压损,压损的简化公式为,而容器则具有缓冲的作用。为管道压损,k为流量修正系数,q为流量。
按上述方法,根据各部件类仿真模块的实际尺寸和要求分别对它们进行设计。
程序类模块包括:
冲压干扰模块,用于仿真冲压过程对高炉顶压的影响,控制冲压阀的开关。在稳态时加入冲压过程的干扰(未加入前馈控制),炉顶压力波动如图3所示。冲压过程从第100s开始,打开冲压阀,在第500s时关闭冲压阀,整个过程静叶开度保持在稳态时的开度不变,炉顶压力由稳态时的206kPa降至193kPa,下降了13kPa。此仿真结果用于与加入PID反馈控制的仿真结果进行比较。
前馈控制模块用于仿真实际PLC控制器对静叶的控制,在冲压时根据冲压阀前后的压差和煤气流量系数计算流入冲压罐的煤气流量,同时根据静叶的流量特性曲线计算出静叶所对应该煤气流量的开度,在冲压时提前利用静叶的流量特性曲线控制静叶开度。
假设冲压阀前的管道压力为,冲压罐内压力为,由于和存在压差(),故冲压阀打开后会将炉顶高炉煤气引入料罐造成炉顶流出的煤气流量增大,若此时静叶保持之前开度,则会造成炉顶压力下降,因此需要在冲压时提前控制静叶开度,减小从静叶处流出的高炉煤气,使炉顶流出的煤气流量相对平稳。
,
TRT高炉顶压控制冲压过程前馈控制仿真方法包括以下步骤:
1)针对TRT系统的各组成部分,分别建立各部件类仿真模块,并为各部件类仿真模块编辑和设计参数、接口。
2)通过各部件类仿真模块的接口将部件类仿真模块按实际TRT系统进行连接,并调节各模块参数使系统达到稳态。
3)分析实际TRT系统冲压过程的特点和控制方法,增加2个程序类仿真模块,分别为冲压干扰模块和前馈控制模块;冲压干扰模块用于仿真冲压过程对高炉顶压的影响;前馈控制模块用于仿真实际PLC控制器对静叶的控制。
其中前馈控制模块的流程图如图6所示,在冲压时根据冲压阀前后的压差和煤气流量系数计算出流入冲压罐的煤气流量,同时根据静叶的流量特性曲线计算出静叶所对应该煤气流量的开度,在冲压时提前利用静叶的流量特性曲线控制静叶开度。
4)设置系统仿真参数,进行仿真运算。
5)将仿真结果与预期效果比较,对系统仿真参数进行调试,以获得最佳控制参数,具体是:比较高炉顶压的过程值与其设定值,对前馈投入时间进行调试,使得高炉顶压的过程值更接近其设定值。
本实施例中在第100s开始冲压,前馈控制提前在80s开始减小静叶开度(该时间可根据实际情况做出相应调整),而在第500s时冲压结束,到时冲压阀将关闭,于是静叶在第450s提前恢复开度(该时间可根据实际情况做出相应调整)。调节之后的顶压波动及静叶动作曲线如图4、图5所示,整个调节过程高炉顶压波动范围在+0.3/-0.3kPa,静叶开度范围在28%~50%之间。高炉顶压误差与未加入前馈控制相比(即图3),效果更好。为了能得到更好的效果,还可以重新对前馈投入时间或高炉容积等参数进行设定,再将不同参数得到的仿真结果反复比较。
Claims (4)
1.一种TRT高炉顶压控制冲压过程前馈控制仿真方法,其特征在于:它包括以下步骤:
1)针对TRT系统的各组成部分,分别建立各部件类仿真模块,并为各部件类仿真模块编辑和设计参数、接口;
2)通过各部件类仿真模块的接口将部件类仿真模块按实际TRT系统进行连接,并调节各模块参数使系统达到稳态;
3)分析实际TRT系统冲压过程的特点和控制方法,增加2个程序类仿真模块,分别为冲压干扰模块和前馈控制模块;冲压干扰模块用于仿真冲压过程对高炉顶压的影响;前馈控制模块用于仿真实际PLC控制器对静叶的控制;
其中前馈控制模块在冲压时根据冲压阀前后的压差和煤气流量系数计算出流入冲压罐的煤气流量,同时根据静叶的流量特性曲线计算出静叶所对应该煤气流量的开度,在冲压时提前利用静叶的流量特性曲线控制静叶开度;
4)设置系统仿真参数,进行仿真运算;
所述步骤1)中的部件类仿真模块包括:
边界A:为第一定压节点,模拟进入高炉的热风的压力;
管道A:包括a节管道,每节管道包括一个固定开度的阀门和一个容器;
高炉模型:包括上容器和下容器,上容器和下容器之间由第一调节阀连接;第一调节阀的开度为固定值;
管道B:包括b节管道,每节管道包括一个固定开度的阀门和一个容器;
静叶:包括第二调节阀,第二调节阀的开度由所述的前馈控制模块控制;
边界B:为第二定压节点,模拟经过静叶之后的管网煤气压力;
冲压阀:冲压阀的开关由所述的冲压干扰模块控制;
冲压罐:包括一个容器;
边界A、管道A、高炉模型、管道B、静叶和边界B顺次连接,管道B与静叶之间分出一个分支与冲压阀连接,冲压阀的另一端与冲压罐连接;
在具体的模块设计时,对于容器的设计:
容器为圆柱形,其直径为D,高度为L,该容器设计有两个接口,一个进口Fleft,一个出口Fright,用于前后连接,每个接口内部均包含两个变量,流量q和压力p,该接口在与前后模块连接时自动产生连接方程;容器模型内部具有如下方程:
a)进出口压力相等:Fleft.p=Fright.p;
上式中,Fleft.p为进口压力,Fright.p为出口压力,Fleft.q为进口流量,Fright.q为出口流量,Fright.p′为容器内压力差;
所述步骤3)前馈控制模块具体控制方案为:
设冲压阀前的管道压力为P0,冲压罐内压力为P1,P0和P1的压差为Δp且Δp=P0-P1,首先根据压差Δp计算出流入冲压罐的煤气流量F2:
其中k为流量系数,与冲压阀的形式有关;
然后根据该煤气流量F2及静叶的流量特性曲线计算出静叶所对应的开度,提前控制静叶开度。
2.根据权利要求1所述的TRT高炉顶压控制冲压过程前馈控制仿真方法,其特征在于:它还包括步骤5)将仿真结果与预期效果比较,对系统仿真参数进行调试,以获得最佳控制参数。
3.一种用于实现权利要求1所述的TRT高炉顶压控制冲压过程前馈控制仿真方法的TRT高炉顶压控制冲压过程前馈控制仿真系统,其特征在于:它包括部件类模块和程序类模块;
其中部件类模块包括:
边界A:为第一定压节点,模拟进入高炉的热风的压力;
管道A:包括a节管道,每节管道包括一个固定开度的阀门和一个容器;
高炉模型:包括上容器和下容器,上容器和下容器之间由第一调节阀连接;第一调节阀的开度为固定值;
管道B:包括b节管道,每节管道包括一个固定开度的阀门和一个容器;
静叶:包括第二调节阀,第二调节阀的开度由所述的前馈控制模块控制;
边界B:为第二定压节点,模拟经过静叶之后的管网煤气压力;
冲压阀:冲压阀的开关由所述的冲压干扰模块控制;
冲压罐:包括一个容器;
边界A、管道A、高炉模型、管道B、静叶和边界B顺次连接,管道B与静叶之间分出一个分支与冲压阀连接,冲压阀的另一端与冲压罐连接;
程序类模块包括:
冲压干扰模块,用于仿真冲压过程对高炉顶压的影响;
前馈控制模块用于仿真实际PLC控制器对静叶的控制,在冲压时根据冲压阀前后的压差和煤气流量系数计算流入冲压罐的煤气流量,同时根据静叶的流量特性曲线计算出静叶所对应该煤气流量的开度,在冲压时提前利用静叶的流量特性曲线控制静叶开度。
4.根据权利要求3所述的TRT高炉顶压控制冲压过程前馈控制仿真系统,其特征在于:它是基于Modelica语言建立的。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210182276.7A CN102676716B (zh) | 2012-06-05 | 2012-06-05 | Trt高炉顶压控制冲压过程前馈控制仿真方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210182276.7A CN102676716B (zh) | 2012-06-05 | 2012-06-05 | Trt高炉顶压控制冲压过程前馈控制仿真方法及系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102676716A CN102676716A (zh) | 2012-09-19 |
CN102676716B true CN102676716B (zh) | 2014-03-12 |
Family
ID=46809264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210182276.7A Expired - Fee Related CN102676716B (zh) | 2012-06-05 | 2012-06-05 | Trt高炉顶压控制冲压过程前馈控制仿真方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102676716B (zh) |
-
2012
- 2012-06-05 CN CN201210182276.7A patent/CN102676716B/zh not_active Expired - Fee Related
Non-Patent Citations (8)
Title |
---|
google网页公开.TRT高炉顶压稳定性控制优化合理化建议方案.《google网页公开》.2011,一、炉顶压力稳定控制优化的方法、3)料罐均压数模的建立、4)布料和料罐均压数模前馈的实现. |
TRT高炉顶压稳定性控制优化合理化建议方案;google网页公开;《google网页公开》;20110731;一、炉顶压力稳定控制优化的方法、3)料罐均压数模的建立、4)布料和料罐均压数模前馈的实现 * |
前馈-反馈技术在高炉TRT控制系统的运用;王研 等;《包钢科技》;20100331;第36卷;44-46 * |
杨春节 等.正常发电工况下TRT中高炉顶压动态模型研究.《热力发电》.2008,第37卷(第3期),26-29页. |
正常发电工况下TRT中高炉顶压动态模型研究;杨春节 等;《热力发电》;20081231;第37卷(第3期);26-29页 * |
王梅莉 等.高炉炉顶压力控制分析.《包钢科技》.2009,第35卷(第6期),40-43. |
王研 等.前馈-反馈技术在高炉TRT控制系统的运用.《包钢科技》.2010,第36卷44-46. |
高炉炉顶压力控制分析;王梅莉 等;《包钢科技》;20091231;第35卷(第6期);40-43 * |
Also Published As
Publication number | Publication date |
---|---|
CN102676716A (zh) | 2012-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106682376B (zh) | 参数随工况变化实际特性的全过程汽轮机建模及辨识方法 | |
CN102563599B (zh) | 快速自适应燃煤热值变化的超临界机组机炉协调控制方法 | |
CN105700380B (zh) | 二次再热机组汽轮机调速系统仿真模型及其建模方法 | |
CN103807090B (zh) | 一种用于电力系统稳定分析的冲击式水轮机调节系统 | |
WO2016011751A1 (zh) | 一种基于联合循环燃机系统模型的调速方法 | |
CN102676713B (zh) | Trt高炉顶压控制冲压过程前馈反馈仿真方法及系统 | |
CN102279901A (zh) | 一种针对第三代压水堆核电机组的建模方法 | |
CN111027258B (zh) | 一种用于超临界机组的发电负荷与供热量的智能预测方法 | |
CN113536591B (zh) | 一种综合能源系统变步长动态仿真方法 | |
CN107272412A (zh) | 一种暂冲式风洞流场控制的辩识方法 | |
CN110554617B (zh) | 一种自动控制实验教学装置及方法 | |
CN106765520B (zh) | 一种实现供热机组最优初压运行的自动控制方法 | |
CN104712378A (zh) | 火电机组主蒸汽压力闭环节能控制方法和系统 | |
CN105260548A (zh) | 一种基于机组实际特性的汽轮机模型建模方法 | |
Lu et al. | Comprehensive stability analysis of complex hydropower system under flexible operating conditions based on a fast stability domain solving method | |
CN102676716B (zh) | Trt高炉顶压控制冲压过程前馈控制仿真方法及系统 | |
CN102676714B (zh) | Trt高炉顶压控制布料过程前馈控制仿真方法及系统 | |
CN102676717B (zh) | Trt高炉顶压控制布料过程前馈反馈仿真方法及系统 | |
CN102707630B (zh) | Trt高炉顶压控制布料过程反馈控制仿真方法及系统 | |
CN102676715B (zh) | Trt高炉顶压控制冲压过程反馈控制仿真方法及系统 | |
Ma et al. | Intelligent Compensation for the Set Values of PID Controllers to Improve Boiler Superheated Steam Temperature Control | |
CN204064406U (zh) | 一种基于实验室多路管道的高速气体流量校准系统 | |
CN203980439U (zh) | 热计量系统自动水力平衡控制装置 | |
CN114460985B (zh) | 一种基于单片机的储箱增压控制系统及控制方法 | |
CN110704935B (zh) | 一种sps软件的自动调试与输出方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140312 Termination date: 20180605 |
|
CF01 | Termination of patent right due to non-payment of annual fee |