CN102664646B - 采用遗传算法和非线性凸规划理论优化参数的滤波方法 - Google Patents

采用遗传算法和非线性凸规划理论优化参数的滤波方法 Download PDF

Info

Publication number
CN102664646B
CN102664646B CN201210146243.7A CN201210146243A CN102664646B CN 102664646 B CN102664646 B CN 102664646B CN 201210146243 A CN201210146243 A CN 201210146243A CN 102664646 B CN102664646 B CN 102664646B
Authority
CN
China
Prior art keywords
omega
digital
filter
frequency
gsm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210146243.7A
Other languages
English (en)
Other versions
CN102664646A (zh
Inventor
蔡斌
梅其灵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANGZHOU COMDIN TECHNOLOGY Co Ltd
Original Assignee
HANGZHOU COMDIN TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANGZHOU COMDIN TECHNOLOGY Co Ltd filed Critical HANGZHOU COMDIN TECHNOLOGY Co Ltd
Priority to CN201210146243.7A priority Critical patent/CN102664646B/zh
Publication of CN102664646A publication Critical patent/CN102664646A/zh
Application granted granted Critical
Publication of CN102664646B publication Critical patent/CN102664646B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmitters (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本发明涉及移动通信领域,旨在提供一种采用遗传算法和非线性凸规划理论优化参数的滤波方法。相对于传统的数字无线中继放大设备应用技术,本发明是在将数字基带GSM传输信号送至数字GSM滤波器,进行选频滤波处理,输出滤波后GSM基带信号的过程中,根据遗传算法和非线性凸规划理论,预先优化计算好滤波器参数,使用配有以上GSM新型滤波器对GSM低倍率数字基带信号进行选频滤波处理。本发明不对参数对称性,线性相位特性进行严格要求,而是以一系列代价函数将其进行折中,放宽了参数优化时的受限程度,同时引入解决非线性规划的遗传算法,进一步提升了优化的效果,因此在设计结果上大大优于现有技术设计结果。

Description

采用遗传算法和非线性凸规划理论优化参数的滤波方法
技术领域
本发明属于移动通信领域。具体涉及利用滤波器的移动通信无线中继放大设备领域,特别是一种采用遗传算法和非线性凸规划理论优化参数的滤波方法。
背景技术
随着移动通信数字技术的日益发展与普及,通信网络优化设备数字化、智能化已成为当前网络建设与优化的必然趋势。
当前数字无线中继放大设备通常采用数字滤波技术,为保证带外抵制指标,通常以牺牲系统时延来实现。在移动通信GSM制式网络中,移动通信网络中多径的问题将引入一个时延色散问题,无线中继放大设备由于与基站信源小区属同扇区覆盖,其设备固有时延将增加时延色散风险,时延越大,其问题将越突出。根据GSM规范,时延差要求≤4TA,1个TA是3.7us,即时延差要求≤14.8us。如图1所示。直放站覆盖区与基站由于属同扇区重叠覆盖,其重叠覆盖区用户有两条链路,一路从基站直接发射时延L1,一路是通过直放站中继放大后的链路时延L2=直放站施主天线至基站距离时延I1+直放站本身时延I+覆盖区时延I2。根据GSM时延色散要求,L时延差≤14.8us,即L2-L1时延差≤14.8us,I1+I+I2-L1时延差≤14.8us。
从图1可以看出,无线中继放大设备时延越大,重叠覆盖区距离越有限,若处理不当将直接产生时延色散,降低通话质量,增加掉话率。
上述内容表明无线通信中继设备时延不允许超过14.8us,同时通信中继设备标准要求设备具有较高的带外抑制能力,从滤波器的实现可知,这两个要求是相互制约的,抑制度好则时延大,时延小则用于计算的延时就小,滤波器用于计算的时间就短,抑制自然就差。
传统FIR滤波器设计均将滤波器设定为严格线性相位,即设H(e)=FT[h(n)]为FIR滤波器的频响特性函数。H(e)可表示为
H ( e jω ) = H g ( ω ) e jθ ( ω )
Hg(ω)称为幅度函数,为ω的实函数。应注意Hg(ω)与幅频特性函数|H(e)|的区别,|H(e)|为ω的正实函数,而Hg(ω)可取负值。
θ(ω)称为相位特性函数,当θ(ω)=-ωτ时,称为第一类(A类)线性相位特性;当θ(ω)=θ0-ωτ时,称为第二类(B类)线性相位特性。
A类:
Figure BDA0000162633892
B类:
Figure BDA0000162633893
根据以上特点,FIR滤波器设计方法主要分为:
(1)窗函数法
(2)频率采样法
(3)切比雪夫逼近法
ⅰ、窗函数法的设计步骤与要点
设Hd(e)=FT[hd(n)]为希望逼近的频响特性函数,Hd(e)=FT[hd(n)]为用窗函数法设计的实际滤波器的频响函数。通常取H(e)相应的理想频响特性作为Hd(e)。因为FIR数字滤波器一般要求设计成线性相位特性,所以Hd(e)必须满足上述线性相位FIR滤波器的频域特点。
表1
窗函数 旁瓣峰值幅度/dB 过渡带宽 阻带最小衰减/dB
矩形窗 -13 4 -21
三角形窗 -25 8
Figure BDA0000162633895
-25
汉宁窗 -31 8
Figure BDA0000162633896
-44
哈明窗 -41 8
Figure BDA0000162633897
-53
布莱克曼窗 -57 12
Figure BDA0000162633898
-74
凯塞窗( ) -57 10
Figure BDA00001626338910
-80
设计过程中根据阻带最小衰减选择窗函数类型,再根据过渡带宽度指标选择窗函数长度N值。
ⅱ、用频率采样法设计FIR数字滤波器的设计步骤与要点
1)频率采样设计法的概念及理论依据
设计FIR数字滤波器就是寻求一种满足设计要求的滤波器单位脉冲响应h(n)或系统函数H(z)。
根据频率采样理论,如果h(n)长度为M,H(z)=ZT[h(n)],在单位圆上等间隔对H(z)采样N点得到
H ( k ) = H ( z ) | z = e j 2 π N k , k = 0,1 , · · · , N - 1
只要N≥M,则有
h ( n ) = IDFT [ H ( k ) ] , n = 0,1 , · · · , N - 1
H ( z ) = 1 - z - N N Σ k = 0 N - 1 H ( k ) 1 - W N - k z - 1
由此可见,只要知道FIR数字滤波器频响函数在[0,2π]上的N点等间隔采样H(k),就可确定滤波器的单位脉冲响应h(n)或系统函数H(z),这就是频率采样设计法的理论依据。
频率采样法就是根据以上频域采样理论,由滤波特性指标构造希望逼近的滤波器频响函数Hd(e),对其在[0,2π]上采样得到
H d ( k ) = H d ( e jω ) | ω = 2 π N k , k = 0,1 , · · · , N - 1
然后,求得单位脉冲响应h(n),或求得系统函数H(z)。这样,h(n)或H(z)就是FIR数字滤波器的设计结果。
ⅲ、FIR滤波器的等波纹逼近设计法
等波纹逼近设计法使用切比雪夫最佳一致逼近理论,可设计出实际滤波器频响H(e)与期望的频响Hd(e)之间的最大误差最小化的最佳拟合滤波器。这种方法设计的滤波器呈现等波纹频响特性,所以称之为等波纹逼近设计法。由于误差均匀分布于整个频带,对固定的阶数N,可以得到最优良的滤波特性;通带最平坦,阻带最小衰减达到最大。因此,等波纹逼近法在FIR滤波器设计中得到广泛应用,特别是有现成的设计程序,从而使设计简单易行。所以,在建立上述概念的基础上,正确调用设计程序,设置合适的参数即可得到等波纹逼近FIR滤波器系数h(n)。
传统滤波器设计方法由于设定为严格线性相位,且滤波器相应关于中心对称,因此影响了滤波器的配置灵活性,无形中增加了设计复杂度,通带波动、过渡带宽、阻带衰减、群时延等性能难以实现同时优化。需要对其进行改进和完善。
发明内容
本发明要解决的技术问题是,克服现有技术中的不足,提供一种采用遗传算法和非线性凸规划理论优化参数的滤波方法。
为解决其技术问题,本发明通过以下技术方案实现其目的:
本发明提供了一种采用遗传算法和非线性凸规划理论优化参数的滤波方法,包括以下步骤:
(1)以模拟超外差混频结构为基础,对天线接收信号进行模拟下变频,得到模拟中频信号;由采样频率为fsam的时钟控制的模数转换器(ADC)对模拟中频信号进行数字化处理,得到数字中频信号;然后由数字DDC进行数字下变频和数字降采样处理,得到数字基带GSM传输信号;
(2)将数字基带GSM传输信号送至数字GSM滤波器,进行选频滤波处理,输出滤波后GSM基带信号;
(3)将滤波后GSM基带信号送至数字DUC进行上变频,经数模转换、模拟上变频,放大至射频,输送到发射天线;
所述步骤(2)是通过采用遗传算法和非线性凸规划理论对GSM滤波器参数进行优化设计得以实现的,具体包括以下步骤:
(A)根据不同系统的设计指标要求,对滤波器性能进行分配,将滤波器性能指标具体划分为幅度响应要求、相位响应要求和时延要求;
(B)对步骤(A)中的各个要求在数字频带[0,2π)内进行量化,得到理想滤波器频响函数Hd(e),以其对应的幅度响应|Hd(e)|、相位响应arg(Hd(e))、群时延响应(相位变化率)τ(e)作为优化的目标;
(C)设置向量变量h=[h(0),h(1)…h(N-1)]T表示实际可得滤波器的参数,N表示目标滤波器的阶数,T表示向量转置;则滤波器的频域响应表示为下式:
H ( e jω ) = Σ n = 0 n = N - 1 h ( n ) × e - jωn = F ( h , ω )
其对应的幅度响应为|H(e)|,
相位响应为arg(H(e)),
群时延响应为
Figure BDA00001626338916
(D)设理想低通滤波器通带为[0,ω1],阻带为[ω2,π],设置代价函数
φ ( h ) = Δ 0 × ∫ 0 ω 1 | F ( h , ω ) - H d ( e jω ) | 2 dω + Δ 1 × ∫ ω 2 π | F ( h , ω ) - H d ( e jω ) | 2 dω + Δ 2 × ∫ 0 ω 1 | d arg ( F ( h , ω ) ) dω - τ ( e jω ) | 2 dω △0,△1和△2为比例因子,用于调节通带、阻带和群时延的优化程度;在寻找h时,使上述代价函数最小,以使设计滤波器的频率响应和理想滤波器的频域响应最大程度的接近;
(E)根据数字计算机的计算特点,对上述连续代价函数进行离散化,具体为将频带[0,2π)均匀量化为K个样值点
Figure BDA00001626338918
,i=0,1,……,K-1;
则步骤(D)中代价函数中的各项分别离散化为:
∫ 0 ω 1 | F ( h , ω ) - H d ( e jω ) | 2 dω → Σ i = 0 k 1 | F ( h , i / K × 2 π ) - H d ( e j × i / K × 2 π ) | 2
∫ ω 2 π | F ( h , ω ) - H d ( e jω ) | 2 dω → Σ i = k 2 K / 2 | F ( h , i / K × 2 π ) - H d ( e j × i / K × 2 π ) | 2
∫ 0 ω 1 | d arg ( F ( h , ω ) ) dω - τ ( e jω ) | 2 dω → Σ i = 1 k 1 | arg ( F ( h , ( i + 1 ) / K × 2 π ) ) - arg ( F ( h , i / K × 2 π ) ) - τ ( e j × i / K × 2 π ) | 2 k 1 = ω 1 2 π × K k 2 = ω 2 2 π × K
(F)根据步骤(E)中离散化的形式,应用遗传算法和非线性优化方法求解代价函数
φ ( h ) = Δ 0 × Σ i = 0 k 1 | F ( h , i / K × 2 π ) - H d ( e j × i / K × 2 π ) | 2 + Δ 1 × Σ i = k 2 K / 2 | F ( h , i / K × 2 π ) - H d ( e j × i / K × 2 π ) | 2 + Δ 2 × Σ i = 1 k 1 | arg ( F ( h , ( i + 1 ) / K × 2 π ) ) - arg ( F ( h , i / K × 2 π ) ) - ι ( e j × i / K × 2 π ) | 2
的最优解,其结果即为设计所需的滤波器;
(G)利用步骤(F)所得的滤波器,对步骤(1)中输出的数字基带GSM传输信号进行滤波处理,输出滤波后数字基带GSM传输信号。
本发明所述步骤(3)中,是以数字DUC对所述步骤(G)输出的数字基带GSM传输信号进行升采样和上变频操作,输出数字中频信号;然后以一采样频率为fsam的时钟控制的数模转换器(DAC)将该数字中频信号进行模拟化处理,输出模拟中频信号;再以模拟超外差混频结构为基础,将数模转换器输出的模拟中频信号进行模拟变频放大至射频,输送到发射天线。
与现有技术相比,本发明的有益效果在于:
在相同工作环境下,相对于现有技术具有滤波带外压制性能更好,群时延更小的效果。其原因在于,现有传统技术使用背景介绍中的各类设计方法,对设计的滤波器参数有参数对称,严格线性相位的要求,这些要求限制了参数设计的最优性,影响了通带波动,阻带压制,过渡带宽度,滤波器群时延等指标,同时设计结果很难具有最小相位的特性。相对于传统方法本发明不对参数对称性,线性相位特性进行严格要求,而是以一系列代价函数将其进行折中,放宽了参数优化时的受限程度,同时引入解决非线性规划的遗传算法,进一步提升了优化的效果,因此在设计结果上大大优于现有技术设计结果
附图说明
图1为时延色散影响要求示意图。
图2 FDAtool设计的系统幅度响应。
图3 FDAtool设计的群时延响应。
图4 本发明设计的滤波器幅度响应。
图5 本发明设计的群时延响应。
图6 应用举例数字部分连接。
图7 应用举例系统框图。
具体实施方式
首先需要说明的是,本发明涉及计算机技术在移动通信领域的应用。在本发明的实现过程中,会涉及到多个软件功能模块的应用。申请人认为,如在仔细阅读申请文件、准确理解本发明的实现原理和发明目的以后,在结合现有公知技术的情况下,本领域技术人员完全可以运用其掌握的软件编程技能实现本发明。凡本发明申请文件提及的均属此范畴,申请人不再一一列举。
以下结合附图详细描述本发明的一种应用举例:
根据GSM指标,设计GSM数字无线直放站。
工作频段:
■下行:934MHz~954MHz;
■上行:889MHz~909MHz;
系统连接框图如图7所示。系统通过天线接收空口GSM信号,通过模拟混频,ADC,数字处理,DAC,模拟混频步骤,完成对空中GSM信号的选频滤波处理,处理后信号送至发射天线,完成信号中继流程。
数字部分连接如图6所示。系统连接和说明书部分描述一致,上下行数据流程一致,均为:AD、DDC、数字滤波器、DUC、DA。
数字滤波器部分具体如下:
(A)分配滤波器指标为:采样率3.84MHz,通带120KHz,阻带400KHz。通带带内波动0.1db,阻带抑制大于等于65db,群时延3us,设计滤波器为45阶。
(B)对步骤(A)中的各个要求在数字频带[0,2π)内进行量化,具体为:通带[0,12]π/384,阻带[40,192)π/384。理想滤波器频响函数Hd(e),划分为以其对应的幅度响应 | H d ( e jω ) | = 1 w ∈ [ 0,12 ] π / 384 0 w ∈ [ 40 , 192 ) π / 384 、相位响应
arg ( H d ( e jω ) ) = - 3.84 · 3 πw 2 w ∈ [ 0,12 ] π / 384 、群时延响应(相位变化率)τ(e)=3*3.84 w∈[0,12]π/384作为优化的目标;
(C)设置向量变量h=[h(0),h(1)…h(N-1)]T表示实际可得滤波器的参数,N=45,T表示向量转置;则滤波器的频域响应表示为下式:
H ( e jω ) = Σ n = 0 n = 44 h ( n ) × e - jωn = F ( h , ω )
其对应的幅度响应为|H(e)|,
相位响应为arg(H(e)),
群时延响应为
Figure BDA00001626338928
(D)设置代价函数
φ ( h ) = Δ 0 × ∫ 0 12 384 π | F ( h , ω ) - 1 | 2 dω + Δ 1 × ∫ 40 384 π 192 384 π | F ( h , ω ) | 2 dω + Δ 2 × ∫ 0 12 384 π | d arg ( F ( h , ω ) ) dω - 11.52 | 2 dω
△0=1,△1=1和△2=5;
(E)根据数字计算机的计算特点,对上述连续代价函数进行离散化,具体为将频带[0,2π)均匀量化为2048个样值点;
则步骤(D)中代价函数中的各项分别离散化为:
∫ 0 12 384 π | F ( h , ω ) - 1 | 2 dω → Σ i = 0 64 | F ( h , i / 2048 ) - 1 | 2
∫ 40 384 π 192 384 π | F ( h , ω ) | 2 dω → Σ i = 213 1024 | F ( h , i / 2048 ) | 2
∫ 0 12 384 π | d arg ( F ( h , ω ) ) dω - 11.52 | 2 dω → Σ i = 0 64 | arg ( F ( h , ( i + 1 ) / 2048 ) ) - arg ( F ( h , i / 2048 ) ) - 11.52 | 2
(F)根据步骤(E)中离散化的形式,应用遗传算法和非线性优化方法求解代价函数的最优解,其结果即为设计所需的滤波器。
作为对比,使用现有通用设计软件Matlab V2009自带软件包FDAtool的设计结果进行比较。比较结果如图2至图5所示:
FDAtool的设计结果带外400KHz压制为70db,群时延为5.3us。本发明的方法的设计结果带外400KHz压制为75db,群时延为3us。在阻带抑制优于FDAtool设计结果的条件下,本发明方法在群时延指标上优于FDAtool的设计结果2.3us,提高了系统性能。

Claims (2)

1.一种采用遗传算法和非线性凸规划理论优化参数的滤波方法,其特征在于,包括以下步骤:
(1)以模拟超外差混频结构为基础,对天线接收信号进行模拟下变频,得到模拟中频信号;由采样频率为fsam的时钟控制的模数转换器ADC对模拟中频信号进行数字化处理,得到数字中频信号;然后由数字DDC进行数字下变频和数字降采样处理,得到数字基带GSM传输信号;
(2)将数字基带GSM传输信号送至数字GSM滤波器,进行选频滤波处理,输出滤波后GSM基带信号;
(3)将滤波后GSM基带信号送至数字DUC进行上变频,经数模转换、模拟上变频,放大至射频,输送到发射天线;
所述步骤(2)是通过采用遗传算法和非线性凸规划理论对GSM滤波器参数进行优化设计得以实现的,具体包括以下步骤:
(A)根据不同系统的设计指标要求,对滤波器性能进行分配,将滤波器性能指标具体划分为幅度响应要求、相位响应要求和时延要求;
(B)对步骤(A)中的各个要求在数字频带[0,2π)内进行量化,得到理想滤波器频响函数Hd(e),以其对应的幅度响应|Hd(e)|、相位响应arg(Hd(e))群时延响应(相位变化率)τ(e)作为优化的目标;
(C)设置向量变量h=[h(0),h(1)...h(N-1)]T表示实际可得滤波器的参数,N表示目标滤波器的阶数,T表示向量转置;则滤波器的频域响应表示为下式:
H ( e jω ) = Σ n = 0 n = N - 1 h ( n ) × e - jωn = F ( h , ω )
其对应的幅度响应为|H(e)|,
相位响应为arg(H(e)),
群时延响应为
(D)设理想低通滤波器通带为[0,ω1],阻带为[ω2,π],设置代价函数
φ ( h ) = Δ 0 × ∫ 0 ω 1 | F ( h , ω ) - H d ( e jω ) | 2 dω + Δ 1 × ∫ ω 2 π | F ( h , ω ) - H d ( e jω ) | 2 dω + Δ 2 × ∫ 0 ω 1 | d arg ( F ( h , ω ) ) dω - τ ( e jω ) | 2 dω
Δ0,Δ1和Δ2为比例因子,用于调节通带、阻带和群时延的优化程度;在寻找h时,使上述代价函数最小,以使设计滤波器的频率响应和理想滤波器的频域响应最大程度的接近;
(E)根据数字计算机的计算特点,对步骤(D)中设置的代价函数进行离散化,具体为将频带[0,2π)均匀量化为K个样值点
Figure FDA0000483426000000021
i=0,1,.......,K-1;
则步骤(D)中代价函数中的各项分别离散化为:
∫ 0 ω 1 | F ( h , ω ) - H d ( e jω ) | 2 dω → Σ i = 0 k 1 | F ( h , i / K × 2 π ) - H d ( e j × i / K × 2 π ) | 2
∫ ω 2 π | F ( h , ω ) - H d ( e jω ) | 2 dω → Σ i = k 2 k / 2 | F ( h , i / K × 2 π ) - H d ( e j × i / K × 2 π ) | 2
∫ 0 ω 1 | d arg ( F ( h , ω ) ) dω - τ ( e jω ) | 2 dω → Σ i = 0 k 1 | arg ( F ( h , ( i + 1 ) / K × 2 π ) ) - arg ( F ( h , i / K × 2 π ) ) - τ ( e j × i / K × 2 π ) | 2
k 1 = ω 1 2 π × K , k 2 = ω 2 2 π × K
(F)根据步骤(E)中离散化的形式,应用遗传算法和非线性优化方法求解代价函数
φ ( h ) = Δ 0 × Σ i = 0 k 1 | F ( h , i / K × 2 π ) - H d ( e j × i / K × 2 π ) | 2 + Δ 1 × Σ i = k 2 K / 2 | F ( h , i / K × 2 π ) - H d ( e j × i / K × 2 π ) | 2 + Δ 2 × Σ i = 0 k 1 | arg ( F ( h , ( i + 1 ) / K × 2 π ) ) - arg ( F ( h , i / K × 2 π ) ) - τ ( e j × i / K × 2 π ) | 2
的最优解,其结果即为设计所需的滤波器;
(G)利用步骤(F)所得的滤波器,对步骤(1)中输出的数字基带GSM传输信号进行滤波处理,输出滤波后数字基带GSM传输信号。
2.根据权利要求1所述的方法,其特征在于,所述步骤(3)中,是以数字DUC对所述步骤(G)输出的数字基带GSM传输信号进行升采样和上变频操作,输出数字中频信号;然后以一采样频率为fsam的时钟控制的数模转换器DAC将该数字中频信号进行模拟化处理,输出模拟中频信号;再以模拟超外差混频结构为基础,将数模转换器输出的模拟中频信号进行模拟变频放大至射频,输送到发射天线。
CN201210146243.7A 2011-05-17 2012-05-10 采用遗传算法和非线性凸规划理论优化参数的滤波方法 Expired - Fee Related CN102664646B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210146243.7A CN102664646B (zh) 2011-05-17 2012-05-10 采用遗传算法和非线性凸规划理论优化参数的滤波方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201110126931 2011-05-17
CN201110126931.2 2011-05-17
CN201210146243.7A CN102664646B (zh) 2011-05-17 2012-05-10 采用遗传算法和非线性凸规划理论优化参数的滤波方法

Publications (2)

Publication Number Publication Date
CN102664646A CN102664646A (zh) 2012-09-12
CN102664646B true CN102664646B (zh) 2014-07-02

Family

ID=46774076

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210146243.7A Expired - Fee Related CN102664646B (zh) 2011-05-17 2012-05-10 采用遗传算法和非线性凸规划理论优化参数的滤波方法

Country Status (1)

Country Link
CN (1) CN102664646B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105827256A (zh) * 2016-04-11 2016-08-03 河海大学常州校区 基于数字滤波的移动gsm与铁路gsm-r干扰抑制系统和方法
CN107104741A (zh) * 2017-05-02 2017-08-29 浙江金之路信息科技有限公司 一种低时延数字滤波器的指标系数确定方法
CN113662582B (zh) * 2021-08-23 2024-02-23 深圳华声医疗技术股份有限公司 多普勒超声诊断仪和音频播放控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101068108A (zh) * 2007-06-18 2007-11-07 北京中星微电子有限公司 基于遗传算法的正交镜像滤波器组实现方法及装置
CN101197606A (zh) * 2006-12-04 2008-06-11 京信通信技术(广州)有限公司 应用于直放站中的数字中频变频方法及其变频系统
CN101656525A (zh) * 2008-08-18 2010-02-24 华为技术有限公司 一种获得滤波器的方法和滤波器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243967A (ja) * 2002-02-20 2003-08-29 Matsushita Electric Ind Co Ltd ディジタルフィルタ係数設定装置およびその方法
KR100451169B1 (ko) * 2002-10-24 2004-10-13 엘지전자 주식회사 유전자 알고리즘을 이용한 필터 설계 방법
CN1976226A (zh) * 2006-12-20 2007-06-06 北京中星微电子有限公司 正交滤波器组设计方法及装置
CN101316102A (zh) * 2007-05-28 2008-12-03 安凡微电子(上海)有限公司 用于数字基带接收机的滤波器及其设计方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197606A (zh) * 2006-12-04 2008-06-11 京信通信技术(广州)有限公司 应用于直放站中的数字中频变频方法及其变频系统
CN101068108A (zh) * 2007-06-18 2007-11-07 北京中星微电子有限公司 基于遗传算法的正交镜像滤波器组实现方法及装置
CN101656525A (zh) * 2008-08-18 2010-02-24 华为技术有限公司 一种获得滤波器的方法和滤波器

Also Published As

Publication number Publication date
CN102664646A (zh) 2012-09-12

Similar Documents

Publication Publication Date Title
CN107104741A (zh) 一种低时延数字滤波器的指标系数确定方法
CN102299878B (zh) 一种多频段dpd的实现方法及装置
CN102664646B (zh) 采用遗传算法和非线性凸规划理论优化参数的滤波方法
EP3678294A1 (en) Method for notch filtering a digital signal, and corresponding electronic device
EP1557018B1 (en) Pre-equalisation for umts base station
CN103491045B (zh) 多载波削峰处理方法与装置
CN102437994B (zh) 多频段宽带信号的削峰方法和设备
CA2558849A1 (en) A system and method for excluding narrow band noise from a communication channel
CN102413083B (zh) 一种信号处理方法及装置
CN103493382A (zh) 抵消多载波发射干扰的方法、装置、设备及系统
CN101594669A (zh) 一种相近频段无线设备抗干扰的方法和装置
CN102118334A (zh) 一种数字预失真处理方法及装置
CN101257482A (zh) 数字基带可变速率转换调制系统的实现方法和实现装置
CN106972876B (zh) 一种适用于无线通信公共信道的数模混合波束成形方法
CN105591656A (zh) 一种收发信机的增益平坦度补偿方法
CN102845006A (zh) 用于ofdm系统的延迟校准的方法和装置
CN102098255A (zh) 信号合路削波方法、装置和基站
CN102652416B (zh) 双载波和多载波无线通信系统中计算立方度量的装置和方法
CN101521539A (zh) 宽带数字选频无线直放站系统及其宽带信号数字选频方法
CN203445889U (zh) 多信道dmr信号监测仪
CN102804504A (zh) 一种收发模块、天线、基站及信号的接收方法
CN102843316A (zh) 一种莫尔斯报信号处理装置和处理方法
CN102333389A (zh) 三模数字光纤拉远系统
CN107786220A (zh) 一种接收机的射频采样adc方法、装置和接收机
CN103368888B (zh) 一种中频信号处理方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140702

CF01 Termination of patent right due to non-payment of annual fee