CN102652393A - 具有步长增益的放大器电路 - Google Patents

具有步长增益的放大器电路 Download PDF

Info

Publication number
CN102652393A
CN102652393A CN201180004897XA CN201180004897A CN102652393A CN 102652393 A CN102652393 A CN 102652393A CN 201180004897X A CN201180004897X A CN 201180004897XA CN 201180004897 A CN201180004897 A CN 201180004897A CN 102652393 A CN102652393 A CN 102652393A
Authority
CN
China
Prior art keywords
transistor
terminal
resistor
amplifier system
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201180004897XA
Other languages
English (en)
Other versions
CN102652393B (zh
Inventor
小林文
史蒂文·W·谢尔
咏含·克丽丝·金
沛明·丹尼尔·周
茂聪·弗兰克·张
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microchip Technology Inc
Original Assignee
Microchip Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microchip Technology Inc filed Critical Microchip Technology Inc
Publication of CN102652393A publication Critical patent/CN102652393A/zh
Application granted granted Critical
Publication of CN102652393B publication Critical patent/CN102652393B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0277Selecting one or more amplifiers from a plurality of amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/302Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in bipolar transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0035Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using continuously variable impedance elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/144Indexing scheme relating to amplifiers the feedback circuit of the amplifier stage comprising a passive resistor and passive capacitor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/18Indexing scheme relating to amplifiers the bias of the gate of a FET being controlled by a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/27A biasing circuit node being switched in an amplifier circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/72Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • H03F2203/7206Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched on or off by a switch in the bias circuit of the amplifier controlling a bias voltage in the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/72Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • H03F2203/7236Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched on or off by putting into parallel or not, by choosing between amplifiers by (a ) switch(es)

Abstract

一种步长增益放大器具有一放大器,所述放大器具有输入及输出以及连接到所述输入及偏置节点的偏置电路。仅使用无源元件的无源反馈电路将所述输出连接到所述输入。控制电路在所述偏置节点处连接到所述偏置电路。

Description

具有步长增益的放大器电路
技术领域
本发明涉及一种放大器电路,其可在低增益状态下以减少的电流消耗、RF信号发射具有很少或不具有失真地提供高步长增益。
背景技术
具有增益的放大器电路在此项技术中是众所周知的。举例来说,参见USP 4,366,450;5,355,096;5,661,437;7,046,081;6,906,595;7,332,964;6,522,195;6,977,552;7,423,487;及USP公开案2009/0015334。通常,现有技术放大器电路包括具有反馈电路的放大器。所述反馈电路可具有有源元件或具有无源元件。在USP 5,661,437的图9中展示了一种具有放大器及有源反馈电路的现有技术放大器电路。关于此放大器电路的问题是可变增益步长小至14dB。放大器电路具有非低的增益,这是由于高增益及低增益两者分别具有负值-2.5dB及-16.5dB的事实。在USP 6,977,552的图1中展示了另一种具有放大器及偏置电路、用开关作为有源反馈元件的现有技术放大器电路。在此现有技术电路中,认为制造成本较高,因为使用了两种类型的晶体管。放大器电路的增益步长也受放大器的增益限制,因为RF信号仅在低增益模式下由开关旁通。此外,输出功率能力及线性度受开关限制。
因此,期望具有一种放大器系统,其具有高步长增益、在低增益状态下具有减少的电流消耗、RF信号发射具有很少或不具有失真。
发明内容
因此,在本发明中,一种放大器系统包括放大器,所述放大器具有输入及输出以及偏置电路。仅具有无源元件的无源反馈电路将所述输出连接到所述输入。控制电路连接到所述偏置电路。
附图说明
图1是本发明的放大器系统的示意性框级图。
图2是本发明的放大器系统的第一实施例的电路图。
图3是本发明的放大器系统的第二实施例的电路图。
图4是本发明的放大器系统的第三实施例的电路图。
具体实施方式
参考图1,其展示本发明的放大器系统10的框级图。放大器系统10包括具有输入14及输出16的基本放大器12。输入14可接收RF信号,借此在输出16处提供经放大的RF信号。给放大器12供应电压Vcc以及参考电压Vref。另外,放大器系统10还包括无源反馈电路18,无源反馈电路18在一端处连接到输出16且在另一端处连接到输入14。因此,无源反馈电路18连接放大器12的输出16与放大器12的输入14。如下文中将更详细地描述,无源反馈电路18仅由无源元件(即,晶体管、电容器及电感器)组成。最后,如将展示,放大器12具有偏置电路及偏置节点20。控制电路22连接到偏置节点20。控制电路22接收控制信号Vattn。
参考图2,其展示本发明的放大器系统110的第一实施例的电路图。在描述类似部件的地方,将使用相似编号。放大器系统110包括基本放大器12。基本放大器12包括第一n-p-n双极晶体管T31。然而,如所属领域的技术人员将清楚,第一n-p-n晶体管T31无需限于n-p-n型(举例来说,其可为p-n-p),其也不限于双极的(例如,其可为FET型晶体管)。不过,为解释本发明,将把第一晶体管T31作为n-p-n双极型来参考。如所属领域的技术人员众所周知,n-p-n型双极晶体管具有发射极、集电极及基极。第一n-p-n晶体管T31的基极连接到RF输入14节点。第一n-p-n晶体管T31的集电极向RF输出节点16供应。第一晶体管T31的发射极连接到接地。第一晶体管T31的集电极还穿过电感器L31连接到电压源Vcc。另外,第一晶体管T31的集电极连接到无源反馈电路18,无源反馈电路18包括与电容器C31串联连接且连接到输入14的电阻器R31。最后,基本放大器12包括连接到第一晶体管T31的基极的偏置电路30。偏置电路30包括第二n-p-n双极晶体管T32。第二晶体管T32的基极连接到其集电极端子且穿过电阻器R34连接到第一晶体管T31的基极。第二晶体管T32的发射极连接到接地。第二晶体管T32的集电极还连接到偏置节点20且穿过电阻器R32连接到电压源Vref。最后,放大器系统110的控制电路22包括连接到偏置节点20的电阻器R33且接收信号Vattn。
在本发明的放大器系统110的操作中,无源反馈电路18中的电容器C31充当DC阻断器以阻断DC信号。因此,放大器系统110的反馈值由电阻器R31确定。由第二晶体管T32、电阻器R32及R34组成的偏置电路30充当第一晶体管T31的电流镜。在放大器系统110的操作中,当Vattn处于高电平(例如2V)时,第一晶体管T31接通。在输入节点14处供应的RF信号由第一晶体管T31凭反馈电路18所提供的反馈放大。然而,由于电阻器R31的高电阻,放大器系统10的总闭环增益仍为高的。放大器系统10的闭环增益可计算为:
GH(闭环增益)=Go(放大器12的增益)/(1+Go/R31))
当Vattn处于低电平(例如0伏)且Vref维持高电压时,偏置节点20的电压变为低电平。电流镜电路或偏置电路30关断。因此,第一晶体管T31关断。在输入节点14处提供的RF信号不穿过放大器12。而是,所述RF信号穿过无源反馈电路18传递到RF输出节点16。然而,由于R31的电阻为高的,因此RF信号将存在大的损耗。另外,第一晶体管T31关断,且电流镜电路或偏置电路30也关断,在此低增益状态中电流消耗减少。另外,在此低增益状态中,由于RF信号通过无源元件C31及R31,因此RF信号不存在失真。
当在高增益状态与低增益状态之间时,两种状态之间存在大的增益差。因此,放大器系统10能够实现高增益步长。
参考图3,其展示本发明的放大器系统210的第二实施例。同样,相同编号将用于相似部件。放大器系统210包括基本放大器12。基本放大器12包含偏置电路30及第一晶体管T41。同样,在此实施例中,将第一晶体管T41展示为n-p-n双极晶体管。然而,本发明不限于此。第一晶体管T41具有连接到RF输出节点16的集电极。另外,所述集电极穿过电感器L41连接到电压源Vcc。第一晶体管T41具有穿过电阻器R48连接到接地的发射极。最后,第一晶体管T41具有穿过电阻器R47连接到RF输入节点14的基极。
偏置电路30还充当晶体管T41的电流镜电路。偏置电路30包括第二n-p-n双极晶体管T42及第三n-p-n双极晶体管T43。第二晶体管T42的发射极连接到接地。第二晶体管T42的集电极连接到第三晶体管T43的基极。第二晶体管T42的基极连接到第三晶体管T43的发射极且穿过电阻器R46连接到电阻器R47并进入到第一晶体管T41的基极中。第三晶体管T43的集电极连接到Vcc。第三晶体管T43的基极经连接而穿过电阻器R44并进入到Vref中。第三晶体管T43的基极还在偏置节点20处连接到控制电路22。
控制电路22包括第四双极晶体管D41。第四晶体管D41的基极连接到其发射极,所述发射极还连接到偏置节点20。第四晶体管D41的集电极经连接而穿过电阻器R45并接收控制信号Vattn。
无源反馈电路18包括第一电容器C42,第一电容器C42串联连接到电阻器R43且与电阻器R41串联连接,电阻器R41与第二电容器C41串联。第一电容器C42还连接到第一晶体管T41的集电极。第二电容器C41连接到RF输入节点14。电阻器R42将电阻器R41与R43的接合点连接到接地。
在本发明的放大器系统210的操作中,电阻器R41、R42及R43在无源反馈电路18中的连接提供较佳的阻抗匹配。电阻器R47及R48为第一晶体管T41提供DC镇流器。最后,第三晶体管T43给偏置电路30提供增加的电流镜能力。
当信号Vattn为高时,第四晶体管D41关断。第一晶体管T41经偏置以进行放大。当Vattn为低时,第四晶体管D41接通。然而,第一晶体管T41关断。当Vattn处于高电平时,第四晶体管D41移除来自控制电压的偏置的影响。
参考图4,其展示本发明的放大器系统310的第三实施例。同样,相似部件将由相同编号标示。放大器系统310包括基本放大器12。基本放大器12包含偏置电路30及第一晶体管T51。同样,在此实施例中,将第一晶体管T51展示为n-p-n双极晶体管。然而,本发明不限于此。第一晶体管T51具有连接到RF输出节点16的集电极。另外,所述集电极穿过电感器L51连接到电压源Vcc。第一晶体管T51具有穿过电阻器R59连接到接地的发射极。最后,第一晶体管T51具有穿过电阻器R58连接到电容器C53的基极。
偏置电路30还充当晶体管T51的电流镜电路。偏置电路30包括第二n-p-n双极晶体管T52及第三n-p-n双极晶体管T53。第二晶体管T52的发射极连接到接地。第二晶体管T52的集电极连接到第三晶体管T53的基极。第二晶体管T52的基极连接到第三晶体管T53的发射极且穿过电阻器R57、穿过电阻器R58进入到第一晶体管T51的基极中。第三晶体管T53的集电极连接到Vcc。第三晶体管T53的基极经连接而穿过电阻器R55且进入到Vref中。第三晶体管T53的基极还连接到偏置节点20且进入到控制电路22中。
控制电路22包括第四双极晶体管D52。第四晶体管D52的基极连接到其发射极,所述发射极还连接到偏置节点20。第四晶体管D52的集电极经连接而穿过电阻器R56并接收控制信号Vattn。
电容器C53还连接到控制电路22。控制电路22在节点14处接收RF输入信号。将RF输入信号供应到第四n-p-n双极晶体管D52的集电极。另外,还将RF输入信号供应到第五晶体管D51的基极。最后,将输入节点14处的RF信号连接到无源反馈电路18。第五晶体管D51的发射极还连接到第五晶体管D51的基极。第五晶体管D51的集电极连接到电容器C53且还穿过晶体管R54连接到接地。
无源反馈电路18类似于在图3中所展示的放大器系统210的第二实施例中所描述的反馈电路18。反馈电路18包括第一电容器C52,第一电容器C52串联连接到电阻器R53且与电阻器R51串联连接,电阻器R51与第二电容器C51串联。第一电容器C52还连接到第一晶体管T51的集电极。第二电容器C41连接到RF输入节点14。电阻器R52将电阻器R41与R43的接合点连接到接地。
在放大器系统310的操作中,当Vattn处于高电平时,第五晶体管D51接通且第四晶体管D52关断。因此,经由第五晶体管D51的低阻抗将在输入节点14上供应的RF信号供应到晶体管T51且通过第一晶体管T51放大所述信号。当Vattn处于低电平且Vref维持高电压时,第五晶体管D51关断,第四晶体管D52接通,且电流镜偏置电路30接通。在输入节点14处接收的RF信号将遇到关断的晶体管D51的高电阻。另外,第一晶体管T51将由分流偏置关断。因此,输入RF信号必须穿过无源反馈电路18。此外,在此状态中,第五晶体管D51将RF输入信号与第一晶体管T51隔离。
依据前文,可看出,实现了具有高步长增益的放大器系统,其在低增益状态中具有低电流消耗且在低增益状态中在高功率输入下具有低RF失真。

Claims (12)

1.一种放大器系统,其包括:
放大器,其具有输入及输出以及偏置电路;
无源反馈电路,其仅包括无源元件,将所述输出连接到所述输入;及
控制电路,其连接到所述偏置电路。
2.根据权利要求1所述的放大器系统,其中所述放大器具有连接于所述输入与所述输出之间的第一晶体管;且
其中所述偏置电路连接于所述输入与偏置节点之间;且
其中所述控制电路连接到所述偏置节点。
3.根据权利要求2所述的放大器系统,其中所述无源反馈电路包括串联连接于所述输入与所述输出之间的第一电阻器及第一电容器。
4.根据权利要求3所述的放大器系统,其中所述无源反馈电路进一步包括:
第二电阻器及第二电容器,其串联连接且与所述第一电阻器及所述第一电容器串联连接,其中所述第一电容器连接到所述输入且所述第一电阻器连接到所述第二电阻器,且其中所述第二电容器连接到所述输出;及
第三电阻器,其将所述第一电阻器与所述第二电阻器的接合点连接到接地。
5.根据权利要求2所述的放大器系统,其中所述偏置电路包括第二晶体管,所述第二晶体管具有连接到所述输入的第二端子、连接到所述偏置节点的第三端子及连接到接地的第一端子,其中所述第二端子控制所述第一与第三端子之间的电流流动。
6.根据权利要求5所述的放大器系统,其中所述第二晶体管为n-p-n双极型。
7.根据权利要求5所述的放大器系统,其中所述偏置电路进一步包括连接到集电极及参考电压的电阻器。
8.根据权利要求5所述的放大器系统,其中所述第三端子连接到所述第二端子。
9.根据权利要求5所述的放大器系统,其中所述偏置电路进一步包括:
第三晶体管,其具有第二端子、第三端子及第一端子;
其中所述第三晶体管的所述第二端子连接到所述第二晶体管的所述第三端子;所述第三晶体管的所述第一端子连接到所述第二晶体管的所述第二端子;且所述第三晶体管的所述第三端子连接到参考电压。
10.根据权利要求2所述的放大器系统,其中所述控制电路包括电阻器。
11.根据权利要求2所述的放大器系统,其中所述控制电路进一步包括:
第二晶体管,其具有第一端子、第二端子及第三端子,其中所述第一端子连接到所述偏置节点,所述第二端子连接到所述偏置节点,且所述第三端子连接到所述电阻器。
12.根据权利要求11所述的放大器系统,其中所述控制电路进一步包括:
第三晶体管,其具有第一端子、第二端子及第三端子,其中所述第三晶体管的所述第一端子连接到所述第二晶体管的所述第三端子及所述无源反馈电路,所述第三晶体管的所述第三端子连接到所述输入,且所述第三晶体管的所述第二端子连接到所述无源反馈电路。
CN201180004897.XA 2010-01-11 2011-01-03 具有步长增益的放大器电路 Expired - Fee Related CN102652393B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/685,635 2010-01-11
US12/685,635 US8115552B2 (en) 2010-01-11 2010-01-11 Amplifier circuit with step gain
PCT/US2011/020042 WO2011084924A1 (en) 2010-01-11 2011-01-03 An amplifier circuit with step gain

Publications (2)

Publication Number Publication Date
CN102652393A true CN102652393A (zh) 2012-08-29
CN102652393B CN102652393B (zh) 2016-09-21

Family

ID=44258094

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180004897.XA Expired - Fee Related CN102652393B (zh) 2010-01-11 2011-01-03 具有步长增益的放大器电路

Country Status (6)

Country Link
US (1) US8115552B2 (zh)
EP (1) EP2524425A4 (zh)
KR (1) KR101736227B1 (zh)
CN (1) CN102652393B (zh)
TW (1) TWI538388B (zh)
WO (1) WO2011084924A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106301375A (zh) * 2015-06-29 2017-01-04 硅谷实验室公司 获得高dc增益和宽输出电压范围的放大器拓扑结构

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10277173B1 (en) * 2017-11-17 2019-04-30 Qualcomm Incorporated Amplifier linearizer with wide bandwidth
CN108111131A (zh) * 2017-12-29 2018-06-01 广州慧智微电子有限公司 一种反馈电路及放大器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4458212A (en) * 1981-12-30 1984-07-03 Mostek Corporation Compensated amplifier having pole zero tracking
EP0734118A1 (en) * 1995-03-21 1996-09-25 Nokia Mobile Phones Ltd. Bias control circuit for an RF power amplifier
EP0785617A2 (en) * 1996-01-16 1997-07-23 Trw Inc. Low noise-low distortion HEMT low noise amplifier (LNA) with monolithic tunable HBT active feedback
US20020053947A1 (en) * 2000-11-08 2002-05-09 Macedo Jose A. Impedance matching low noise amplifier having a bypass switch
US20040227569A1 (en) * 2003-02-20 2004-11-18 Infineon Technologies Ag Amplifier circuit with passive gain step circuit
US20090295472A1 (en) * 2008-05-28 2009-12-03 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Switch-around low noise amplifier

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3533096A (en) * 1967-09-01 1970-10-06 Sanders Associates Inc Character display system
GB2002608B (en) * 1977-08-01 1982-03-24 Pioneer Electronic Corp Automatic gain control circuit
US5355096A (en) 1993-07-06 1994-10-11 Trw Inc. Compace HBT wide band microwave variable gain active feedback amplifier
US5661437A (en) * 1994-08-15 1997-08-26 Nippon Telegraph And Telephone Corporation Negative feedback variable gain amplifier circuit
JP4446511B2 (ja) * 1999-05-31 2010-04-07 三菱電機株式会社 電力増幅器用保護回路
US6522195B2 (en) * 2000-12-07 2003-02-18 Motorola, Inc. Low noise amplifier having bypass circuitry
US6724251B1 (en) * 2002-09-12 2004-04-20 National Semiconductor Corp. Apparatus and method for employing gain dependent biasing to reduce offset and noise in a current conveyor type amplifier
US20050024150A1 (en) * 2003-06-11 2005-02-03 Jeff Gordon Monolithic amplifier with high-value, monolithically formed passive feedback resistor
US6906595B2 (en) 2003-08-30 2005-06-14 Lsi Logic Corporation Variable gain current feedback amplifier
GB2428147A (en) * 2005-07-07 2007-01-17 Agilent Technologies Inc Variable gain feedback amplifier for optical receiver
US7332964B2 (en) * 2006-06-20 2008-02-19 Intel Corporation Gain-step transconductor
US7579909B2 (en) * 2007-07-12 2009-08-25 Infineon Technologies Ag Bypass circuit for radio-frequency amplifier stages

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4458212A (en) * 1981-12-30 1984-07-03 Mostek Corporation Compensated amplifier having pole zero tracking
EP0734118A1 (en) * 1995-03-21 1996-09-25 Nokia Mobile Phones Ltd. Bias control circuit for an RF power amplifier
EP0785617A2 (en) * 1996-01-16 1997-07-23 Trw Inc. Low noise-low distortion HEMT low noise amplifier (LNA) with monolithic tunable HBT active feedback
US20020053947A1 (en) * 2000-11-08 2002-05-09 Macedo Jose A. Impedance matching low noise amplifier having a bypass switch
US20040227569A1 (en) * 2003-02-20 2004-11-18 Infineon Technologies Ag Amplifier circuit with passive gain step circuit
US20090295472A1 (en) * 2008-05-28 2009-12-03 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Switch-around low noise amplifier

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
华成英等: "《模拟电子技术基础》", 31 May 2006 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106301375A (zh) * 2015-06-29 2017-01-04 硅谷实验室公司 获得高dc增益和宽输出电压范围的放大器拓扑结构

Also Published As

Publication number Publication date
TW201145807A (en) 2011-12-16
US8115552B2 (en) 2012-02-14
WO2011084924A1 (en) 2011-07-14
EP2524425A4 (en) 2014-01-01
KR20120116411A (ko) 2012-10-22
TWI538388B (zh) 2016-06-11
EP2524425A1 (en) 2012-11-21
KR101736227B1 (ko) 2017-05-16
CN102652393B (zh) 2016-09-21
US20110169573A1 (en) 2011-07-14

Similar Documents

Publication Publication Date Title
US7365604B2 (en) RF amplifier with a bias boosting scheme
US6778016B2 (en) Simple self-biased cascode amplifier circuit
US6608526B1 (en) CMOS assisted output stage
WO1998057430A2 (en) A gm-C CELL WITH TWO-STAGE COMMON MODE CONTROL AND CURRENT BOOST
US7852154B2 (en) High precision follower device with zero power, zero noise slew enhancement circuit
KR101732279B1 (ko) 저잡음 증폭기 모듈을 위한 시스템 및 방법
US3801923A (en) Transconductance reduction using multiple collector pnp transistors in an operational amplifier
GB2386776A (en) Optimising power consumption in amplifiers
US20030201832A1 (en) HBT linearizer and power booster
US7489202B1 (en) RF amplifier with stacked transistors, transmitting device, and method therefor
US6833760B1 (en) Low power differential amplifier powered by multiple unequal power supply voltages
CN102652393A (zh) 具有步长增益的放大器电路
US4460876A (en) Low consumption, wide-band linear amplifier operating in sliding class A
JP2008236515A (ja) 高周波増幅器
US7164317B1 (en) Apparatus and method for a low-voltage class AB amplifier with split cascode
WO2002017479A2 (en) Amplifier bias voltage generating circuit and method
JP2003046347A (ja) 高出力増幅器
US7170337B2 (en) Low voltage wide ratio current mirror
US6084477A (en) Class AB output stage for an audio power amplifier
CN217689889U (zh) 一种电压跟随器
US11437965B2 (en) Variable gain amplifier and wireless communication device
EP4231524A2 (en) Power amplifier using multi-path common-mode feedback loop
JP2006211550A (ja) 電流補償回路、増幅回路、通信装置
JP3902094B2 (ja) 増幅器
US6307437B1 (en) MOS load, pole compensation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160921

Termination date: 20190103

CF01 Termination of patent right due to non-payment of annual fee