CN102644094B - 一种熔盐电解制备Al-Mg-Tb三元合金的方法 - Google Patents

一种熔盐电解制备Al-Mg-Tb三元合金的方法 Download PDF

Info

Publication number
CN102644094B
CN102644094B CN201210122563.9A CN201210122563A CN102644094B CN 102644094 B CN102644094 B CN 102644094B CN 201210122563 A CN201210122563 A CN 201210122563A CN 102644094 B CN102644094 B CN 102644094B
Authority
CN
China
Prior art keywords
electrolysis
alloy
content
ternary alloy
fused salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210122563.9A
Other languages
English (en)
Other versions
CN102644094A (zh
Inventor
韩伟
张密林
姜涛
姜海玲
盛庆南
刘垚臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanhai Innovation And Development Base Of Sanya Harbin Engineering University
Original Assignee
哈尔滨工程大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工程大学 filed Critical 哈尔滨工程大学
Priority to CN201210122563.9A priority Critical patent/CN102644094B/zh
Publication of CN102644094A publication Critical patent/CN102644094A/zh
Application granted granted Critical
Publication of CN102644094B publication Critical patent/CN102644094B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提供的是一种熔盐电解制备Al-Mg-Tb三元合金的方法。向电解槽中加入经脱水干燥的AlF3、MgCl2、NaCl和KCl,使各成分的质量百分比分别为10-13%、5-7%、35-38%、46-48%,再按AlF3质量的5-10%加入氧化铽,控制温度在700-800℃,待电解槽中内物料熔融后,以惰性金属钼为阴极并置于电解槽低部,石墨为阳极,通入直流电电解,控制阴极电流密度在5.19-10.38A/cm2,阳极电流密度为0.64-1.27A/cm2,槽电压在4.4-5.8V,经过2-4小时的电解,在电解槽的阴极附近沉积出金属铝的含量为57.5-73.1%、金属镁的含量为4.9-19.9%、金属铽的含量为14.1-28.5%的Al-Mg-Tb三元合金。电流效率为45.1-71.2%。本发明采用氟氯化物作为电解体系,避免了采用单一熔盐体系电解的弊端,在较低的温度下,直接电解出成分均一的铝镁稀土合金。

Description

一种熔盐电解制备Al-Mg-Tb三元合金的方法
技术领域
本发明涉及的是一种铝镁稀土合金的生产方法,具体地说是一种通过直流电电解制备Al-Mg-Tb三元合金的方法。
背景技术
Al-Mg系合金具有良好的耐腐蚀性、导电性、导热性、抛光性、并能长时间保持光亮的表面,同时又具有较高的范性和比强度,焊接性能好等特点,而被广泛应用在航空、航天、石油、化工、电工、汽车和机械制造等行业中。目前Al-Mg系合金的生产基本上是用纯铝和纯镁按一定的比例在熔融状态下混合制得。该方法虽然简单,易操作,但成本较大。而且国内金属镁的制取几乎全用皮江法,国外大多是电解无水MgCl2,这些方法都会对环境造成极大污染。因此传统Al-Mg系合金的生产方法需要改进。
稀土在有色合金和功能材料中的应用,近年来发展很快。除了可以细化合金和进一步提高合金的一些物理性能外,由于稀土具有一些特殊的性能,将稀土添加到合金中,可以使得合金也具有一些特殊的性能。例如,金属铽是一种良好的磁光储存材料,具有较高的记录速度和存储能力,将金属铽添加到铝镁合金中,可以使铝镁合金具有存储和记忆能力。
目前,工业生产铝镁稀土合金的主要方法是混熔法。例如公开号为CN201010189600.9,名称为“铝镁铒合金铸锭及其制备方法”的专利文件中,公开了一种铝镁铒合金铸锭及其制备方法,它涉及一种合金及其制备方法如下:一、称取原料;二、制备铝合金熔液;三、将铝合金熔液依次经过30ppi和50ppi的陶瓷过滤片过滤后浇注至结晶器中铸造成铝镁铒合金铸锭。这种方法的优点是使用较为简便,所制备的合金含量稳定,是目前工业上最常见的制备铝镁及铝镁稀土合金的方法之一,但该方法易发生包晶反应,形成高熔点化合物,产生夹杂等缺点。
熔盐电解因具有操作简便、可连续作业等优点,被广泛的用来制备稀土及稀土合金。例如公开号为CN200410002122.0,名称为“熔盐电解法直接制备铝铈中间合金的方法”的专利文件中,公开了一种在氟化物体系中采用熔盐电解直接制备稀土合金铝液,在电解槽中温度控制在950℃左右,直接加入纯氧化铈稀土,通过熔盐电解进行化学反应,使铈在电解过程中直接溶入铝液,生产出含有10%以上的铈稀土合金。
发明内容
本发明的目的在于提供一种原料廉价易得、能在较低的温度下直接电解出成分均一的铝镁稀土合金的熔盐电解制备Al-Mg-Tb三元合金的方法。
本发明是采用以下方法来制备的:
向电解槽中加入经脱水干燥的AlF3、MgCl2、NaCl和KCl,使各成分的质量百分比分别为10-13%、5-7%、35-38%、46-48%,再按AlF3质量的5-10%加入氧化铽,控制温度在700-800℃,待电解槽中内物料熔融后,以惰性金属钼为阴极并置于电解槽低部,石墨为阳极,通入直流电电解,控制阴极电流密度在5.19-10.38A/cm2,阳极电流密度为0.64-1.27A/cm2,槽电压在4.4-5.8V,经过2-4小时的电解,在电解槽的阴极附近沉积出金属铝的含量为57.5-73.1%、金属镁的含量为4.9-19.9%、金属铽的含量为14.1-28.5%的Al-Mg-Tb三元合金。电流效率为45.1-71.2%。
所述NaCl和KCl分别在500℃、600℃干燥处理24小时。
本发明采用的是熔盐电解的方法,所用的原料全部为廉价易得的化合物,一步直接电解制备不同组成的Al-Mg-Tb三元合金,并且本发明与其他熔盐电解的方法也有所不同,通常熔盐电解制备合金采用的是氯化物或氟化物-氧化物两种熔盐体系,但本发明采用的是氟氯化物作为电解体系,避免了采用单一熔盐体系电解的弊端,在较低的温度下,直接电解出成分均一的铝镁稀土合金。
本发明的主要特点体现在:本发明提供的制备Al-Mg-Tb三元合金的方法不同于传统的生产方法,不需要不同的金属单质之间进行混熔,而是全部采用金属化合物为原料,在远低于金属铽熔点(1356℃)和氧化铽熔点(2337℃)的温度下,也低于氟化物体系电解温度950℃,直接一步电解出不同组成的Al-Mg-Tb三元合金。并且在此温度下如果采用AlCl3为原料进行电解会造成不必要挥发浪费(AlCl3熔点为190℃),因此本发明采用AlF3为原料,因为在此温度范围,AlF3是微溶于熔盐中(AlF3的熔点为1040℃),大部分AlF3是以固态的形式存在于熔盐中,随着电解的不断进行,微溶于熔盐中的Al3+不断的被消耗,原有的溶解平衡被打破,使得AlF3继续溶解,确保了电解的正常进行。
附图说明
附图1是实施例1制备的Al-Mg-Tb三元合金的XRD图谱,从图中可以看出,Mg是以Al3Mg2金属间化合物的形式存在于合金相中,Tb是以Al3Tb金属间化合物的形式存在于合金相中。
具体实施方式
下面举例对本发明做更详细地描述:
实施例1:以惰性金属钼为阴极并置于电解槽低部,石墨为阳极,在刚玉坩锅中加入经干燥脱水的AlF3、MgCl2、NaCl、KCl各成分的质量百分比分别为11%、6%、36%、47%,再按AlF3质量的5%加入氧化铽,控制电解温度700℃,阴极电流密度为5.19A/cm2,阳极电流密度为0.64A/cm2,槽电压4.4-4.9V,经过3个小时的电解,在阴极附近沉积出Al-Mg-Tb三元合金,合金中Al、Mg和Tb的含量分别为73.1%、10%和16.9%,电流效率为54.1%。
实施例2:以惰性金属钼为阴极并置于电解槽低部,石墨为阳极,在刚玉坩锅中加入经干燥脱水的AlF3、MgCl2、NaCl、KCl各成分的质量百分比分别为11%、6%、36%、47%,再按AlF3质量的5%加入氧化铽,控制电解温度800℃,阴极电流密度为5.19A/cm2,阳极电流密度为0.64A/cm2,槽电压4.5-4.9V,经过3个小时的电解,在阴极附近沉积出Al-Mg-Tb三元合金,合金中Al、Mg和Tb的含量分别为60.4%、11.1%和28.5%,电流效率为55.9%。
实施例3:以惰性金属钼为阴极并置于电解槽低部,石墨为阳极,在刚玉坩锅中加入经干燥脱水的AlF3、MgCl2、NaCl、KCl各成分的质量百分比分别为11%、6%、36%、47%,再按AlF3质量的5%加入氧化铽,控制电解温度800℃,阴极电流密度为6.92A/cm2,阳极电流密度为0.85A/cm2,槽电压5.1-5.4V,经过4个小时的电解,在阴极附近沉积出Al-Mg-Tb三元合金,合金中Al、Mg和Tb的含量分别为64.9%、14.5%和20.6%,电流效率为52.6%。
实施例4:以惰性金属钼为阴极并置于电解槽低部,石墨为阳极,在刚玉坩锅中加入经干燥脱水的AlF3、MgCl2、NaCl、KCl各成分的质量百分比分别为11%、6%、36%、47%,再按AlF3质量的6%加入氧化铽,控制电解温度750℃,阴极电流密度为6.92A/cm2,阳极电流密度为0.85A/cm2,槽电压5.1-5.5V,经过3个小时的电解,在阴极附近沉积出Al-Mg-Tb三元合金,合金中Al、Mg和Tb的含量分别为67.7%、4.9%和27.4%,电流效率为57.4%。
实施例5:以惰性金属钼为阴极并置于电解槽低部,石墨为阳极,在刚玉坩锅中加入经干燥脱水的AlF3、MgCl2、NaCl、KCl各成分的质量百分比分别为12%、6%、36%、47%,再按AlF3质量的7%加入氧化铽,控制电解温度800℃,阴极电流密度为6.92A/cm2,阳极电流密度为0.85A/cm2,槽电压5.0-5.1V,经过2个小时的电解,在阴极附近沉积出Al-Mg-Tb三元合金,合金中Al、Mg和Tb的含量分别为70.8%、7.4%和21.8%,电流效率为54.8%。
实施例6:以惰性金属钼为阴极并置于电解槽低部,石墨为阳极,在刚玉坩锅中加入经干燥脱水的AlF3、MgCl2、NaCl、KCl各成分的质量百分比分别为11%、6%、36%、47%,再按AlF3质量的6%加入氧化铽,控制电解温度800℃,阴极电流密度为6.92A/cm2,阳极电流密度为0.85A/cm2,槽电压5.4-5.6V,经过3个小时的电解,在阴极附近沉积出Al-Mg-Tb三元合金,合金中Al、Mg和Tb的含量分别为63.3%、15.2%和21.5%,电流效率为53.6%。
实施例7:以惰性金属钼为阴极并置于电解槽低部,石墨为阳极,在刚玉坩锅中加入经干燥脱水的AlF3、MgCl2、NaCl、KCl各成分的质量百分比分别为11%、6%、36%、47%,再按AlF3质量的5%加入氧化铽,控制电解温度800℃,阴极电流密度为8.65A/cm2,阳极电流密度为1.06A/cm2,槽电压5.5-5.8V,经过3个小时的电解,在阴极附近沉积出Al-Mg-Tb三元合金,合金中Al、Mg和Tb的含量分别为57.5%、19.9%和22.6%,电流效率为47.5%。
实施例8:以惰性金属钼为阴极并置于电解槽低部,石墨为阳极,在刚玉坩锅中加入经干燥脱水的AlF3、MgCl2、NaCl、KCl各成分的质量百分比分别为13%、7%、36%、48%,再按AlF3质量的8%加入氧化铽,控制电解温度800℃,阴极电流密度为10.38A/cm2,阳极电流密度为1.27A/cm2,槽电压5.3-5.8V,经过4个小时的电解,在阴极附近沉积出Al-Mg-Tb三元合金,合金中Al、Mg和Tb的含量分别为61.6%、11.6%和26.8%,电流效率为45.1%。
实施例9:以惰性金属钼为阴极并置于电解槽低部,石墨为阳极,在刚玉坩锅中加入经干燥脱水的AlF3、MgCl2、NaCl、KCl各成分的质量百分比分别为13%、7%、37%、48%,再按AlF3质量的5%加入氧化铽,控制电解温度800℃,阴极电流密度为6.92A/cm2,阳极电流密度为0.85A/cm2,槽电压5.3-5.6V,经过3个小时的电解,在阴极附近沉积出Al-Mg-Tb三元合金,合金中Al、Mg和Tb的含量分别为72.5%、13.4%和14.1%,电流效率为71.2%。

Claims (2)

1.一种熔盐电解制备Al-Mg-Tb三元合金的方法,其特征是:向电解槽中加入经脱水干燥的AlF3、MgCl2、NaCl和KCl,使各成分的质量百分比分别为10-13%、5-7%、35-38%、46-48%,再按AlF3质量的5-10%加入氧化铽,控制温度在700-800℃,待电解槽中内物料熔融后,以惰性金属钼为阴极并置于电解槽低部,石墨为阳极,通入直流电电解,控制阴极电流密度在5.19-10.38A/cm2,阳极电流密度为0.64-1.27A/cm2,槽电压在4.4-5.8V,经过2-4小时的电解,在电解槽的阴极附近沉积出金属铝的含量为57.5-73.1%、金属镁的含量为4.9-19.9%、金属铽的含量为14.1-28.5%的Al-Mg-Tb三元合金。
2.根据权利要求1所述的熔盐电解制备Al-Mg-Tb三元合金的方法,其特征是所述NaCl和KCl分别在500℃、600℃干燥处理24小时。
CN201210122563.9A 2012-04-24 2012-04-24 一种熔盐电解制备Al-Mg-Tb三元合金的方法 Expired - Fee Related CN102644094B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210122563.9A CN102644094B (zh) 2012-04-24 2012-04-24 一种熔盐电解制备Al-Mg-Tb三元合金的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210122563.9A CN102644094B (zh) 2012-04-24 2012-04-24 一种熔盐电解制备Al-Mg-Tb三元合金的方法

Publications (2)

Publication Number Publication Date
CN102644094A CN102644094A (zh) 2012-08-22
CN102644094B true CN102644094B (zh) 2014-08-06

Family

ID=46657166

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210122563.9A Expired - Fee Related CN102644094B (zh) 2012-04-24 2012-04-24 一种熔盐电解制备Al-Mg-Tb三元合金的方法

Country Status (1)

Country Link
CN (1) CN102644094B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102912382B (zh) * 2012-10-26 2015-09-30 哈尔滨工程大学 一种在氟氯化物熔盐体系中电解制备铝-镁合金的方法
CN102995067B (zh) * 2012-10-30 2015-09-30 哈尔滨工程大学 一种熔盐电解制备铝镁钕合金的方法
CN103060852B (zh) * 2013-01-18 2015-02-25 哈尔滨工程大学 一种熔盐电解制备Mg-Mn-La三元合金的方法
CN103132108B (zh) * 2013-03-14 2015-05-27 哈尔滨工程大学 熔盐体系中电解制备耐热镁铝钕合金的方法
CN109440150B (zh) * 2018-12-10 2021-01-29 沈阳大学 一种室温电沉积制备铝镁镧合金膜的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101285143A (zh) * 2008-05-30 2008-10-15 哈尔滨工程大学 一种熔盐电解制备镁锂镝合金的方法
CN101302593A (zh) * 2008-06-04 2008-11-12 哈尔滨工程大学 镁锂钬合金、镁锂钬合金的熔盐电解制备方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101285143A (zh) * 2008-05-30 2008-10-15 哈尔滨工程大学 一种熔盐电解制备镁锂镝合金的方法
CN101302593A (zh) * 2008-06-04 2008-11-12 哈尔滨工程大学 镁锂钬合金、镁锂钬合金的熔盐电解制备方法及装置

Also Published As

Publication number Publication date
CN102644094A (zh) 2012-08-22

Similar Documents

Publication Publication Date Title
De Yan et al. Extraction of europium and electrodeposition of Al–Li–Eu alloy from Eu2O3 assisted by AlCl3 in LiCl–KCl melt
CN102644094B (zh) 一种熔盐电解制备Al-Mg-Tb三元合金的方法
Suzdaltsev et al. Synthesis of aluminum master alloys in oxide-fluoride melts: A review
Pradhan et al. The effect of electrode surface modification and cathode overpotential on deposit characteristics in aluminum electrorefining using EMIC–AlCl3 ionic liquid electrolyte
Oishi et al. Process for solar grade silicon production by molten salt electrolysis using aluminum-silicon liquid alloy
Tang et al. Fabrication of Mg–Pr and Mg–Li–Pr alloys by electrochemical co-reduction from their molten chlorides
Suzdaltsev et al. Extraction of scandium and zirconium from their oxides during the electrolysis of oxide–fluoride melts
CN107190283A (zh) 一种近室温共沉积镁钕母合金的方法
ZHANG et al. Preparation of Mg–Li—La alloys by electrolysis in molten salt
Nohira et al. Electrochemical Formation of Nd-Ni Alloys in Molten LiF-CaF2-NdF3
CN102108529B (zh) 一种熔盐电解制备铝钆钐合金的方法
Liu et al. Processing Al-Sc alloys at liquid aluminum cathode in KF-AlF3 molten salt
Wei et al. Preparing different phases of Mg-Li-Sm alloys by molten salt electrolysis in LiCl-KCl-MgCl2-SmCl3 melts
CN104213154B (zh) 利用氧化镁为原料电解制备镁合金的方法
Li et al. The Electrochemical Co-reduction of Mg-Al-Y Alloys in the LiCl-NaCl-MgCl 2-AlF 3-YCl 3 Melts
CN101298684A (zh) 一步电解法生产铝-Me中间合金的方法
CN102995067B (zh) 一种熔盐电解制备铝镁钕合金的方法
Ye et al. Preparation of Mg-Yb alloy film by electrolysis in the molten LiCl-KCl-YbCl3 system at low temperature
Wang et al. Electrochemical separation of Fe (III) impurity from molten MgCl2-NaCl-KCl for magnesium electrolytic production
Wei et al. Preparation of Mg-Li-Sm alloys by electrocodeposition in molten salt
Tao et al. Cathodic electrochemical behavior in Na 3 AlF 6-Al 2 O 3-LiF-based melts at tungsten electrode with various cryolite ratios
CN103834970A (zh) 熔盐电解法制备镁-锌中间合金的方法
CN112921361B (zh) 一种钇铝中间合金及其制备方法
Han et al. Electrochemical codeposition of quaternary Mg-Li-Ce-La alloys from molten salt
CA3043850C (en) Method of aluminium alloys production

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201202

Address after: Area A129, 4th floor, building 4, Baitai Industrial Park, Yazhou Bay science and Technology City, Yazhou District, Sanya City, Hainan Province, 572024

Patentee after: Nanhai innovation and development base of Sanya Harbin Engineering University

Address before: 150001 Heilongjiang, Nangang District, Nantong street,, Harbin Engineering University, Department of Intellectual Property Office

Patentee before: HARBIN ENGINEERING University

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140806

Termination date: 20210424

CF01 Termination of patent right due to non-payment of annual fee