CN102616033A - 一种快速制备高透光性导电图案的方法 - Google Patents

一种快速制备高透光性导电图案的方法 Download PDF

Info

Publication number
CN102616033A
CN102616033A CN2012101087215A CN201210108721A CN102616033A CN 102616033 A CN102616033 A CN 102616033A CN 2012101087215 A CN2012101087215 A CN 2012101087215A CN 201210108721 A CN201210108721 A CN 201210108721A CN 102616033 A CN102616033 A CN 102616033A
Authority
CN
China
Prior art keywords
light transmittance
high light
suspension
preparing
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101087215A
Other languages
English (en)
Inventor
林剑
崔铮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Original Assignee
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Institute of Nano Tech and Nano Bionics of CAS filed Critical Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority to CN2012101087215A priority Critical patent/CN102616033A/zh
Publication of CN102616033A publication Critical patent/CN102616033A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

本发明公开了一种直接印刷含有线形纳米材料的悬浊液形成高透光性导电网络图案的方法。利用凹版印刷工艺将含有线形纳米材料的低粘度悬浊液印刷到柔性衬底上,可以直接形成具有精确图案的高透光性导电网络。凹版印刷工艺不仅可以将含有线形纳米材料的悬浊液直接实现精确图案化,工艺本身还具有高速度、高质量、厚度可控的特点,因此实施本发明可以改变目前这类高透光性网络状导电薄膜的生产不能直接形成图案的现状,避免了额外的后期图案化蚀刻工序,有利于简化电子产品的生产工艺,降低成本。

Description

一种快速制备高透光性导电图案的方法
技术领域
本发明涉及一种印刷成膜工艺,尤其涉及一种将线形纳米导电材料的悬浊液直接印刷成图案,形成高透光性导电网络的工艺。
背景技术
随着电子产品应用范围的不断扩展,高透光性导电材料的需求也逐渐增加,在发光、显示、触摸屏、隐形天线领域均有重要的应用。传统的高透光性导电材料主要是金属氧化物类的导电材料如氧化铟锡(ITO),但这类材料存在着加工处理温度高、不容易实现柔性化等不足,阻碍了电子产业的进一步发展。学术界与产业界都对研究开发新型高透光性导电材料投入了较大的人力和财力,其中利用线形纳米导电材料如纳米银线、碳纳米管等材料构成高透光性导电网络吸引了广泛的关注。这类导电网络具有透光性好、电导率高、柔性效果好的优点,已经有不少相关的研究报道,该领域的很多技术也已经申请专利。
然而,目前这类高透光性导电网络的加工主要采用整体成膜的方法,而不能直接形成图案。在电子行业的应用中,高透光性的导电材料通常需要制成电极等特定的图案,因此需要额外的图案化工艺如蚀刻操作来获得理想的导电材料图案,生产成本也相应提高。
这类含有线形纳米导电材料的悬浊液实现直接印刷的难点主要集中在粘度低和固体颗粒大两个方面。一方面,这类悬浊液为了获得理想的网络状成膜效果,浓度通常较低而且不会添加树脂等填充成分,因此很多悬浊液的粘度在20cP以下,不适合丝网印刷等传统印刷工艺。另一方面,为获得理想的高透光性导电效果,悬浊液中线状材料的长度通常较大,喷墨打印该类材料很容易造成喷嘴堵塞。虽然也有利用聚二甲基硅氧烷(PDMS)转印的方法实现线状材料图案化的报道,但生产效率依然低下,仅适合在实验室中进行个别样品的制备。
其次,作为经典的印刷工艺,凹版印刷具有速度快、粘度要求低、印刷质量好的特点,在印刷法生产电子产品的研究中得到了重视。但目前凹版印刷所印刷的图案都是实心图案,印刷形成空心网络在技术上仍然有很多挑战,包括油墨中添加材料的限制、线形纳米导电材料的分布控制,以及溶剂的挥发度等,另外,目前凹版印刷主要用于印刷100cP以上粘度的各种油墨。
发明内容
本发明针对上述制备导电图案方法上的不足,提出了一种新的快速制备高透光性导电图案的方法,采用包含线形纳米材料的悬浊液作为印刷材料,通过若干次的凹版印刷技术将包含所述线形纳米材料的悬浊液凹版印刷至衬底表面,形成导电网络,其中,线形纳米材料包括线形纳米导电材料,所述线形纳米导电材料的分散浓度为0.1-10毫克/毫升。
其中,所述线形纳米导电材料的截面直径或者对角线小于1微米,长度大于或等于其截面直径或者对角线长度的5倍。
其中,所述线形纳米导电材料包括金属纳米线或者碳纳米管。
其中,添加辅助导电材料于所述包含线形纳米导电材料的悬浊液中,其中,悬浊液的粘度小于100cP。
其中,所述悬浊液的溶剂包括水、醇类、酯类中的至少一种。
其中,所述衬底为柔性衬底材料。
其中,所述柔性衬底材料包括聚合物、纸、柔性玻璃及柔性金属箔片中的至少一种。
其中,所述凹版印刷技术中采用的印版类型包括平面状或者辊状。
本发明公开的直接印刷含有线形纳米材料的悬浊液形成高透光性导电网络图案的方法。利用凹版印刷工艺将含有线形纳米导电材料的低粘度悬浊液印刷到柔性衬底上,可以直接形成具有精确图案的高透光性导电网络。凹版印刷工艺不仅可以将含有线形纳米材料的悬浊液直接实现精确图案化,工艺本身还具有高速度、高质量、厚度可控的特点,因此实施本发明可以改变目前这类高透光性网络状导电薄膜的生产不能直接形成图案的现状,避免了额外的后期图案化蚀刻工序,有利于简化电子产品的生产工艺,降低成本。
附图说明
图1为本发明实施例1的银纳米线所组成的网络状高透光性导电薄膜的微观结构照片。
图2为本发明实施例2的凹版印刷的矩形图案的示意图。
图3为本发明实施例5中碳纳米管所组成的网络状高透光性导电薄膜的微观结构照片。
具体实施方式
下面参照附图,结合具体实施例,对本发明进一步详细说明。
实施例1
本实施例提供的快速制备高透光性导电图案的方法为将长度为20-80微米、直径为50-120纳米的银纳米线分散到醇类溶剂中,本实施例的醇类溶剂为乙醇溶剂,配制成含有银纳米线的乙醇悬浊液,分散浓度为0.1毫克/毫升。将悬浊液超声分散2分钟以辅助银纳米线分散,分散均匀后的悬浊液粘度约为2cP。
选取500毫米宽、125微米厚度的聚对苯二甲酸乙二酯(PET)透明薄膜,揭去薄膜上层的保护膜,利用凹版印刷设备在PET表面印刷银纳米线的乙醇悬浊液。其中凹版印辊为铜铬结构,印辊上的图案部分为2×3厘米的矩形阵列,图案间的间隔为2厘米。图案由电子雕刻机加工的菱形网穴组成,分辨率为80-160线/厘米。凹版印刷的速度为25-80米/分钟,高透光性导电图案视情况印刷10-20层。
参见图1,为银纳米线所组成的网络状高透光性导电薄膜的照片图。
由于悬浊液中未添加聚合物类填充材料,凹版印刷获得的图案在乙醇溶剂挥发后只剩下由银纳米线组成的高透光性导电网络状薄膜。在扣除PET衬底的透光性损失后,银纳米线组成的导电网络状薄膜在380-800纳米波长范围内的透光性测量结果为92%-96%,四点法测量换算的方块电阻值在50-400Ω/□。
实施例2
本实施例提供的快速制备高透光性导电图案的方法为将长度为5-20微米的银纳米线分散到水乙醇混合溶剂中,配制成含有银纳米线的悬浊液。其中银纳米线的截面为不规则多边形,截面的对角线范围在40-80纳米,银纳米线的分散浓度在10毫克/毫升范围内。将悬浊液超声分散30分钟以辅助银纳米线分散,分散均匀后的悬浊液粘度约为5cP。
选取150毫米宽、150微米厚度的聚对苯二甲酸乙二酯(PET)高透光性薄膜,揭去薄膜上层的保护膜,然后利用凹版印刷设备在PC薄膜表面印刷配制好的悬浊液。参见图2,凹印版为平面结构,其中,21为图案中较厚的部分,22部分为图案中较薄的部分,版上的图案部分为单个10×16厘米的矩形。凹印图案由激光雕刻机加工的圆形网穴组成,分辨率为160-300线/厘米。为了在矩形图案中获得两种不同的银纳米线薄膜厚度,网穴分为两部分,一部分的网穴深度4-8微米,另一部分网穴的深度为12-20微米。凹版印刷的速度为25-40米/分钟,高透光性导电图案视情况印刷1-10层。
凹版印刷获得的图案化高透光性导电网络状薄膜,其中银纳米线网络是导电的主体,分为厚、薄两部分。在扣除PET衬底的透光性损失后,银纳米线组成的导电网络状薄膜比较厚的部分在380-800纳米波长范围内的透光性测量结果为88%-94%,四点法测量换算的方块电阻值在10-100Ω/□范围内;而比较薄的部分在380-800纳米波长范围内的透光性则为91%-96%,方块电阻值在200-500Ω/□范围内。
实施例3
本实施例提供的快速制备高透光性导电图案的方法为将长度为10-60微米、直径为40-90纳米的银纳米线分散到水中,并加入商品化的聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(Pedot:Pss)水溶液,配制成含有银纳米线以及Pedot:Pss聚合物成分的水基悬浊液。其中银纳米线的分散浓度为5毫克/毫升,Pedot:Pss成分的浓度为2-5毫克/毫升。将悬浊液超声分散5分钟以辅助银纳米线分散,分散均匀后的悬浊液粘度在约5cP。
选取145毫米宽、100微米厚度的柔性玻璃,并对待印的玻璃表面作大气等离子处理使其更加亲水化,然后利用凹版印刷设备在柔性玻璃表面印刷配制好的悬浊液。其中凹印版为平面结构,版上的图案部分为1×2厘米的矩形阵列,图案间的间隔为1厘米。凹印图案由激光雕刻机加工的圆形网穴组成,分辨率为120-300线/厘米,网穴深度4-10微米。凹版印刷的速度为25-40米/分钟,高透光性导电图案视情况印刷1-10层。每次凹版印刷后的图案在100℃的环境下烘烤2-5分钟。
凹版印刷获得的图案在水挥发后剩下由银纳米线和Pedot:Pss成分组成的高透光性导电网络状薄膜,其中银纳米线网络是导电的主体。在扣除柔性玻璃衬底的透光性损失后,银纳米线和和Pedot:Pss组成的导电网络状薄膜在380-800纳米波长范围内的透光性测量结果为85%-92%,四点法测量换算的方块电阻值在20-100Ω/□范围内。
实施例4
本实施例提供的快速制备高透光性导电图案的方法为将长度为0.2-8微米、直径为20-60纳米的金纳米线分散到乙酸乙酯-乙醇混合溶剂中,配制成含有金纳米线的悬浊液,其中金纳米线的分散浓度在3毫克/毫升范围内。将悬浊液超声分散5-30分钟以辅助金纳米线分散,分散均匀后的悬浊液粘度在3cP之间。
选取150毫米宽、150微米厚度的聚碳酸酯(PC)高透光性薄膜,揭去薄膜上层的保护膜,然后利用凹版印刷设备在PC薄膜表面印刷配制好的悬浊液。其中凹印版为平面结构,版上的图案部分为单个8×12厘米的矩形。凹印图案由电子雕刻机加工的菱形网穴组成,分辨率为80-210线/厘米。凹版印刷的速度为32-60米/分钟,高透光性导电图案视情况印刷1-20层。
凹版印刷获得的图案化高透光性导电网络状薄膜,其中金纳米线所构成的网络是导电的主体。在扣除PC衬底的透光性损失后,金纳米线组成的导电网络状薄膜在380-800纳米波长范围内的透光性测量结果为83%-92%,四点法测量换算的方块电阻值在500-4000Ω/□范围内。
实施例5
本实施例提供的快速制备高透光性导电图案的方法为将长度为0.5-15微米、直径为80-200纳米的金属性碳纳米管分散到水乙醇混合溶剂中,配制成含有碳纳米管的悬浊液,分散浓度为2毫克/毫升,并加入约2-6毫克/毫升的十二烷基硫酸钠作为稳定剂。将悬浊液超声分散20分钟以辅助碳纳米管分散,分散均匀后的悬浊液粘度约为3cP。
选取500毫米宽、150微米厚度的聚碳酸酯(PC)高透光性薄膜,揭去薄膜上层的保护膜,利用凹版印刷设备在PC表面印刷含有碳纳米管的悬浊液。其中凹版印辊为铜铬结构,印辊上的图案部分为2×3厘米的矩形阵列,图案间的间隔为2厘米。图案由电子雕刻机加工的菱形网穴组成,分辨率为80-160线/厘米。凹版印刷的速度为25-60米/分钟,高透光性导电图案视情况印刷1-20层。
参见图3,碳纳米管所组成的网络状高透光性导电薄膜的微观结构照片。
凹版印刷获得的图案在溶剂干燥后用去离子水清洗,去除大部分SDS后获得由碳纳米管组成的高透光性导电网络状薄膜。在扣除PC衬底的透光性损失后,碳纳米管组成的导电网络状薄膜在380-800纳米波长范围内的透光性测量结果为89%-95%,四点法测量换算的方块电阻值在50-1000Ω/□范围内。
实施例6
本实施例提供的快速制备高透光性导电图案的方法为将金属性碳纳米管和银纳米线分散到水乙醇混合溶剂中,其中,金属性碳纳米管的长度为0.5-10微米、直径为80-160纳米、浓度2毫克/毫升,银纳米线的长度为2-30微米、不规则多边形截面的对角线范围在120-200纳米、浓度1毫克/毫升,配制成含有碳纳米管和银纳米线的悬浊液,并加入约4-6毫克/毫升的十二烷基硫酸钠(SDS)作为稳定剂。将悬浊液超声分散30分钟以辅助其中的导电材料分散,分散均匀后的悬浊液粘度约为5cP。
选取500毫米宽、150微米厚度的聚碳酸酯(PC)高透光性薄膜,先在薄膜上均匀涂覆200纳米厚的聚甲基苯甲酸甲酯(PMMA),并进行大气等离子处理3-5分钟使其亲水化。然后利用凹版印刷设备在该双层衬底的表面上印刷含有碳纳米管的悬浊液。其中凹版印辊为铜铬结构,印辊上的图案部分为15×30毫米的矩形阵列,图案间的间隔为15毫米。图案由电子雕刻机加工的菱形网穴组成,分辨率为80-140线/厘米。凹版印刷的速度为40-60米/分钟,高透光性导电图案视情况印刷1-20层。
凹版印刷获得的图案在溶剂干燥后用去离子水浸泡0.5-3分钟后取出,去除大部分SDS后获得由碳纳米管和银纳米线联合组成的高透光性导电网络状薄膜。在扣除双层衬底的透光性损失后,碳纳米管组成的导电网络状薄膜在380-800纳米波长范围内的透光性测量结果为89%-93%,四点法测量换算的方块电阻值在50-200Ω/□范围内。
实施例7
本实施例提供的快速制备高透光性导电图案的方法为将长度为20-80微米、直径为50-120纳米的银纳米线分散到乙醇溶剂中,配制成含有银纳米线的乙醇悬浊液,分散浓度为1毫克/毫升。将悬浊液超声分散2分钟以辅助银纳米线分散,分散均匀后的悬浊液粘度约为1cP。
取210毫米长、120毫米宽、100微米厚度的聚酰亚胺(PI)高耐热薄膜,预先在薄膜上沉积银电极、聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(Pedot:Pss)、以及聚三己烷基噻吩-(6,6)-苯基-C61丁酸甲酯(P3HT:PCBM)杂化材料层,然后利用凹版印刷设备在PET表面印刷配制好的悬浊液。其中凹印版为平面结构,版上的图案部分为40×110毫米的矩形阵列,图案间的间隔为10毫米。凹印图案由电子雕刻机加工的菱形网穴组成,分辨率为80-160线/厘米。凹版印刷的速度为32-60米/分钟,高透光性导电图案视情况印刷5-20层。
所得器件可作为聚合物太阳能电池,凹版印刷获得的图案在其中承担阴极(低功函数电极)的作用。实验获得的太阳能电池转换效率在1.0%-1.5%之间。
综上所述,制备高透光性导电图案的方法中,所述衬底的材料不仅可为聚对苯二甲酸乙二酯(PET)透明薄膜、柔性玻璃、聚碳酸酯(PC)高透光性薄膜、聚酰亚胺(PI)高耐热薄膜,还可为纸、柔性金属箔片,也可为聚合物、纸、柔性玻璃及柔性金属箔片中的至少两种材料的混合物,但方法步骤类似,实施的技术效果基本相同,在此不再赘述。
本发明公开的直接印刷含有线形纳米材料的悬浊液形成高透光性导电网络图案的方法。利用凹版印刷工艺将含有线形纳米导电材料的低粘度悬浊液印刷到柔性衬底上,可以直接形成具有精确图案的高透光性导电网络。凹版印刷工艺不仅可以将含有线形纳米材料的悬浊液直接实现精确图案化,工艺本身还具有高速度、高质量、厚度可控的特点,因此实施本发明可以改变目前这类高透光性网络状导电薄膜的生产不能直接形成图案的现状,避免了额外的后期图案化蚀刻工序,有利于简化电子产品的生产工艺,降低成本。
上述实施例仅为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (8)

1.一种快速制备高透光性导电图案的方法,其特征在于,采用包含线形纳米材料的悬浊液作为印刷材料,通过若干次的凹版印刷技术将包含所述线形纳米材料的悬浊液凹版印刷至衬底表面,形成导电网络,其中,线形纳米材料包括线形纳米导电材料,所述线形纳米导电材料的分散浓度为0.1-10毫克/毫升。
2.如权利要求1所述的快速制备高透光性导电图案的方法,其特征在于,所述线形纳米导电材料的截面直径或者对角线小于1微米,长度大于或等于其截面直径或者对角线长度的5倍。
3.如权利要求2所述的快速制备高透光性导电图案的方法,其特征在于,所述线形纳米导电材料包括金属纳米线或者碳纳米管。
4.如权利要求3所述的快速制备高透光性导电图案的方法,其特征在于,添加辅助导电材料于所述包含线形纳米导电材料的悬浊液中,其中,悬浊液的粘度小于100cP。
5.如权利要求4所述的快速制备高透光性导电图案的方法,其特征在于,所述悬浊液的溶剂包括水、醇类、酯类中的至少一种。
6.如权利要求4所述的快速制备高透光性导电图案的方法,其特征在于,所述衬底为柔性衬底材料。
7.如权利要求5所述的快速制备高透光性导电图案的方法,其特征在于,所述柔性衬底材料包括聚合物、纸、柔性玻璃及柔性金属箔片中的至少一种。
8.如权利要求1至6其中任一所述的快速制备高透光性导电图案的方法,其特征在于,所述凹版印刷技术中采用的印版类型包括平面状或者辊状。
CN2012101087215A 2012-04-13 2012-04-13 一种快速制备高透光性导电图案的方法 Pending CN102616033A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101087215A CN102616033A (zh) 2012-04-13 2012-04-13 一种快速制备高透光性导电图案的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101087215A CN102616033A (zh) 2012-04-13 2012-04-13 一种快速制备高透光性导电图案的方法

Publications (1)

Publication Number Publication Date
CN102616033A true CN102616033A (zh) 2012-08-01

Family

ID=46556384

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101087215A Pending CN102616033A (zh) 2012-04-13 2012-04-13 一种快速制备高透光性导电图案的方法

Country Status (1)

Country Link
CN (1) CN102616033A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236295A (zh) * 2013-04-23 2013-08-07 上海师范大学 一种图案化石墨烯导电薄膜的制备方法
CN103972397A (zh) * 2013-02-01 2014-08-06 中国科学院苏州纳米技术与纳米仿生研究所 复合电极及其制作方法、太阳能电池及其制作方法
CN104240798A (zh) * 2014-09-25 2014-12-24 上海交通大学 一种透明导电薄膜及其制备方法
CN104708930A (zh) * 2013-12-12 2015-06-17 中国科学院苏州纳米技术与纳米仿生研究所 含有纳米金属颗粒的导电墨水的打印方法
CN108333227A (zh) * 2018-01-12 2018-07-27 五邑大学 一种柔性气体传感器及其制备方法
CN109080281A (zh) * 2018-08-10 2018-12-25 齐鲁工业大学 基于浸润性基底精细喷墨打印制备柔性透明导电膜的方法
CN110142962A (zh) * 2019-05-27 2019-08-20 西安电子科技大学 一种毛细力驱动的纸基纳米材料的印刷装置及印刷方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1822904A (zh) * 2003-07-18 2006-08-23 伊斯曼柯达公司 图案涂布方法
CN101292362A (zh) * 2005-08-12 2008-10-22 凯博瑞奥斯技术公司 基于纳米线的透明导体
DE102008001578A1 (de) * 2008-05-06 2009-11-12 Evonik Degussa Gmbh Transparente leitfähige Schichten durch Laserbestrahlung
CN101689568A (zh) * 2007-04-20 2010-03-31 凯博瑞奥斯技术公司 复合透明导体及其形成方法
CN102197492A (zh) * 2008-08-27 2011-09-21 三菱综合材料株式会社 太阳能电池用透明导电膜及其透明导电膜用组合物、多接合型太阳能电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1822904A (zh) * 2003-07-18 2006-08-23 伊斯曼柯达公司 图案涂布方法
CN101292362A (zh) * 2005-08-12 2008-10-22 凯博瑞奥斯技术公司 基于纳米线的透明导体
CN101689568A (zh) * 2007-04-20 2010-03-31 凯博瑞奥斯技术公司 复合透明导体及其形成方法
DE102008001578A1 (de) * 2008-05-06 2009-11-12 Evonik Degussa Gmbh Transparente leitfähige Schichten durch Laserbestrahlung
CN102197492A (zh) * 2008-08-27 2011-09-21 三菱综合材料株式会社 太阳能电池用透明导电膜及其透明导电膜用组合物、多接合型太阳能电池

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103972397A (zh) * 2013-02-01 2014-08-06 中国科学院苏州纳米技术与纳米仿生研究所 复合电极及其制作方法、太阳能电池及其制作方法
CN103236295A (zh) * 2013-04-23 2013-08-07 上海师范大学 一种图案化石墨烯导电薄膜的制备方法
CN104708930A (zh) * 2013-12-12 2015-06-17 中国科学院苏州纳米技术与纳米仿生研究所 含有纳米金属颗粒的导电墨水的打印方法
CN104240798A (zh) * 2014-09-25 2014-12-24 上海交通大学 一种透明导电薄膜及其制备方法
CN108333227A (zh) * 2018-01-12 2018-07-27 五邑大学 一种柔性气体传感器及其制备方法
CN109080281A (zh) * 2018-08-10 2018-12-25 齐鲁工业大学 基于浸润性基底精细喷墨打印制备柔性透明导电膜的方法
CN109080281B (zh) * 2018-08-10 2020-05-19 齐鲁工业大学 基于浸润性基底精细喷墨打印制备柔性透明导电膜的方法
CN110142962A (zh) * 2019-05-27 2019-08-20 西安电子科技大学 一种毛细力驱动的纸基纳米材料的印刷装置及印刷方法

Similar Documents

Publication Publication Date Title
CN102616033A (zh) 一种快速制备高透光性导电图案的方法
CN106928773B (zh) 一种可用于喷墨打印的石墨烯复合导电墨水及其制备方法
CN104835555B (zh) 一种图案化金属透明导电薄膜的制备方法
US9860993B2 (en) Grid and nanostructure transparent conductor for low sheet resistance applications
Suganuma Introduction to printed electronics
CN110473655B (zh) 一种透明导电薄膜及其制备方法
CN102222538B (zh) 图形化的柔性透明导电薄膜及其制法
KR102254683B1 (ko) 패턴화된 나노와이어 투명 전도체들에 대한 전자 컴포넌트들의 본딩
CN105304157B (zh) 具有导电铜网络的透明导电薄膜及其制备方法
Jeong et al. Invisible Ag grid embedded with ITO nanoparticle layer as a transparent hybrid electrode
CN103325442B (zh) 一种复合透明导电薄膜及其制备方法
CN105489784B (zh) 柔性导电电极的制备方法及该方法制备的电极及其应用
Wan et al. Facile patterning of silver nanowires with controlled polarities via inkjet-assisted manipulation of interface adhesion
CN107610814A (zh) 一种基于超薄金属网格的透明电极及其制备方法
CN103996454B (zh) 一种纳米金属网格透明导电基板的制造方法
CN107577381A (zh) 一种卷对卷电容式触摸屏功能片及其制备方法
CN105593796A (zh) 用于图案化的纳米线透明导体上的印刷导电图案的保护性涂层
Hwang et al. Recycling silver nanoparticle debris from laser ablation of silver nanowire in liquid media toward minimum material waste
CN109074919B (zh) 透明导电图案的形成方法
Kim et al. Simple, fast, and scalable reverse-offset printing of micropatterned copper nanowire electrodes with sub-10 μm resolution
KR101675201B1 (ko) 지지체를 이용한 은나노와이어 투명전극 제조방법
US20170125251A1 (en) Method for manufacturing selective surface deposition using a pulsed radiation treatment
Li et al. Facile fabrication of large-scale silver nanowire transparent conductive films by screen printing
TWI687747B (zh) 透明發光裝置顯示器
CN110265178A (zh) 一种柔性透明导电膜的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120801