CN102612421A - 定向结晶材料的单晶焊接 - Google Patents

定向结晶材料的单晶焊接 Download PDF

Info

Publication number
CN102612421A
CN102612421A CN2010800518612A CN201080051861A CN102612421A CN 102612421 A CN102612421 A CN 102612421A CN 2010800518612 A CN2010800518612 A CN 2010800518612A CN 201080051861 A CN201080051861 A CN 201080051861A CN 102612421 A CN102612421 A CN 102612421A
Authority
CN
China
Prior art keywords
substrate
welding
powder
dendrite
described methods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800518612A
Other languages
English (en)
Other versions
CN102612421B (zh
Inventor
贝恩德·布尔鲍姆
安德烈斯·加塞尔
托尔斯滕·扬博尔
斯特法尼·林嫩布林克
诺贝特·皮尔沙
尼古拉·阿里亚金
乔治·博斯坦约格洛
托尔斯滕·梅尔策-约基施
塞利姆·莫卡德姆
米夏埃尔·奥特
罗尔夫·维尔肯赫纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Siemens AG
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Siemens AG filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of CN102612421A publication Critical patent/CN102612421A/zh
Application granted granted Critical
Publication of CN102612421B publication Critical patent/CN102612421B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/005Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method by irradiation or electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/16Heating of the molten zone
    • C30B13/22Heating of the molten zone by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F2007/068Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts repairing articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • F05D2230/313Layer deposition by physical vapour deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/606Directionally-solidified crystalline structures

Abstract

用于在堆焊期间焊缝(13)的定向结晶的方法,尤其用于对构件(1)的基底(4)进行堆焊,所述基底(4)被定向地结晶并且具有枝晶(31),所述枝晶在基底枝晶方向(32)上延伸,其中,关于进给率、激光功率、焊接射束直径、粉末射束焦点和/或粉末质量流的工艺参数构造成,使得它们导致在凝固前沿(19)上的温度梯度(28)的局部定向,所述温度梯度相对于在基底(4)中的所述枝晶(31)的所述基底枝晶方向(32)小于45°,其中,相对速度在30mm/min至100mm/min之间,优选为50mm/min和/或功率在200W至500W之间,优选为300W和/或在所述基底的表面上的激光束的直径在3mm和6mm之间,优选为4mm和/或质量进给率在300mg/min和600mg/min之间,优选为400mg/min。

Description

定向结晶材料的单晶焊接
技术领域
本发明涉及一种定向结晶的金属材料的焊接方法。
背景技术
γ’强化的SX镍基超合金既不能借助传统的焊接方法也不能借助高能方法(激光、电子束)与同类型的填充材料在搭接的焊接轨迹中堆焊成一个或者多个层。问题在于,在靠近表面的边缘区域中存在单个焊接轨迹的情况下已构成具有错误定向的组织。这对于相继的搭接轨迹意味着,在该区域中的凝固前沿不具有SX晶核并且该区域以错误的定向(没有SX组织)在搭接区域中继续扩展。在该区域中形成裂纹。
对于γ’强化的SX镍基超合金,目前为止使用的焊接方法不能够将焊缝金属在搭焊加工中同种地构造成一个或多个具有相同SX组织的层。在SX基底上的单个轨迹中,局部的凝固条件以如下方式变化,即枝晶状的生长根据位置从初生根或者二次枝晶臂开始。在此,在不同可能的枝晶的生长方向中实现具有最有利的生长条件的方向,也就是说具有相对于温度梯度最小的倾角的方向。目前还没有完全弄清在对γ’强化的SX镍基超合金进行粉末堆焊时在SX组织中形成错误定向的原因。推测在枝晶从不同的生长方向相会时,二次枝晶臂可能会折断并且充当用于构成错误定向的组织的晶核。此外,在靠近表面的边缘区域中,在熔融物中没有完全熔化的粉末颗粒充当用于形成错误定向的组织的晶核。因此,为了解决该问题,提出用于对γ’强化的SX镍基超合金进行粉末堆焊的过程控制,其中,实现仅有利于枝晶的生长方向的生长条件。此外,过程控制确保粉末颗粒在熔融物中完全熔化。
发明内容
因此,本发明的目的是解决上述问题。
该目的通过根据权利要求1的方法来实现。
为了解决在单个轨迹的靠近表面的边缘区域中形成非单晶组织的技术问题,提出借助激光束对堆焊进行过程控制,在这种过程控制中,所述问题不出现或者以如此小地程度出现,使得在室温下可进行在一个或者多个层中的搭焊加工,而不形成裂纹。
在从属权利要求中列出其他有利的措施,这些措施可以任意地相互组合,以便获得其他优点。
附图说明
附图示出:
图1示出方法的示意的流程;
图2示出燃气轮机;
图3示出涡轮叶片;
图4示出超合金列表。
说明书和附图仅表示本发明的实施例。
具体实施方式
在图1中借助装置1示意地示出方法的流程。
待维修的构件120、130具有由超合金制成、尤其由根据图4的镍基超合金制成的基底4。基底4尤其完全由镍基超合金制成。通过尤其借助粉末将新的材料7通过堆焊施加在基底4的表面5上来维修基底4。
这通过供给材料7和焊接射束、优选激光器的激光束10来实现,所述激光束至少熔化所供给的材料7并且优选也部分地熔化基底4。在此,优选使用粉末。粉末颗粒7的直径优选小到,使得激光束完全熔化所述粉末颗粒并且获得颗粒7的足够高的温度。在此,在焊接期间在基底4上存在被熔化的区域16和连接在该被熔化的区域上的凝固前沿19和在凝固前沿之前的已再次凝固的区域13。
本发明的装置优选包括具有粉末供给单元的激光器(没有示出)和运动系统(没有示出),借助其可以移动在基底表面5上的激光束相互作用区域和用于粉末7的冲击区域。在此,构件(基底4)优选既不被预加热也不借助热处理进行过时效处理。在基底4上待修复的区域优选以层的方式堆焊。这些层优选蜿蜒地、单向地或者双向地施加,其中,从一层到另一层蜿蜒行进的扫描向量优选分别转动90°,以便避免这些层之间的接合错误。
在图1中示出在基底4中的枝晶31和在所施加的区域13中的枝晶34。同样示出坐标系25。基底4相对地在x方向22上以扫描速度VV运动。在凝固前沿19上存在z-温度梯度
Figure BDA00001645933300031
28。
借助关于进给率VV、激光功率、射束直径和粉末质量流的工艺参数来执行焊接过程,其导致在凝固前沿上的温度梯度的局部定向,所述温度梯度相对于在基底4中的枝晶31的方向小于45°。由此确保,仅延续在基底4中的枝晶方向32的生长方向对于枝晶34是有利的。对此必要的是,确保限界凝固前沿19的三相线的部分的射束半径完全被激光束覆盖。
用于凝固前沿19相对于在基底4中的枝晶31的枝晶方向32的合适的倾斜度的近似条件为:
Figure BDA00001645933300032
A:基底的吸收度,
IL:激光强度,
Vv:扫描速度,
λ:基底的导热率,
T:温度
依据材料由该条件得出关于激光束的强度(近似顶帽)、相对于粉末射束焦点的射束半径、进给速度VV和粉末质量流的工艺窗口。
通过借助激光束完全地覆盖熔融物,在同轴过程控制中借助激光束确保粉末颗粒的更长的相互作用时间,并且确保在与熔融物接触时由此更高的颗粒温度。
颗粒直径和由此预设的相互作用时间应引起足够用于完全熔化的高的温度水平。在颗粒温度和熔融物中的停留时间给定的情况下,熔融物的足够高的温度水平应引起颗粒完全熔化。
通过上述的工艺参数和机理确保具有在基底中相同的枝晶定向的、在焊缝金属中取向附生的单晶生长的前提条件。由于在焊接过程中仅激发垂直于表面的枝晶生长方向,所以在凝固时熔融物容易续流到枝晶间的空间中,并且避免形成热裂纹。这产生了对于(例如出于维修或者在构件的高负载区域中的接合的目的的)结构化焊接而言可接受的焊接质量。
相对速度VV在30mm/min至100mm/min之间,优选为50mm/min。功率在200W至500W的范围内,优选为300W,其中,在表面上的激光束具有3mm至6mm的直径,优选4mm的直径。质量进给率为300mg/min至600mg/min,优选为400mg/min。
图2以局部纵剖面图举例地示出燃气轮机100。燃气轮机100在内部具有带有轴101的、可围绕旋转轴线102转动地安装的转子103,该转子也称为涡轮机电枢。沿着转子103依次为进气壳体104、压缩机105、带有多个同轴设置的燃烧器107的尤其为环形燃烧室的例如环面状的燃烧室110、涡轮机108和排气壳体109。环形燃烧室110与例如环形的热气体通道111连通。在那里例如四个相继连接的涡轮级112形成涡轮机108。每个涡轮级112例如由两个叶片环形成。沿工质113的流动方向观察,在热气体通道111中,由转子叶片120形成的排125跟随导向叶片排115。
在此,导向叶片130固定在定子143的内壳体138上,而该排125的转子叶片120例如借助涡轮盘133安装在转子103上。发电机或者做功机械(未示出)耦接于转子103。
在燃气轮机100工作期间,压缩机105通过进气壳体104将空气135吸入并且压缩。在压缩机105的涡轮侧的端部处提供的压缩空气被引至燃烧器107并且在那里与燃料混合。接着混合物在燃烧室110中燃烧,从而形成工质113。工质113从那里起沿着热气体通道111流过导向叶片130和转子叶片120。工质113在转子叶片120处以传递动量的方式膨胀,使得转子叶片120驱动转子103并且该转子驱动耦接在其上的做功机械。
暴露于热工质113的构件在燃气轮机100工作期间承受热负荷。除了加衬于环形燃烧室110的热屏蔽元件之外,沿工质113的流动方向观察的第一涡轮机级112的导向叶片130和转子叶片120承受最高的热负荷。为了经受住那里存在的温度,可借助冷却剂来冷却第一涡轮机级的导向叶片和转子叶片。同样,构件的基质可以具有定向结构,这就是说它们是单晶的(SX结构)或仅具有纵向定向的晶粒(DS结构)。例如,铁基、镍基或钴基超合金用作用于构件的材料,特别是用作用于涡轮叶片120、130的材料和用于燃烧室110的构件的材料。例如由EP 1 204 776B1、EP 1 306 454、EP 1 319 729 A1、WO 99/67435或WO 00/44949已知这样的超合金。
叶片120、130同样可以具有抗腐蚀的覆层(MCrAlX;M是铁(Fe)、钴(Co)、镍(Ni)中的至少一种元素,X是活性元素并代表钇(Y)和/或硅、钪(Sc)和/或至少一种稀土元素,或铪(Hf))。由EP 0 486 489B1、EP 0 786 017 B1、EP 0 412 397 B1或EP 1 306 454 A1已知这样的合金。
在MCrAlX上还可以存在隔热层,并且隔热层例如由ZrO2、Y2O3-ZrO2构成,即,隔热层由于氧化钇和/或氧化钙和/或氧化镁而非稳定、部分稳定或完全稳定。通过例如电子束气相淀积(EB-PVD)的适当的覆层方法在隔热层中产生柱状晶粒。
导向叶片130具有朝向涡轮机108的内壳体138的导向叶片根部(这里未示出),以及与导向叶片根部相对置的导向叶片顶部。导向叶片顶部朝向转子103并固定在定子143的固定环140处。
图3以立体图示出流体机械的沿着纵轴线121延伸的转子叶片120或导向叶片130。
所述流体机械可以是蒸汽轮机、压缩机或飞机的或用于发电的发电厂的燃气轮机。
叶片120、130沿着纵轴线121相继具有:固定区域400、邻接于固定区域的叶片平台403以及叶身406和叶片梢部415。作为导向叶片130,叶片130可以在其叶片梢部415处具有另一平台(未示出)。
在固定区域400中形成有用于将转子叶片120、130固定在轴或盘上的叶片根部183(未示出)。叶片根部183例如构成为锤头形。作为枞树形根部或燕尾形根部的其他构形是可行的。叶片120、130对于流过叶身406的介质具有迎流棱边409和出流棱边412。
在传统叶片120、130中,在叶片120、130的所有区域400、403、406中使用例如实心的金属材料、尤其是超合金。例如由EP 1 204 776B1、EP 1 306 454、EP 1 319 729 A1、WO 99/67435或WO 00/44949已知这样的超合金。在这种情况下,叶片120、130可以通过铸造法,也可以借助定向凝固、通过锻造法、通过铣削法或其组合来制造。
将带有一个或多个单晶结构的工件用作用于机器的在运行中承受高的机械的、热的和/或化学的负荷的构件。这种单晶工件的制造例如通过由熔融物的定向凝固来进行。在此涉及浇注法,其中液态金属合金凝固为单晶构造物、即单晶工件,或者定向凝固。在这种情况下,枝状晶体沿热流定向,并且形成柱状晶体的晶粒结构(柱状地,这就是说在工件的整个长度上分布的晶粒,并且在此根据一般的语言习惯称为定向凝固),或者形成单晶结构,这就是说整个工件由唯一的晶体构成。在这些方法中,必须避免过渡成球状的(多晶的)凝固,因为通过非定向的生长不可避免地构成横向和纵向晶界,所述横向和纵向晶界使定向凝固的或单晶的构件的良好特性不起作用。如果一般性地提到定向凝固组织,则是指不具有晶界或最多具有小角度晶界的单晶和确实具有沿纵向方向分布的晶界但不具有横向晶界的柱状晶体结构。第二种所提到的晶体结构也称为定向结晶组织(directionally solidified structures)。由US-PS 6,024,792和EP 0 892 090 A1已知这样的方法。
叶片120、130同样可以具有抗腐蚀或抗氧化的覆层,例如(MCrAlX;M是铁(Fe)、钴(Co)、镍(Ni)中的至少一种元素,X是活性元素并代表钇(Y)和/或硅和/或至少一种稀土元素,或铪(Hf))。由EP 0 486 489 B1、EP 0 786 017 B1、EP 0 412 397 B1或EP 1 306 454A1已知这样的合金。密度优选地是理论密度的95%。在MCrAlX层(作为中间层或最外层)上形成保护性氧化铝层(TGO=thermal grown oxidelayer(热生长氧化层))。
优选地,层成分具有Co-30Ni-28Cr-8Al-0.6Y-0.7Si  或Co-28Ni-24Cr-10Al-0.6Y。除这些钴基保护覆层外,也优选地使用镍基保护层,例如Ni-10Cr-12Al-0.6Y-3Re或Ni-12Co-21Cr-11Al-0.4Y-2Re或Ni-25Co-17Cr-10Al-0.4Y-1.5Re。
在MCrAlX上还可以有隔热层,隔热层优选是最外层并例如由ZrO2、Y2O3-ZrO2组成,即,隔热层由于氧化钇和/或氧化钙和/或氧化镁而非稳定、部分稳定或完全稳定。隔热层覆盖整个MCrAlX层。通过例如电子束气相淀积(EB-PVD)的适当的覆层方法在隔热层中产生柱状晶粒。其他覆层方法也是可以考虑的,例如气相等离子喷涂(APS)、LPPS(低压等离子喷涂)、VPS(真空等离子喷涂)或CVD(化学气相沉积)。隔热层可以具有多孔的、有微观裂纹或宏观裂纹的晶粒,用于更好地耐热冲击。因此,隔热层优选地比MCrAlX层更为多孔。
再处理(Refurbishment)意味着在使用构件120、130之后,必要时必须将保护层从涡轮叶片120、130上去除(例如通过喷砂)。接着,进行腐蚀层和/或氧化层及腐蚀产物和/或氧化产物的去除。必要时,还修复在构件120、130中的裂纹。然后,进行构件120、130的再覆层以及构件120、130的重新使用。
叶片120、130可以构造成空心的或实心的。如果要冷却叶片120、130,则叶片为空心的并且必要时还具有薄膜冷却孔418(由虚线表示)。

Claims (8)

1.用于在堆焊期间焊缝(13)的定向结晶的方法,尤其用于对构件(1、120、130)的基底(4)进行堆焊,所述基底(4)被定向地结晶并且具有枝晶(31),所述枝晶(31)在基底枝晶方向(32)上延伸,其中,关于进给率、激光功率、焊接射束直径、粉末射束焦点和/或粉末质量流的工艺参数设计成,使得它们导致在凝固前沿(19)上的温度梯度(28)的局部定向,所述温度梯度相对于在基底(4)中的所述枝晶(31)的所述基底枝晶方向(32)小于45°,其中,相对速度在30mm/min和100mm/min之间,优选为50mm/min,并且/或者功率在200W和500W之间,优选为300W,并且/或者在所述基底的表面上的激光束的直径在3mm和6mm之间,优选为4mm,并且/或者质量进给率在300mg/min和600mg/min之间,优选为400mg/min。
2.根据权利要求1所述的方法,其中,在所述基底(4)上和在所述基底(4)中产生熔融物(16),所述熔融物通过供给粉末(7)和/或所述基底(4)的材料而生成,并且其中,所述熔融物(16)完全由焊接射束(10)、尤其是激光束覆盖,尤其其中,所述熔融物(16)重叠。
3.根据权利要求1或2所述的方法,其中,以层的方式施加所供给的粉末(7)。
4.根据权利要求1、2或3所述的方法,其中,所述基底(4)具有镍基的超合金,尤其具有柱状晶粒,特别尤其具有单晶的组织。
5.根据权利要求1、2、3或4所述的方法,其中,粉末颗粒(7)的直径小到使得所述粉末颗粒在焊接激光束(10)中尤其完全地熔化并且具有足够高的温度。
6.根据权利要求1、2、3、4或5所述的方法,其中,被熔化的所述粉末颗粒(7)的温度比所述粉末颗粒(7)的融化温度高20℃。
7.根据权利要求1、2、3、4、5或6所述的方法,其中,使用激光来焊接。
8.根据权利要求1、2、3、4、5、6或7所述的方法,其中,
Figure FDA00001645933200021
A:基底的吸收度,
IL:激光强度,
Vv:扫描速度,
λ:基底的导热率。
CN201080051861.2A 2009-11-16 2010-11-15 定向结晶材料的单晶焊接 Expired - Fee Related CN102612421B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09014307.4 2009-11-16
EP09014307A EP2322314A1 (de) 2009-11-16 2009-11-16 Einkristallines Schweissen von direktional verfestigten Werkstoffen
PCT/EP2010/067486 WO2011058174A1 (de) 2009-11-16 2010-11-15 Einkristallines schweissen von direktional verfestigten werkstoffen

Publications (2)

Publication Number Publication Date
CN102612421A true CN102612421A (zh) 2012-07-25
CN102612421B CN102612421B (zh) 2015-12-16

Family

ID=42102267

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080051861.2A Expired - Fee Related CN102612421B (zh) 2009-11-16 2010-11-15 定向结晶材料的单晶焊接

Country Status (5)

Country Link
US (1) US20120285933A1 (zh)
EP (2) EP2322314A1 (zh)
CN (1) CN102612421B (zh)
RU (1) RU2509639C2 (zh)
WO (1) WO2011058174A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104551405A (zh) * 2013-10-18 2015-04-29 西门子公司 用于在堆焊期间定向加固焊缝的方法
CN106163733A (zh) * 2014-04-01 2016-11-23 西门子公司 借助于振动射束引导对耐高温的超合金进行激光堆焊

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2493537A (en) * 2011-08-10 2013-02-13 Bae Systems Plc Forming a layered structure
EP2614917A1 (de) * 2012-01-10 2013-07-17 Siemens Aktiengesellschaft Laserschweißen von nickelbasierten Superlegierungen
EP2756912A1 (de) * 2013-01-18 2014-07-23 Siemens Aktiengesellschaft Umschmelzen beim Auftragsschweißen
US9896944B2 (en) * 2014-04-18 2018-02-20 Siemens Energy, Inc. Forming a secondary structure directly onto a turbine blade

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024792A (en) * 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
EP0982090A1 (en) * 1998-08-27 2000-03-01 Agfa-Gevaert N.V. Method of preparation of highly dispersed metal alloys
EP1340583A1 (en) * 2002-02-20 2003-09-03 ALSTOM (Switzerland) Ltd Method of controlled remelting of or laser metal forming on the surface of an article
EP1340567A1 (en) * 2002-02-27 2003-09-03 ALSTOM (Switzerland) Ltd Method of removing casting defects

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804815A (en) * 1987-06-01 1989-02-14 Quantum Laser Corporation Process for welding nickel-based superalloys
DE3926479A1 (de) 1989-08-10 1991-02-14 Siemens Ag Rheniumhaltige schutzbeschichtung, mit grosser korrosions- und/oder oxidationsbestaendigkeit
DE58908611D1 (de) 1989-08-10 1994-12-08 Siemens Ag Hochtemperaturfeste korrosionsschutzbeschichtung, insbesondere für gasturbinenbauteile.
EP0465264B1 (en) * 1990-07-06 1998-12-09 Kazuo Tsubouchi Metal film forming method
FR2667805B1 (fr) * 1990-10-16 1993-01-22 Aerospatiale Buse de traitement de surface par laser, avec apport de poudre.
RU2147624C1 (ru) 1994-10-14 2000-04-20 Сименс АГ Защитный слой для защиты детали от коррозии, окисления и термической перегрузки, а также способ его изготовления
US5993549A (en) * 1996-01-19 1999-11-30 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V. Powder coating apparatus
EP0892090B1 (de) 1997-02-24 2008-04-23 Sulzer Innotec Ag Verfahren zum Herstellen von einkristallinen Strukturen
RU2123418C1 (ru) * 1997-11-25 1998-12-20 Закрытое акционерное общество "ТехноЛазер" Способ порошковой лазерной наплавки уголковых изделий
US5993554A (en) * 1998-01-22 1999-11-30 Optemec Design Company Multiple beams and nozzles to increase deposition rate
EP1306454B1 (de) 2001-10-24 2004-10-06 Siemens Aktiengesellschaft Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
WO1999067435A1 (en) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
US6122564A (en) * 1998-06-30 2000-09-19 Koch; Justin Apparatus and methods for monitoring and controlling multi-layer laser cladding
US6231692B1 (en) 1999-01-28 2001-05-15 Howmet Research Corporation Nickel base superalloy with improved machinability and method of making thereof
DE19907105A1 (de) * 1999-02-19 2000-08-31 Volkswagen Ag Verfahren und Vorrichtung zum Herstellen von verschleißfesten, tribologischen Zylinderlaufflächen
DE50006694D1 (de) 1999-07-29 2004-07-08 Siemens Ag Hochtemperaturbeständiges bauteil und verfahren zur herstellung des hochtemperaturbeständigen bauteils
US6491207B1 (en) * 1999-12-10 2002-12-10 General Electric Company Weld repair of directionally solidified articles
US6495793B2 (en) * 2001-04-12 2002-12-17 General Electric Company Laser repair method for nickel base superalloys with high gamma prime content
DE50112339D1 (de) 2001-12-13 2007-05-24 Siemens Ag Hochtemperaturbeständiges Bauteil aus einkristalliner oder polykristalliner Nickel-Basis-Superlegierung
WO2003087439A1 (de) * 2002-04-15 2003-10-23 Siemens Aktiengesellschaft Verfahren zum herstellen von einkristallinen strukturen
WO2004039531A2 (en) * 2002-10-31 2004-05-13 Ehsan Toyserkani System and method for closed-loop control of laser cladding by powder injection
GB0420578D0 (en) * 2004-09-16 2004-10-20 Rolls Royce Plc Forming structures by laser deposition
US20070003416A1 (en) * 2005-06-30 2007-01-04 General Electric Company Niobium silicide-based turbine components, and related methods for laser deposition
RU2359797C2 (ru) * 2007-06-27 2009-06-27 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Способ лазерной наплавки медно-никелевых сплавов на детали из алюминиевой бронзы
RU2366553C2 (ru) * 2007-07-09 2009-09-10 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Способ наплавки поверхности лучом лазера
WO2009100794A1 (de) * 2008-02-13 2009-08-20 Siemens Aktiengesellschaft Verfahren zum aufschmelzen von gekrümmten oberflächen und eine vorrichtung
DE102008018708A1 (de) * 2008-04-14 2009-10-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Schweißen in Abhängigkeit einer Vorzugsrichtung des Substrats
US8726501B2 (en) * 2009-08-31 2014-05-20 General Electric Company Method of welding single crystal turbine blade tips with an oxidation-resistant filler material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024792A (en) * 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
EP0982090A1 (en) * 1998-08-27 2000-03-01 Agfa-Gevaert N.V. Method of preparation of highly dispersed metal alloys
EP1340583A1 (en) * 2002-02-20 2003-09-03 ALSTOM (Switzerland) Ltd Method of controlled remelting of or laser metal forming on the surface of an article
EP1340567A1 (en) * 2002-02-27 2003-09-03 ALSTOM (Switzerland) Ltd Method of removing casting defects

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M.GAEUMANN等: "SINGLE-CRYSTAL LASER DEPOSITION OF SUPERALLOYS:PROCESSING-MICROSTRUCTURE MAPS", 《ACTA MATERIALIA》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104551405A (zh) * 2013-10-18 2015-04-29 西门子公司 用于在堆焊期间定向加固焊缝的方法
CN106163733A (zh) * 2014-04-01 2016-11-23 西门子公司 借助于振动射束引导对耐高温的超合金进行激光堆焊
CN106163733B (zh) * 2014-04-01 2017-11-17 西门子公司 借助于振动射束引导对耐高温的超合金进行激光堆焊
US10478921B2 (en) 2014-04-01 2019-11-19 Siemens Aktiengesellschaft Laser build-up welding of high heat resistant super alloys by means of oscillating beam guidance

Also Published As

Publication number Publication date
RU2012125028A (ru) 2013-12-27
CN102612421B (zh) 2015-12-16
US20120285933A1 (en) 2012-11-15
EP2322314A1 (de) 2011-05-18
WO2011058174A1 (de) 2011-05-19
EP2322314A8 (de) 2011-09-28
RU2509639C2 (ru) 2014-03-20
EP2501516A1 (de) 2012-09-26

Similar Documents

Publication Publication Date Title
CN102596485A (zh) 定向结晶材料的单晶焊接
CN102639283B (zh) 具有焊接添加材料的特殊质量输送率的、用于焊接由耐高温超合金制成的工件的方法
CN102039494B (zh) 用于焊接由耐高温的超合金制成的工件的方法和装置
US8324526B2 (en) Welded repair of defects lying on the inside of components
JP5465239B2 (ja) 耐熱超合金から成るワークを溶接する方法と装置
CN102448650B (zh) 通过在轮廓外部或者围绕轮廓施加的焊接带来焊接零件的凹处的方法;相应的零件
US9044825B2 (en) Method for welding depending on a preferred direction of the substrate
CN101990477B (zh) 具有受调节的温度分布的焊接方法以及用于此的装置
US20090297701A1 (en) Process for Repairing a Component with a Directional Microstructure
CN102612421B (zh) 定向结晶材料的单晶焊接
CN103702793A (zh) 镍基的合金、应用和方法
JP2010517779A (ja) ろう材および超合金における硬ろう付け法
US9421639B2 (en) Component having weld seam and method for producing a weld seam
CN104551405A (zh) 用于在堆焊期间定向加固焊缝的方法
US20110293431A1 (en) Component having varying structures and method for production
CN102029451A (zh) 移除钎焊板材的方法
US8123105B2 (en) Process for brazing wide gaps
US20110056919A1 (en) Method for Fusing Curved Surfaces, and a Device
CN102575927A (zh) 用于借助于激光三角法进行层厚度测量的方法和装置
US20110020127A1 (en) Component Comprising Overlapping Weld Seams and Method for the Production Thereof
CA2695111A1 (en) Two-step welding process
CN102725071A (zh) 用于大气喷涂的喷头和方法、用于覆层的设备和被覆层的构件
CN102632343A (zh) 以不同角度进行的多次激光加工
US9458552B2 (en) Single crystal welding of directionally compacted materials
US20110062120A1 (en) Device for welding using a process chamber and welding method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151216

Termination date: 20171115