CN102611378A - 一种永磁同步电机的电流谐波补偿系统及方法 - Google Patents

一种永磁同步电机的电流谐波补偿系统及方法 Download PDF

Info

Publication number
CN102611378A
CN102611378A CN2012100610925A CN201210061092A CN102611378A CN 102611378 A CN102611378 A CN 102611378A CN 2012100610925 A CN2012100610925 A CN 2012100610925A CN 201210061092 A CN201210061092 A CN 201210061092A CN 102611378 A CN102611378 A CN 102611378A
Authority
CN
China
Prior art keywords
reference voltage
ref
phase
harmonic
synchronous motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012100610925A
Other languages
English (en)
Other versions
CN102611378B (zh
Inventor
朱祥华
熊礼文
徐飞鹏
周兆勇
李�浩
王治国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Inovance Technology Co Ltd
Shenzhen Inovance Technology Co Ltd
Original Assignee
Suzhou Inovance Technology Co Ltd
Shenzhen Inovance Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Inovance Technology Co Ltd, Shenzhen Inovance Technology Co Ltd filed Critical Suzhou Inovance Technology Co Ltd
Priority to CN201210061092.5A priority Critical patent/CN102611378B/zh
Publication of CN102611378A publication Critical patent/CN102611378A/zh
Application granted granted Critical
Publication of CN102611378B publication Critical patent/CN102611378B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

本发明涉及一种永磁同步电机的电流谐波补偿系统和方法,其中系统包括:转速位置检测模块、电流反馈模块、速度控制模块、电流环PI调节模块和变换输出模块;其中,变换输出模块进一步包括:派克逆变换单元,用于对q轴参考电压和d轴参考电压进行派克逆变换;谐波补偿单元,用于对派克逆变换生成的α相参考电压和β相参考电压进行克拉克逆变换后获得三相参考电压分量,并进行三相电压谐波补偿后通过克拉克变换得到谐波补偿后α相参考电压和β相参考电压;空间矢量脉宽调制单元,用于生成PWM信号控制三相逆变器驱动永磁同步电机。本发明通过对永磁同步电机的电流进行谐波的补偿,有效地消除了电流谐波,矫正了定子电流正弦度。

Description

一种永磁同步电机的电流谐波补偿系统及方法
技术领域
本发明涉及永磁同步电机技术领域,更具体地说,涉及一种永磁同步电机的电流谐波补偿系统、方法及永磁同步电机。
背景技术
请参阅图1,为现有永磁同步电机的控制电路的原理图。如图1所示,该永磁同步电机的控制电路包括:转速位置检测模块100、电流反馈模块200、速度控制模块300、电流环PI调节模块400和变换输出模块500。
其中,转速位置检测模块100与永磁同步电机(PMSM)700连接,通过位置传感器检测电机转子空间位置,计算获得电气角度θ和转子反馈速度nfdb
电流反馈模块200,与三相逆变器600产生的三相输出电流中的A相和B相连接,通过电流传感器检测永磁同步电机的A相反馈电流iAfdb和B相反馈电流iBfdb,电流反馈模块200再对永磁同步电机的A相反馈电流1Afdb和B相反馈电流iBfdb进行克拉克(Clarke)变换和派克(Park)变换后,获得q轴反馈电流分量iqfdb和d轴反馈电流分量idfdb。例如电流反馈模块200可以包括克拉克变换单元210和派克变换单元220,其中,克拉克变换单元210将对永磁同步电机的A相反馈电流iAfdb和B相反馈电流iBfdb进行克拉克变换得到α相反馈电流iαfdb和β相反馈电流iβfdb,派克变换单元220再根据转速位置检测模块100计算获得的电气角度θ对α相反馈电流iαfdb和β相反馈电流iβfdb进行派克变换得到q轴反馈电流分量iqfdb和d轴反馈电流分量idfdb。本发明中描述的α相和β相是指永磁同步电机的二相静止坐标系(α,β),d轴和q轴是指永磁同步电机的二相旋转坐标系(d-q)。
速度控制器300用于对速度参考值nref和转子反馈速度nfdb求差后的信号进行速度控制分析,输出q轴电流参考值iqref
电流环PI调节模块400用于对接收的q轴参考电流iqref和q轴反馈电流分量iqfdb求差后的信号进行电流环PI调节后生成q轴参考电压Vqref,即定子交轴转矩分量。同时电流环PI调节模块400对接收的d轴参考电流idref和d轴反馈电流分量iffdb求差后的信号进行电流环PI调节后生成d轴参考电压Vdref。其中,d轴参考电流idref即定子直轴励磁电流分量被设置为0,也就是永磁同步电机采用Id=0的电流控制方法。
变换输出模块500用于根据电流环PI调节模块400产生的q轴参考电压Vqref和d轴参考电压Vdref生成PWM信号控制三相逆变器600驱动永磁同步电机700。
在现有技术中,变换输出模块500进一步包括:派克逆变换(Park-1)单元510和空间矢量脉宽调制(SVPWM)单元520。其中,派克逆变换单元510用于对q轴参考电压Vqref和d轴参考电压Vdref进行派克逆变换,生成α相参考电压uαref和β相参考电压uβref。空间矢量脉宽调制单元520,用于根据α相参考电压u*αref和β相参考电压u*βref生成PWM信号控制三相逆变器600驱动永磁同步电机700。
如上所述,永磁同步电机的电流控制方法中,一般采用Id=0的电流控制方法,该方法控制时电机没有直轴电流,不会产生直轴电枢反应,电机所有电流均用来产生电磁力矩,电流控制效率高。但有些永磁同步电机由于设计的原因,随着定子电流的增加,电枢反应会使主磁场畸变严重,此时若采用传统的Id=0控制,定子电流正弦度会明显变差,并伴随有一定规律的谐波。因此针对此类电流控制时存在谐波的电机,需要采取特殊的处理,否则电机输出功率谐波损耗较大,且高速时容易失控导致过流。
发明内容
本发明要解决的技术问题在于,针对现有永磁同步电机的电流控制方法不具有谐波补偿功能导致电机输出功率谐波损耗较大的缺陷,提供一种永磁同步电机的电流谐波补偿系统、方法及永磁同步电机。
本发明解决其技术问题所采用的技术方案是:构造一种永磁同步电机的电流谐波补偿系统,包括:转速位置检测模块、电流反馈模块、速度控制模块、电流环PI调节模块和变换输出模块;其中,所述变换输出模块用于根据电流环PI调节模块产生的q轴参考电压Vqref和d轴参考电压Vdref生成PWM信号控制三相逆变器驱动永磁同步电机;
所述变换输出模块进一步包括:派克逆变换单元,用于对q轴参考电压Vqref和d轴参考电压Vdref进行派克逆变换,生成α相参考电压uαref和β相参考电压uβref;谐波补偿单元,用于对α相参考电压uαref和β相参考电压uβref进行克拉克逆变换后生成三相参考电压分量,并进行三相电压谐波补偿后通过克拉克变换得到谐波补偿后α相参考电压u*αref和β相参考电压u*βref;以及空间矢量脉宽调制单元,用于根据所述谐波补偿后α相参考电压u*αref和β相参考电压u*βref生成PWM信号控制三相逆变器驱动永磁同步电机。
在根据本发明所述的永磁同步电机的电流谐波补偿系统中,所述谐波补偿单元进一步包括:
克拉克逆变换单元,用于对α相参考电压uαref和β相参考电压uβref进行克拉克逆变换,生成三相参考电压分量uAref、uBref和uCref
三相谐波补偿单元,用于根据α相参考电压uαref和β相参考电压uβref和转速位置检测模块得到的电气角度θ,以及谐波补偿参数计算三相谐波补偿电压分量uAh、uBh和uCh,并与三相参考电压分量uAref、uBref和uCref叠加得到u*Aref、u*Bref和u*Cref
克拉克变换单元,对叠加得到的三相参考电压分量u*Aref、u*Bref和u*Cref进行克拉克变换得到谐波补偿后α相参考电压u*αref和β相参考电压u*βref
在根据本发明所述的永磁同步电机的电流谐波补偿系统中,所述谐波补偿参数包括根据谐波频率和幅值设置的需要补偿的谐波次数n、谐波初始角θ0和谐波补偿百分比Kamp;所述三相谐波补偿单元通过以下公式计算:
u Aref * = u Aref + u Ah = u Aref + K amp * ( u α 2 + u β 2 ) * sin θ A u Bref * = u Bref + u Bh = u Bref + K amp * ( u α 2 + u β 2 ) * sin θ B u Cref * = u Cref + u Ch = u Cref + K amp * ( u α 2 + u β 2 ) * sin θ C ;
其中,
Figure BDA0000142070240000041
本发明还提供了一种永磁同步电机的电流谐波补偿方法,包括:转速位置检测步骤、电流反馈步骤、速度控制步骤、电流环PI调节步骤和变换输出步骤;其中,所述变换输出步骤用于根据电流环PI调节步骤产生的q轴参考电压Vqref和d轴参考电压Vdref生成PWM信号控制三相逆变器驱动永磁同步电机;
所述变换输出步骤进一步包括:派克逆变换步骤,对q轴参考电压Vqref和d轴参考电压Vdref进行派克逆变换,生成α相参考电压uαref和β相参考电压uβref;谐波补偿步骤,对α相参考电压uαref和β相参考电压uβref进行克拉克逆变换后生成三相参考电压分量,并进行三相电压谐波补偿后通过克拉克变换得到谐波补偿后α相参考电压u*αref和β相参考电压u*βref;以及空间矢量脉宽调制步骤,根据所述谐波补偿后α相参考电压u*αref和β相参考电压u*βref生成PWM信号控制三相逆变器驱动永磁同步电机。
在根据本发明所述的永磁同步电机的电流谐波补偿方法中,所述谐波补偿步骤进一步包括:
克拉克逆变换步骤,对α相参考电压uαref和β相参考电压uβref进行克拉克逆变换,生成三相参考电压分量uAref、uBref和uCref
三相谐波补偿步骤,根据α相参考电压uαref和β相参考电压uβref和转速位置检测步骤得到的电气角度θ,以及谐波补偿参数计算三相谐波补偿电压分量uAh、uBh和uCh,并与三相参考电压分量uAref、uBref和uCref叠加得到u*Aref、u*Bref和u*Cref;以及
克拉克变换步骤,对叠加得到的三相参考电压分量u*Aref、u*Bref和u*Cref进行克拉克变换得到谐波补偿后α相参考电压u*αref和β相参考电压u*βref
在根据本发明所述的永磁同步电机的电流谐波补偿方法中,所述谐波补偿参数包括根据谐波频率和幅值设置的需要补偿的谐波次数n、谐波初始角θ0和谐波补偿百分比Kamp;所述三相谐波补偿步骤通过以下公式计算:
u Aref * = u Aref + u Ah = u Aref + K amp * ( u α 2 + u β 2 ) * sin θ A u Bref * = u Bref + u Bh = u Bref + K amp * ( u α 2 + u β 2 ) * sin θ B u Cref * = u Cref + u Ch = u Cref + K amp * ( u α 2 + u β 2 ) * sin θ C ;
其中,
Figure BDA0000142070240000051
本发明还提供了一种永磁同步电机,包括如上所述的永磁同步电机的电流谐波补偿系统。
实施本发明的永磁同步电机的电流谐波补偿系统、方法及永磁同步电机,具有以下有益效果:本发明通过在现有永磁同步电机的电流控制方法基础上进行电流谐波的补偿,有效地消除了电流谐波,矫正了矢量控制时三相定子电流正弦度。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1为现有永磁同步电机的控制电路的原理图;
图2为根据本发明的永磁同步电机的电流谐波补偿系统的优选实施例的原理图;
图3为未进行谐波补偿的永磁同步电机的三相电流波形图;
图4为图3中U相FFT谐波分析图;
图5为根据本发明进行谐波补偿后的永磁同步电机的三相电流的U相FFT谐波分析图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。
本发明提出了一种永磁同步电机的电流谐波补偿系统及方法,在现有的Id=0的电流控制方法上进行电流谐波的补偿,实验证明可对频率和幅值有一定规律的电流谐波进行补偿,消除电流谐波,矫正矢量控制时三相定子电流正弦度。
请参阅图2,为根据本发明的永磁同步电机的电流谐波补偿系统的优选实施例的原理图。如图2所示,该永磁同步电机的电流谐波补偿系统至少包括:转速位置检测模块100、电流反馈模块200、速度控制模块300、电流环PI调节模块400和变换输出模块500。
下面对上述各个模块的功能进行具体介绍,其中本发明特别通过在变换输出模块500中对电流谐波进行补偿,校正矢量控制时三相定子电流正限度。
转速位置检测模块100与永磁同步电机(PMSM)700连接,通过位置传感器检测电机转子空间位置,计算获得电气角度θ和转子反馈速度nfdb
电流反馈模块200,与三相逆变器600产生的三相输出电流中的A相和B相连接,对永磁同步电机的A相反馈电流iAfdb和B相反馈电流iBfdb进行克拉克(Clarke)变换和派克(Park)变换后,获得q轴反馈电流分量iqfdb和d轴反馈电流分量idfdb。例如电流反馈模块200可以包括克拉克变换单元210和派克变换单元220,其中,克拉克变换单元210将对永磁同步电机的A相反馈电流iAfdb和B相反馈电流iBfdb进行克拉克变换得到α相反馈电流iαfdb和β相反馈电流iβfdb,派克变换单元220再根据转速位置检测模块100计算获得的电气角度θ对α相反馈电流iαfdb和β相反馈电流iβfdb进行派克变换得到q轴反馈电流分量iqfdb和d轴反馈电流分量idfdb。本发明中描述的α相和β相是指永磁同步电机的二相静止坐标系(α,β),d轴和q轴是指永磁同步电机的二相旋转坐标系(d-q)。
速度控制器300用于对速度参考值nref和转子反馈速度nfdb求差后的信号进行速度控制分析,输出q轴电流参考值iqref
电流环PI调节模块400用于对接收的q轴参考电流iqref和q轴反馈电流分量iqfdb求差后的信号进行电流环PI调节后生成q轴参考电压Vqref,同时对接收的d轴参考电流idref和d轴反馈电流分量iffdb求差后的信号进行电流环PI调节后生成d轴参考电压Vdref。其中,d轴参考电流idref被设置为0,也就是永磁同步电机采用Id=0的电流控制方法。
变换输出模块500用于根据电流环PI调节模块400产生的q轴参考电压Vqref和d轴参考电压Vdref生成PWM信号控制三相逆变器600驱动永磁同步电机700。
本发明的独特之处在于,在变换输出模块500中增加了电流谐波补偿环节。变换输出模块500进一步包括:派克逆变换(Park-1)单元510、谐波补偿单元530和空间矢量脉宽调制(SVPWM)单元520。
其中,派克逆变换单元510用于对q轴参考电压Vqref和d轴参考电压Vdref进行派克逆变换,生成α相参考电压uαref和β相参考电压uβref
本发明在得到α相参考电压uαref和β相参考电压uβref后不直接进行空间矢量脉宽调制,而是利用谐波补偿单元530经克拉克逆变换后得到三相参考电压分量uAref、uBref和uCref,进行三相电压谐波补偿后再进行克拉克变换转换为谐波补偿后α相参考电压u*αref和β相参考电压u*βref
在本发明的优选实施例中,谐波补偿单元530进一步包括:克拉克逆变换(Clarke-1)单元531、三相谐波补偿单元532和克拉克变换单元533。
其中,克拉克逆变换单元531,用于对α相参考电压uαref和β相参考电压uβref进行克拉克逆变换,生成三相参考电压分量uAref、uBref和uCref
三相谐波补偿单元532,用于根据α相参考电压uαref和β相参考电压uβref和转速位置检测模块得到的电气角度θ,以及谐波补偿参数计算三相谐波补偿电压分量uAh、uBh和uCh,并与三相参考电压分量uAref、uBref和uCref叠加得到u*Aref、u*Bref和u*Cref
上述谐波补偿参数是根据三相存在谐波频率和幅值大小而设置的,包括需要补偿的谐波次数n、谐波初始角θ0和谐波补偿百分比Kamp;所述三相谐波补偿单元通过以下公式计算:
叠加各相补偿谐波电压后的三相参考电压分量的计算公式如下:
u Aref * = u Aref + u Ah = u Aref + K amp * ( u α 2 + u β 2 ) * sin θ A u Bref * = u Bref + u Bh = u Bref + K amp * ( u α 2 + u β 2 ) * sin θ B u Cref * = u Cref + u Ch = u Cref + K amp * ( u α 2 + u β 2 ) * sin θ C ; - - - ( 1 )
其中,
Figure BDA0000142070240000072
其中,为叠加三相谐波补偿电压分量后的三相参考电压分量,uAref、uBref、uCref为未进行三相谐波电压补偿前的三相电压分量,uAh、uBh、uCh为三相谐波补偿电压分量,uα即为α相参考电压uαref,uβ即为β相参考电压uβref
Figure BDA0000142070240000081
为将计算的当前电压矢量值当做谐波补偿幅值。
克拉克变换单元533,用于对叠加得到的三相参考电压分量u*Aref、u*Bref和u*Cref进行克拉克变换得到谐波补偿后α相参考电压u*αref和β相参考电压u*βref
空间矢量脉宽调制单元530,用于根据所述谐波补偿后α相参考电压u*αref和β相参考电压u*βref生成6路PWM信号输出,控制三相逆变器600驱动永磁同步电机700。
本发明还相应提供了一种永磁同步电机的电流谐波补偿方法,包括:转速位置检测步骤、电流反馈步骤、速度控制步骤、电流环PI调节步骤和变换输出步骤。
其中,转速位置检测步骤、电流反馈步骤、速度控制步骤、电流环PI调节步骤的具体过程分别与结合图2对转速位置检测模块100、电流反馈模块200、速度控制模块300和电流环PI调节模块400的原理过程描述一致。
变换输出步骤则用于根据电流环PI调节步骤产生的q轴参考电压Vqref和d轴参考电压Vdref生成PWM信号控制三相逆变器驱动永磁同步电机。
本发明提供的永磁同步电机的电流谐波补偿方法的独特之处在于,在变换输出步骤中增加了电流谐波补偿环节。该变换输出步骤进一步包括以下步骤:
首先,在派克逆变换步骤中,对q轴参考电压Vqref和d轴参考电压Vdref进行派克逆变换,生成α相参考电压uαref和β相参考电压uβref
随后,执行谐波补偿步骤。本发明在派克逆变换步骤得到α相参考电压uαref和β相参考电压uβref后不直接进行空间矢量脉宽调制,而是在谐波补偿步骤先经克拉克逆变换后得到三相参考电压分量uAref、uBref和uCref,进行三相电压谐波补偿后再进行克拉克变换转换为谐波补偿后α相参考电压u*αref和β相参考电压u*βref。也就是说谐波补偿步骤进一步包括依次执行的以下步骤:克拉克逆变换步骤、三相谐波补偿步骤和克拉克变换步骤。其中,在克拉克逆变换步骤中,对α相参考电压uαref和β相参考电压uβref进行克拉克逆变换,生成三相参考电压分量uAref、uBref和uCref。在三相谐波补偿步骤中,根据α相参考电压uαref和β相参考电压uβref和转速位置检测模块得到的电气角度θ,以及谐波补偿参数计算三相谐波补偿电压分量uAh、uBh和uCh,并与三相参考电压分量uAref、uBref和uCref叠加得到u*Aref、u*Bref和u*Cref。上述谐波补偿参数是根据三相存在谐波频率和幅值大小而设置的,包括需要补偿的谐波次数n、谐波初始角θ0和谐波补偿百分比Kamp;三相谐波补偿步骤通过公式(1)和(2)计算叠加各相补偿谐波电压后的三相参考电压分量。在克拉克变换步骤中,对叠加得到的三相参考电压分量u*Aref、u*Bref和u*Cref进行克拉克变换得到谐波补偿后α相参考电压u*αref和β相参考电压u*βref
最后,在空间矢量脉宽调制步骤中,根据所述谐波补偿后α相参考电压u*αref和β相参考电压u*βref生成PWM信号控制三相逆变器驱动永磁同步电机。
本发明还相应提供了一种采用上述永磁同步电机的电流谐波补偿系统的永磁同步电机。
下面对本发明的谐波补偿效果的试验进行说明。选定一款存在谐波的永磁同步电机,以1500rpm额定转速,18A额定电流运行,当不进行谐波补偿时,实测三相电流波形如图3所示。图4为图3中U相FFT谐波分析图。其中,如图4下方数据显示,基波X1的基波频率为100HZ,谐波X2的频率为500HZ,ΔY(M)为5次谐波分量值,为-18.125dB。由此可见,该永磁同步电机反馈电流含较大的5次谐波分量,其正弦度较差。根据实际存在的谐波频率和谐波幅值,采用本专利谐波补偿方法进行谐波补偿后效果如图5所示。其中注入谐波后5次谐波分量ΔY(M)为-58.125dB,其谐波分量明显减小,电流正弦度明显改善。
本发明是根据特定实施例进行描述的,但本领域的技术人员应明白在不脱离本发明范围时,可进行各种变化和等同替换。此外,为适应本发明技术的特定场合或材料,可对本发明进行诸多修改而不脱离其保护范围。因此,本发明并不限于在此公开的特定实施例,而包括所有落入到权利要求保护范围的实施例。

Claims (7)

1.一种永磁同步电机的电流谐波补偿系统,包括:转速位置检测模块、电流反馈模块、速度控制模块、电流环PI调节模块和变换输出模块;其中,所述变换输出模块用于根据电流环PI调节模块产生的q轴参考电压Vqref和d轴参考电压Vdref生成PWM信号控制三相逆变器驱动永磁同步电机;
其特征在于,所述变换输出模块进一步包括:
派克逆变换单元,用于对q轴参考电压Vqref和d轴参考电压Vdref进行派克逆变换,生成α相参考电压uαref和β相参考电压uβref
谐波补偿单元,用于对α相参考电压uαref和β相参考电压uβref进行克拉克逆变换后生成三相参考电压分量,并进行三相电压谐波补偿后通过克拉克变换得到谐波补偿后α相参考电压u*αref和β相参考电压u*βref
空间矢量脉宽调制单元,用于根据所述谐波补偿后α相参考电压u*αref和β相参考电压u*βref生成PWM信号控制三相逆变器驱动永磁同步电机。
2.根据权利要求1所述的永磁同步电机的电流谐波补偿系统,其特征在于,所述谐波补偿单元进一步包括:
克拉克逆变换单元,用于对α相参考电压uαref和β相参考电压uβref进行克拉克逆变换,生成三相参考电压分量uAref、uBref和uCref
三相谐波补偿单元,用于根据α相参考电压uαref和β相参考电压uβref和转速位置检测模块得到的电气角度θ,以及谐波补偿参数计算三相谐波补偿电压分量uAh、uBh和uCh,并与三相参考电压分量uAref、uBref和uCref叠加得到u*Aref、u*Bref和u*Cref
克拉克变换单元,对叠加得到的三相参考电压分量u*Aref、u*Bref和u*Cref进行克拉克变换得到谐波补偿后α相参考电压u*αref和β相参考电压u*βref
3.根据权利要求2所述的永磁同步电机的电流谐波补偿系统,其特征在于,所述谐波补偿参数包括根据谐波频率和幅值设置的需要补偿的谐波次数n、谐波初始角θ0和谐波补偿百分比Kamp;所述三相谐波补偿单元通过以下公式计算:
u Aref * = u Aref + u Ah = u Aref + K amp * ( u α 2 + u β 2 ) * sin θ A u Bref * = u Bref + u Bh = u Bref + K amp * ( u α 2 + u β 2 ) * sin θ B u Cref * = u Cref + u Ch = u Cref + K amp * ( u α 2 + u β 2 ) * sin θ C ;
其中,
Figure FDA0000142070230000022
4.一种永磁同步电机的电流谐波补偿方法,包括:转速位置检测步骤、电流反馈步骤、速度控制步骤、电流环PI调节步骤和变换输出步骤;其中,所述变换输出步骤用于根据电流环PI调节步骤产生的q轴参考电压Vqref和d轴参考电压Vdref生成PWM信号控制三相逆变器驱动永磁同步电机;
其特征在于,所述变换输出步骤进一步包括:
派克逆变换步骤,对q轴参考电压Vqref和d轴参考电压Vdref进行派克逆变换,生成α相参考电压uαref和β相参考电压uβref
谐波补偿步骤,对α相参考电压uαref和β相参考电压uβref进行克拉克逆变换后生成三相参考电压分量,并进行三相电压谐波补偿后通过克拉克变换得到谐波补偿后α相参考电压u*αref和β相参考电压u*βref
空间矢量脉宽调制步骤,根据所述谐波补偿后α相参考电压u*αref和β相参考电压u*βref生成PWM信号控制三相逆变器驱动永磁同步电机。
5.根据权利要求4所述的永磁同步电机的电流谐波补偿方法,其特征在于,所述谐波补偿步骤进一步包括:
克拉克逆变换步骤,对α相参考电压uαref和β相参考电压uβref进行克拉克逆变换,生成三相参考电压分量uAref、uBref和uCref
三相谐波补偿步骤,根据α相参考电压uαref和β相参考电压uβref和转速位置检测步骤得到的电气角度θ,以及谐波补偿参数计算三相谐波补偿电压分量uAh、uBh和uCh,并与三相参考电压分量uAref、uBref和uCref叠加得到u*Aref、u*Bref和u*Cref
克拉克变换步骤,对叠加得到的三相参考电压分量u*Aref、u*Bref和u*Cref进行克拉克变换得到谐波补偿后α相参考电压u*αref和β相参考电压u*βref
6.根据权利要求5所述的永磁同步电机的电流谐波补偿方法,其特征在于,所述谐波补偿参数包括根据谐波频率和幅值设置的需要补偿的谐波次数n、谐波初始角θ0和谐波补偿百分比Kamp;所述三相谐波补偿步骤通过以下公式计算:
u Aref * = u Aref + u Ah = u Aref + K amp * ( u α 2 + u β 2 ) * sin θ A u Bref * = u Bref + u Bh = u Bref + K amp * ( u α 2 + u β 2 ) * sin θ B u Cref * = u Cref + u Ch = u Cref + K amp * ( u α 2 + u β 2 ) * sin θ C ;
其中,
Figure FDA0000142070230000032
7.一种永磁同步电机,其特征在于,包括权利要求1-3中任意一项所述的永磁同步电机的电流谐波补偿系统。
CN201210061092.5A 2012-03-09 2012-03-09 一种永磁同步电机的电流谐波补偿系统及方法 Active CN102611378B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210061092.5A CN102611378B (zh) 2012-03-09 2012-03-09 一种永磁同步电机的电流谐波补偿系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210061092.5A CN102611378B (zh) 2012-03-09 2012-03-09 一种永磁同步电机的电流谐波补偿系统及方法

Publications (2)

Publication Number Publication Date
CN102611378A true CN102611378A (zh) 2012-07-25
CN102611378B CN102611378B (zh) 2015-09-16

Family

ID=46528579

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210061092.5A Active CN102611378B (zh) 2012-03-09 2012-03-09 一种永磁同步电机的电流谐波补偿系统及方法

Country Status (1)

Country Link
CN (1) CN102611378B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105915136A (zh) * 2016-05-29 2016-08-31 南京理工大学 基于模糊神经网络的电机电流谐波抑制控制系统及方法
CN106788127A (zh) * 2017-01-17 2017-05-31 浙江大学 基于二维查表与插值法的逆变器非线性谐波补偿方法
CN107026591A (zh) * 2017-04-28 2017-08-08 广东美芝制冷设备有限公司 永磁同步电机的预加热系统、方法及压缩机
CN107834931A (zh) * 2017-12-12 2018-03-23 重庆长安汽车股份有限公司 一种电动汽车及其电机谐波抑制系统
CN111566925A (zh) * 2018-01-18 2020-08-21 西门子歌美飒可再生能源公司 控制多通道多相电机的方法
CN111835253A (zh) * 2019-04-23 2020-10-27 广州汽车集团股份有限公司 一种电机振动或噪声控制方法及装置
CN113098335A (zh) * 2021-05-17 2021-07-09 吉林大学 基于模糊qpr控制和电压补偿的永磁同步电机谐波抑制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030090232A1 (en) * 2001-11-06 2003-05-15 International Rectifier Current ripple reduction by harmonic current regulation
CN101355337A (zh) * 2008-08-19 2009-01-28 华南理工大学 基于磁场正交控制的永磁同步电动机的驱动控制方法
CN102122916A (zh) * 2011-04-18 2011-07-13 苏州秉立电动汽车科技有限公司 基于永磁同步电机矢量控制系统的复合控制方法
CN102301586A (zh) * 2009-01-29 2011-12-28 丰田自动车株式会社 交流电动机的控制装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030090232A1 (en) * 2001-11-06 2003-05-15 International Rectifier Current ripple reduction by harmonic current regulation
CN101355337A (zh) * 2008-08-19 2009-01-28 华南理工大学 基于磁场正交控制的永磁同步电动机的驱动控制方法
CN102301586A (zh) * 2009-01-29 2011-12-28 丰田自动车株式会社 交流电动机的控制装置
CN102122916A (zh) * 2011-04-18 2011-07-13 苏州秉立电动汽车科技有限公司 基于永磁同步电机矢量控制系统的复合控制方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105915136A (zh) * 2016-05-29 2016-08-31 南京理工大学 基于模糊神经网络的电机电流谐波抑制控制系统及方法
CN105915136B (zh) * 2016-05-29 2018-10-12 南京理工大学 基于模糊神经网络的电机电流谐波抑制控制系统及方法
CN106788127A (zh) * 2017-01-17 2017-05-31 浙江大学 基于二维查表与插值法的逆变器非线性谐波补偿方法
CN106788127B (zh) * 2017-01-17 2018-11-20 浙江大学 基于二维查表与插值法的逆变器非线性谐波补偿方法
CN107026591A (zh) * 2017-04-28 2017-08-08 广东美芝制冷设备有限公司 永磁同步电机的预加热系统、方法及压缩机
CN107026591B (zh) * 2017-04-28 2020-06-30 广东美芝制冷设备有限公司 永磁同步电机的预加热系统、方法及压缩机
CN107834931A (zh) * 2017-12-12 2018-03-23 重庆长安汽车股份有限公司 一种电动汽车及其电机谐波抑制系统
CN111566925A (zh) * 2018-01-18 2020-08-21 西门子歌美飒可再生能源公司 控制多通道多相电机的方法
CN111566925B (zh) * 2018-01-18 2024-01-12 西门子歌美飒可再生能源公司 控制多通道多相电机的方法
CN111835253A (zh) * 2019-04-23 2020-10-27 广州汽车集团股份有限公司 一种电机振动或噪声控制方法及装置
CN111835253B (zh) * 2019-04-23 2022-02-22 广州汽车集团股份有限公司 一种电机振动或噪声控制方法及装置
CN113098335A (zh) * 2021-05-17 2021-07-09 吉林大学 基于模糊qpr控制和电压补偿的永磁同步电机谐波抑制方法

Also Published As

Publication number Publication date
CN102611378B (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
CN103701392B (zh) 一种基于自适应陷波器的电流谐波补偿系统
CN100468946C (zh) 在弱磁区运行永磁同步发动机的导程角控制方法和装置
CN102611378A (zh) 一种永磁同步电机的电流谐波补偿系统及方法
US8232753B2 (en) Control device for electric motor drive apparatus
US8278850B2 (en) Methods, systems and apparatus for optimization of third harmonic current injection in a multi-phase machine
US7872435B2 (en) Motor control apparatus
US7573227B2 (en) Controller and control method of permanent magnet type rotary motor
EP2075906A1 (en) Vector controller of permanent magnet synchronous motor
EP2211457A1 (en) Motor control device and control method thereof
CN107623479B (zh) 一种电机容错故障控制方法及装置
US7282886B1 (en) Method and system for controlling permanent magnet motor drive systems
US9318982B2 (en) Control apparatus for AC motor
US9595902B2 (en) Methods, systems and apparatus for adjusting modulation index to improve linearity of phase voltage commands
Inoue et al. Control method for direct torque controlled PMSG in wind power generation system
CN103997267A (zh) 一种开绕组永磁同步电机的串联补偿直接转矩控制方法
JP5845115B2 (ja) モータ制御装置
EP2621079B1 (en) Inverter control device and inverter control method
JP2011087429A (ja) 交流電動機の制御装置および制御方法
JP3939481B2 (ja) 交流モータの制御装置
CN103532461B (zh) 一种用于平稳控制永磁同步电机低速小转矩状态切换的装置
Xue et al. A simplified multi-vector-based model predictive current control for PMSM with enhanced performance
Pescetto et al. Variable DC-link control strategy for maximum efficiency of traction motor drives
Chen et al. Modified current regulator for high-power traction motor with low sampling frequency to operating frequency ratio
KR101542960B1 (ko) 친환경 자동차의 모터 제어 방법 및 장치
JP2012039716A (ja) モータ制御装置及びモータ制御方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant