CN102598309A - 用于通过激光能量辐照光伏材料表面的方法和装置 - Google Patents

用于通过激光能量辐照光伏材料表面的方法和装置 Download PDF

Info

Publication number
CN102598309A
CN102598309A CN200980157843XA CN200980157843A CN102598309A CN 102598309 A CN102598309 A CN 102598309A CN 200980157843X A CN200980157843X A CN 200980157843XA CN 200980157843 A CN200980157843 A CN 200980157843A CN 102598309 A CN102598309 A CN 102598309A
Authority
CN
China
Prior art keywords
layer
degree
irradiation
depth
crystallinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200980157843XA
Other languages
English (en)
Inventor
西蒙·雷克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EXCICO GROUP
Original Assignee
EXCICO GROUP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EXCICO GROUP filed Critical EXCICO GROUP
Publication of CN102598309A publication Critical patent/CN102598309A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1872Recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

本发明涉及一种制备TF-PV材料的方法,该方法包括:-提供具有一结晶度的TF-PV材料层,以及-借助于具有辐照参数的激光源辐照该TF-PV材料层的表面区域,其特征在于,辐照参数被选择为使得结晶度至少在表面区域的顶层处增加。

Description

用于通过激光能量辐照光伏材料表面的方法和装置
发明领域
本发明涉及一种借助于激光来辐照光伏材料表面的方法。
发明背景
作为由结晶半导体制造的常规光伏电池的低成本、且因此潜在地商业上重要的替代物,所谓的“薄膜”光伏(TF-PV)电池已被开发。与由本体半导体(bulk semiconductor)材料制造的常规光伏电池相比,这些TF-PV电池通常需要低约2个数量级的半导体材料用于它们的制造。
TF-PV电池包括多种不同的电池设计,例如微晶硅(μc-Si:H)PV电池、非晶硅/微晶硅(a-Si:H/μc-Si:H)PV电池和CIGS(铜铟镓硒化物)PV电池。
TF-PV电池的主要元件由在玻璃或其它合适的柔性或刚性的基材上的薄膜堆叠组成,TF堆叠基本上包括源自半导体材料的吸收体层或夹在背电极和前电极之间的这些层的堆叠。
在常规硅基电池的情况下,吸收体层的结晶度的改变(即材料在原子标度上如何井然有序)将影响电池开路电压和光学吸收两者,由此对电池的最大可能能量转换效率具有影响。
特别是涉及有利于包括在大量的非晶硅层中和微晶硅层中形成的联接的多结堆叠设计的先进的硅基电池时,精密控制所有层的结晶度在最佳化电池性能方面具有至关重要性。
此外,通常需要作为额外工艺步骤的薄膜的沉积后加热,以便产生所需的结晶结构且用于减少膜界面处的重组中心的密度。由于薄膜的最终组成及其结晶度两者都是极其重要的,且在加热超过一定阈温时易于改变,沉积后加热可能导致电池性能的降低。
在尝试解决上面问题时,本领域已提出了在沉积和沉积后加热步骤中以及在所使用的工艺过程中的递增的改进。
在现有技术状态中,硅基电池和CIGS电池通常在多室或单室真空-PECVD(等离子体增强的化学气相沉积)设备中制备,或在多工位真空共蒸发设备中制备,在这些设备中诸如温度、RF激发频率、RF能量密度、原料气组成、蒸发源设计等的各种参数已经在总系统设计所强加的极限内被共优化。
基于诸如PECVD的已建立的技术,对于硅基电池,已开发了大型的复杂和昂贵的机器,且在一个或多个专用室中依次沉积连续层。已经开发了其中最先沉积种子层,随后在其上进行外延生长工艺的变体方法,尽管这些变体方法具有类似的复杂度且通常需要高于标准玻璃基材所能够耐受的温度的温度。
此外,虽然多室系统具有的主要优势是单个室仅仅只暴露于前驱气体中的一种类型的掺杂剂,由此减少由来自先前掺杂层沉积步骤的保留在反应器壁和电极表面上的残留掺杂剂造成的固有吸收体层的任何无意的掺杂,但它们经受的主要的不利之处是这些多室系统需要用于高真空的室间基材输送的适当的模块和机械装置,并因此通常具有高成本和相对低的处理量。
特别涉及多室设备的另一个问题是高灵敏度的薄膜界面层在各室间输送期间被暴露,使得这些层可能与残留的氧反应,导致界面性质的降低或使在下一个沉积步骤之前的额外的表面制备步骤成为必须。
单室系统不需要在各室之间的真空传输硬件的额外的复杂度,但经历从一个加工步骤至下一个加工步骤的掺杂记忆效应。避免掺杂记忆效应使包括沉积过程之间的过长的室清洗和调节步骤成为必须,PV电池在制造过程中也会经历这些步骤。
在通过共蒸发工艺生产CIGS层中涉及类似水平的成本和复杂度,该工艺中需要非常精密地控制温度、蒸发源流出速率和环境大气条件,以便维持所需的膜组成,同时还形成良好设备性能所需的大的、柱状晶粒。硒损失是关键问题,因为此元素在高温下具有比其它组分显著更高的蒸汽压。
此外,CIGS层的沉积后加热通常必须在仔细平衡的、富硒环境中进行,对整个过程增加复杂度、成本和变化的原因。
从上面看,很明显,目前的沉积和沉积后加热方法两者都是慢的且昂贵的,需要在连续沉积步骤之间的基材的物理的重新定位、或在沉积步骤之间的费时的且昂贵的室清洗和调节操作。此外,这些方法很难控制且操作昂贵。
鉴于目前TF-PV电池制造方法的缺陷,本发明的首要目的是提供一种用于生产具有CIGS或a-Si:H/μc-Si:H吸收体层的TF-光伏电池的简单的、更成本有效的且工业上合适的方法。
本发明的第二目的是减少所需要的不同沉积步骤的数量,以便获得最终所需的吸收体堆叠。
另一个目的是提供一种可以导致改善的TF吸收体层的方法,导致更好的TF-PV电池性能。
本发明的另一个目的是减少CIGS沉积工艺的复杂度,同时维持低的硒损失。
本发明通过借助于激光源来辐照TF-PV材料层的表面区域,使得结晶度至少在该表面区域的顶层处增加来满足上述目的。
发明概述
本发明涉及一种用于制造TF-PV材料的方法,该方法包括:
-提供具有一结晶度的TF-PV材料层,以及
-借助于具有辐照参数的激光源来辐照TF-PV材料层的表面区域,
其特征在于,辐照参数被选择为使得结晶度至少在表面区域的顶层处增加。
发明描述
本领域技术人员应理解,下面描述的实施方案仅是根据本发明说明性的,且不限制本发明的期望范围。还可以设想其它实施方案。
根据本发明的第一实施方案,提供了一种制造TF-PV材料的方法,该方法包括:
-提供具有一结晶度的TF-PV材料层,以及
-借助于具有辐照参数的激光源来辐照TF-PV材料层的表面区域,
其特征在于,辐照参数被选择为使得结晶度至少在表面区域的顶层处增加。
根据本发明,通过经由激光辐照来辐照TF-PV电池结构的不同部分的短持续时间的局部加热可用于选择性地改变沉积薄膜的物理的、光学的和电子学的性质,并由此改善电池的总体性能。特别地,可以引起膜的不同部分中存在的晶体结构、多晶结构或非晶结构的变化。
激光辐照导致待加工的薄膜的一部分的高度局部化的不均匀加热。薄膜的表面和近表面区域可被加热至高于熔化温度的温度,而该膜的相当大的部分保持低于该熔化温度。连同所诱导的其它热效应一起,晶体结构被改变。此改变可以很大程度地被限制于熔化区域,或可以延伸至非熔化区域中,这取决于辐照参数的选择和取决于TF-PV材料下面的基材的初始状况。
根据本发明,辐照步骤可以包括照射部分完成的TF-PV层,以便在整个顶层(即它们厚度的一部分)中改变它们的结构。可以进行在整个顶层中的此改变,使得具有一结晶度的先前均匀的层将被转变成两个或更多个可区别的层,其中至少顶层获得更高的结晶度。这意味着较少的层需要通过上面概述的常规方法沉积,导致那些步骤的较低的成本和较高的机器产量。在特定的常遇到的情况下,对此的成本和时间节约可以是非常显著的,因为不同类型的膜可实现不同沉积速率。例如,a-Si:H的高度非晶的层可在比具有相同厚度的微晶层更高的速率下(即:在更少的时间内)被沉积。随后至少非晶层的顶部转变为μC-Si:H,可由此表示沉积工艺中的显著的成本和时间节约。
在本发明的一个实施方案中,激光源可以是波长、能量和脉冲持续时间适应于该工艺的任何激光器,优选准分子激光器且甚至更优选氯化氙准分子激光器。
优选地,激光源可以以近UV辐照,更优选具有波长308nm的辐照。由于所选择的波长的强吸收和该处理的短持续时间,可以进行膜的高温加工,同时避免下面的基材被显著加热。
激光辐照可以是脉冲激光辐照,优选具有0.2J/em2至3J/em2的空气能量密度(aerial energy density)和1焦耳至50焦耳的传递的脉冲能量。使用高能激光器允许在每一次激光脉冲下处理大的区域。
脉冲持续时间可以在50纳秒至250纳秒之间。
激光源可以照亮具有较大线性尺寸为10mm至1000mm且较小线性尺寸为0.05mm至100mm的材料表面的矩形区域。
在根据本发明的一个实施方案中,提供了一种方法,其中辐照参数被选择为使得发生爆发重结晶(explosive recrystallization)。
在本发明的上下文中,爆发重结晶是其中移动的熔体前沿朝下面的材料蔓延的重结晶。当熔融物料开始在受辐照的区域的表面处由最初的熔体固化成晶体材料时,发生爆发重结晶。通过此固化作用释放的潜热熔化薄层的上覆材料(overlying material)。在此第二熔体的重结晶过程中再次释放潜热,并由此薄液体材料层从初始的液-固界面朝向下面的材料蔓延。
在根据本发明的一个优选实施方案中,提供了一种方法,在该方法中表面区域的顶层的深度大于辐照吸收深度和非爆发性熔化前沿深度(non-explosive melting-front depth)。爆发重结晶效应被利用来在大大超出被处理的层中的光学吸收深度和最初的熔化前沿的深度两者的深度处实现部分重结晶。由于例如用于非晶硅的沉积工艺可以以比用于微晶硅的沉积工艺实质上更高的速率(优选至少快一个数量级)来进行,所以用于从单层形成结合的微晶/非晶双层的此技术允许在沉积工艺中的显著的成本和时间节约。
在本发明的一个优选实施方案中,TF-PV材料层由层堆叠组成,层堆叠包括界定表面区域的顶层的深度的停止层。停止层应具有高于待重结晶的层的熔化焓的熔化焓,这意味着其可以主要地具有拥有所需高的结晶度-优选65%至90%-的相同组成,以提供爆发重结晶前沿的可靠的猝灭,或具有另一种组成,例如通过添加掺杂剂、O、N、金属等,由此增加其熔化热。停止层可以具有约5纳米至75纳米的层厚度。
使用停止层的主要优势是通过停止层顶部上的非晶层的较快沉积和使其重结晶可以避免厚的微晶层的缓慢沉积。
辐照TF-PV材料层的步骤可以在环境大气中进行,但是在本发明的一个可替换的实施方案中,该方法还可以包括在辐照之前在TF-PV材料层的表面区域上提供封装层,例如SOG(旋涂玻璃)。由于不同材料的不同吸收特性,可以获得某些层的选择性加热,同时那些层被封装材料所覆盖。
封装层的存在用以减少底层(underlying layer)的易挥发成分(即硒)的损失,且可以有效地延长底层结构的加热时间,同时还降低其被暴露的峰值温度。
此外,封装层可以在大于自身的脉冲持续时间的时标上、以及在比表面层所经历的峰值温度更低的峰值温度下,为底层的传导加热提供热储层。
此外,它可以作为光学元件以增强激光能量与受辐照的TF-PV层的结合。
TF PV电池的制造是基于一系列沉积和图案化(patterning)步骤,其通常包括至少以下内容:
TF-PV材料层可以是适于薄膜光伏应用的任何材料,例如但不限于无掺杂的硅、掺杂的硅、注入的硅、晶体硅、非晶硅、硅锗、氮化锗、III-V族化合物光伏物质例如氮化镓、碳化硅及类似物。
根据本发明的方法可被用于制造TF光伏材料或设备,例如但不限于硅基TF-PV电池和CIGS电池。
该方法可以如在许多实例中所阐明的来应用。
实施例1:
a)沉积包括至少一个非晶硅层的TF吸收体膜,随后
b)部分重结晶该非晶硅层以产生具有不同非晶硅/微晶层的堆叠,由此将爆发重结晶效应用于在大大超出辐照吸收深度的深度处获得重结晶。
实施例2:
a)将TCO(透明导电)层(例如,溅射ZnO)应用至包括至少一个非晶硅层的TF吸收体层上,随后
b)部分重结晶该非晶硅层以产生具有不同非晶硅/微晶层的堆叠,由此将爆发重结晶效应用于在大大超出辐照吸收深度和非爆发性熔化前沿深度两者的深度处获得重结晶,同时
c)在辐照步骤期间同时加热上覆TCO层,以改善TCO膜的光学特性和电特性、以及改善,即降低TCO-半导体接点的电阻。
实施例3:
a)在共蒸发的CIGS结构的顶部上化学浴沉积(chemical bathdeposition)CdS(硫化镉)缓冲液,随后应用SOG封装层,
b)激光辐照导致CdS层的改善的结晶度,并导致CIGS层的有益的退火,而不损失硒,随后
c)选择性移除SOG层。
实施例4:
根据本发明,用:
-沉积p/i/n 3层300nm非晶堆叠,随后
-沉积具有65-90%结晶度的50nm微晶停止层,随后
-沉积具有0-50%结晶度的2微米非晶层,随后
-重结晶2微米非晶硅层
来替代如下的常规PECVD沉积顺序:
-沉积p/i/n 3层300nm非晶堆叠,随后
-沉积p/i/n 3层具有45-75%结晶度的2微米微晶堆叠。
上述2微米非晶层可以以p/i/n堆叠的形式或以p/i-堆叠的形式被快速沉积,其随后通过将引起爆发重结晶的相同的激光退火而被n-掺杂。

Claims (7)

1.一种制备TF-PV材料的方法,包括:
-提供具有一结晶度的TF-PV材料层,以及
-借助于具有辐照参数的激光源来辐照所述TF-PV材料层的表面区域,
其特征在于,所述辐照参数被选择为使得所述结晶度至少在所述表面区域的顶层处增加。
2.根据权利要求1所述的方法,其中所述激光源以近UV辐照。
3.根据权利要求1或2所述的方法,其中所述辐照参数被选择为使得发生爆发重结晶。
4.根据权利要求3所述的方法,其中所述顶层的深度大于辐照吸收深度和非爆发性熔化前沿深度两者。
5.根据权利要求1至4所述的方法,还包括在辐照前在所述TF-PV材料层的所述表面区域上提供封装层。
6.根据权利要求1至5所述的方法,其中所述TF-PV材料层由包括界定所述顶层的深度的停止层的层堆叠构成。
7.根据前述权利要求中任一项所述的方法在制备CIGS电池中的用途。
CN200980157843XA 2009-02-12 2009-12-21 用于通过激光能量辐照光伏材料表面的方法和装置 Pending CN102598309A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09305133.2 2009-02-12
EP09305133A EP2219231A1 (en) 2009-02-12 2009-02-12 Method and apparatus for irradiating a photovoltaic material surface by laser energy
PCT/EP2009/009179 WO2010091711A2 (en) 2009-02-12 2009-12-21 Method and apparatus for irradiating a photovoltaic material surface by laser energy

Publications (1)

Publication Number Publication Date
CN102598309A true CN102598309A (zh) 2012-07-18

Family

ID=40996762

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980157843XA Pending CN102598309A (zh) 2009-02-12 2009-12-21 用于通过激光能量辐照光伏材料表面的方法和装置

Country Status (7)

Country Link
US (1) US20120040486A1 (zh)
EP (2) EP2219231A1 (zh)
JP (1) JP2012517706A (zh)
KR (1) KR20120018110A (zh)
CN (1) CN102598309A (zh)
TW (1) TW201037851A (zh)
WO (1) WO2010091711A2 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208481A (zh) * 2010-08-27 2011-10-05 浙江正泰太阳能科技有限公司 一种薄膜太阳能电池的制造方法
US8551802B2 (en) * 2011-09-12 2013-10-08 Intermolecular, Inc. Laser annealing for thin film solar cells
EP2677551A1 (en) * 2012-06-21 2013-12-25 Excico Group Method for manufacturing a photovoltaic device using laser irradiation.
US10267112B2 (en) 2016-11-04 2019-04-23 Baker Hughes, A Ge Company, Llc Debris bridge monitoring and removal for uphole milling system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030045074A1 (en) * 2001-08-29 2003-03-06 Cindy Seibel Method for semiconductor gate doping
US20030183270A1 (en) * 2000-08-31 2003-10-02 Fritz Falk Multicrystalline laser-crystallized silicon thin layer solar cell deposited on a glass substrate
US20050101160A1 (en) * 2003-11-12 2005-05-12 Diwakar Garg Silicon thin film transistors and solar cells on plastic substrates
CN101118933A (zh) * 2006-05-25 2008-02-06 本田技研工业株式会社 黄铜矿型太阳能电池及其制造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751193A (en) * 1986-10-09 1988-06-14 Q-Dot, Inc. Method of making SOI recrystallized layers by short spatially uniform light pulses
US5714404A (en) * 1993-11-18 1998-02-03 Regents Of The University Of California Fabrication of polycrystalline thin films by pulsed laser processing
AUPM982294A0 (en) * 1994-12-02 1995-01-05 Pacific Solar Pty Limited Method of manufacturing a multilayer solar cell
JP4026182B2 (ja) * 1995-06-26 2007-12-26 セイコーエプソン株式会社 半導体装置の製造方法、および電子機器の製造方法
JP2001028453A (ja) * 1999-07-14 2001-01-30 Canon Inc 光起電力素子及びその製造方法、建築材料並びに発電装置
JP2002009318A (ja) * 2000-06-26 2002-01-11 Toyota Central Res & Dev Lab Inc 薄膜シリコン太陽電池及びその製造方法
JP2004006487A (ja) * 2002-05-31 2004-01-08 Sharp Corp 結晶質薄膜の形成方法、結晶質薄膜の製造装置、薄膜トランジスタ、および光電変換素子
JP2005064014A (ja) * 2003-08-11 2005-03-10 Sharp Corp 薄膜結晶太陽電池およびその製造方法
SE527733C2 (sv) * 2004-10-08 2006-05-23 Midsummer Ab Anordning och metod för att tillverka solceller
JP4169071B2 (ja) * 2006-05-25 2008-10-22 ソニー株式会社 表示装置
US20080216895A1 (en) * 2006-05-25 2008-09-11 Honda Motor Co., Ltd. Chalcopyrite solar cell and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030183270A1 (en) * 2000-08-31 2003-10-02 Fritz Falk Multicrystalline laser-crystallized silicon thin layer solar cell deposited on a glass substrate
US20030045074A1 (en) * 2001-08-29 2003-03-06 Cindy Seibel Method for semiconductor gate doping
US20050101160A1 (en) * 2003-11-12 2005-05-12 Diwakar Garg Silicon thin film transistors and solar cells on plastic substrates
CN101118933A (zh) * 2006-05-25 2008-02-06 本田技研工业株式会社 黄铜矿型太阳能电池及其制造方法

Also Published As

Publication number Publication date
WO2010091711A3 (en) 2012-04-26
TW201037851A (en) 2010-10-16
US20120040486A1 (en) 2012-02-16
EP2396831A2 (en) 2011-12-21
EP2219231A1 (en) 2010-08-18
WO2010091711A2 (en) 2010-08-19
JP2012517706A (ja) 2012-08-02
KR20120018110A (ko) 2012-02-29

Similar Documents

Publication Publication Date Title
Scarpulla et al. CdTe-based thin film photovoltaics: Recent advances, current challenges and future prospects
KR100768414B1 (ko) 광 에너지 변환 장치
US20060208257A1 (en) Method for low-temperature, hetero-epitaxial growth of thin film cSi on amorphous and multi-crystalline substrates and c-Si devices on amorphous, multi-crystalline, and crystalline substrates
US20110189811A1 (en) Photovoltaic device and method of manufacturing photovoltaic devices
CN101325156B (zh) 一种制备多晶硅薄膜太阳电池的方法和装置
US20150072469A1 (en) Sodium doped thin film cigs/cigss absorber for high efficiency photovoltaic devices and related methods
US9356171B2 (en) Method of forming single-crystal semiconductor layers and photovaltaic cell thereon
Bao et al. Synthesis and characterization of novel oxygenated CdSe window layer for CdTe thin film solar cells
CN102934240B (zh) 用于制造包括tco层的光伏电池的改良方法
KR100681162B1 (ko) 반도체 장치 및 그 제조 방법
CN102598309A (zh) 用于通过激光能量辐照光伏材料表面的方法和装置
US10134929B2 (en) Achieving band gap grading of CZTS and CZTSe materials
Van Gestel et al. Metal induced crystallization of amorphous silicon for photovoltaic solar cells
JP2004273887A (ja) 結晶薄膜半導体装置及び太陽電池素子
KR101785771B1 (ko) Cigs막의 제법 및 그것을 이용하는 cigs 태양 전지의 제법
Gossla et al. Five-source PVD for the deposition of Cu (In1− xGax)(Se1− ySy) 2 absorber layers
JP2014152085A (ja) Cigs膜の製法およびその製法を用いるcigs太陽電池の製法
Andrä et al. Multicrystalline silicon films with large grains on glass: preparation and applications
US20110263073A1 (en) Physical Vapour Deposition Processes
JP2004327578A (ja) 結晶薄膜半導体装置およびその製造方法
Andrä et al. Multicrystalline silicon thin film solar cells based on a two-step liquid phase laser crystallization process
WO2013189939A1 (en) Method for manufacturing a photovoltaic device using laser irradiation
Gusak et al. Optimization of alkali supply and Ga/(Ga+ In) evaporation profile for thin (0.5 µm) CIGS solar cells
Kim Transparent conducting oxide films
Aberle Advances in thin film crystalline silicon solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120718