CN102597303A - Bi-Ge-O型烧结体溅射靶及其制造方法以及光记录介质 - Google Patents

Bi-Ge-O型烧结体溅射靶及其制造方法以及光记录介质 Download PDF

Info

Publication number
CN102597303A
CN102597303A CN201080050662XA CN201080050662A CN102597303A CN 102597303 A CN102597303 A CN 102597303A CN 201080050662X A CN201080050662X A CN 201080050662XA CN 201080050662 A CN201080050662 A CN 201080050662A CN 102597303 A CN102597303 A CN 102597303A
Authority
CN
China
Prior art keywords
sub
powder
geo
sputtering target
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201080050662XA
Other languages
English (en)
Other versions
CN102597303B (zh
Inventor
奈良淳史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Publication of CN102597303A publication Critical patent/CN102597303A/zh
Application granted granted Critical
Publication of CN102597303B publication Critical patent/CN102597303B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/266Sputtering or spin-coating layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24318Non-metallic elements
    • G11B2007/2432Oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种Bi-Ge-O型烧结体溅射靶以及该靶的制造方法以及光记录介质,所述烧结体溅射靶含有铋(Bi)、锗(Ge)和氧(O),其特征在于,Bi与Ge的原子数比为0.57<(Bi/(Bi+Ge))<0.75,并且由作为结晶相的Bi12GeO20和Bi4Ge3O12两相构成;特别地提供Bi-Ge-O型烧结体溅射靶以及该靶的制造方法以及光记录介质,所述烧结体溅射靶耐热冲击性优良,可以高功率溅射因此可以预计生产效率大幅改善,并且在溅射时不产生靶的破裂、粉粒的产生少、可以稳定地制作高品质的薄膜,可以得到不产生记录位错误的光记录介质。

Description

Bi-Ge-O型烧结体溅射靶及其制造方法以及光记录介质
技术领域
本发明涉及Bi-Ge-O型烧结体溅射靶及该靶的制造方法以及光记录介质,特别地涉及耐热冲击性优良、可以高功率溅射因此可以预计生产效率大幅改善,并且在溅射时不产生靶的破裂、粉粒的产生少、可以稳定地制作高品质的薄膜,可以得到不产生记录位错误的光记录介质的Bi-Ge-O型烧结体溅射靶及该靶的制造方法以及光记录介质。
背景技术
一写多读型(WORM:Write Once Read Many)光记录介质,是通过蓝色波长区域(350~500nm)的激光也可以进行高密度记录的光记录介质,特别是具有多层具有高记录灵敏度的记录层的光记录介质。
为了应对高密度化的要求,通过多层化进行光盘的高密度化。使用蓝色LD的光盘也同样地进行了高密度记录用光记录介质的开发。
为了实现可以进行高密度多层记录的一写多读型光记录介质,当然需要为具有稳定的组成、结构的材料,而且需要为透光特性优良的膜,这样的材料大多为氧化物,一般而言熔点高,因此多数情况下使用溅射法作为成膜方法。
因此,需要适合得到这样的膜的溅射靶。但是,构成靶的化合物的形态、结构等对溅射特性也有影响,因此在将构成靶的化合物形成为适合必要的膜特性的物质时,是否可以稳定地进行良好的溅射成为问题。
使用溅射法在衬底上形成光记录介质用薄膜时,根据靶的材料有时会产生许多粉粒,从而使品质下降。特别是对于高记录密度介质,由粉粒等导致记录位产生错误是重大的问题。由此,会成为不合格品,从而产生成品率下降的问题。
以往,作为提出的光记录介质,提出了许多材料。例如,在专利文献1中,记载了在衬底上至少形成有记录层的光记录介质,其中,记录层的构成元素的主要成分为Bi和O(氧),含有B,并且含有选自Ge、Li、Sn、Cu、Fe、Pd、Zn、Mg、Nd、Mn和Ni中的至少一种元素X。
另外,在专利文献2中,记载了一种一写多读型光记录介质,其特征在于,记录层含有Bi、M(M为Mg、Al、Cr、Mn、Co、Fe、Cu、Zn、Li、Si、Ge、Zr、Ti、Hf、Sn、Mo、V、Nb、Y和Ta中的至少一种元素)和氧,记录有信息的记录标记部含有在该记录层中含有的元素的结晶和/或这些元素的氧化物的结晶。
此外,提出了专利文献3至专利文献8。其中,考虑了含有铋(Bi)、锗(Ge)和氧(O)的光记录介质的组合,也记载了通过烧结体靶的溅射将这些光记录介质成膜。但是,该Bi-Ge-O型烧结体溅射靶,存在如下问题:耐热冲击性弱,通过高功率进行溅射时大多会产生破裂、龟裂,由此产生粉粒,损害记录介质的品质。
现有技术文献
专利文献
专利文献1:日本特开2008-210492号公报
专利文献2:日本特开2006-116948号公报
专利文献3:日本特开2003-48375号公报
专利文献4:日本特开2005-161831号公报
专利文献5:日本特开2005-108396号公报
专利文献6:日本特开2007-169779号公报
专利文献7:日本特开2008-273167号公报
专利文献8:日本专利第4271063号公报
发明内容
本发明涉及Bi-Ge-O型烧结体溅射靶及该靶的制造方法以及光记录介质,特别是本发明的课题在于提供耐热冲击性优良、可以高功率溅射因此可以预计生产效率大幅改善,并且在溅射时不产生靶的破裂、粉粒的产生少、可以稳定地制作高品质的薄膜,可以得到不产生记录位错误的光记录介质的Bi-Ge-O型烧结体溅射靶及该靶的制造方法以及光记录介质。
为了解决上述问题,本发明人进行了广泛深入的研究,结果发现,通过将分散系Bi12GeO20粒子微粒化,各个粒子在加热、冷却时的热膨胀、热收缩量减少,耐热冲击性提高。
基于这些发现,本发明提供:
1)一种Bi-Ge-O型烧结体溅射靶,含有铋(Bi)、锗(Ge)和氧(O),其特征在于,Bi与Ge的原子数比为0.57<(Bi/(Bi+Ge))<0.75,并且由作为结晶相的Bi12GeO20和Bi4Ge3O12两相构成。
2)如上述1)所述的Bi-Ge-O型烧结体溅射靶,其特征在于,Bi12GeO20与Bi4Ge3O12的摩尔比为(Bi12GeO20/Bi4Ge3O12)<0.56。
3)如上述1)或2)所述的Bi-Ge-O型烧结体溅射靶,其特征在于,靶烧结体中的Bi12GeO20的最大粒径为3μm以下。
4)如上述1)至3)中任一项所述的烧结体溅射靶,其特征在于,通过在200℃加热30分钟后进行水中急冷而对靶施加热冲击时,该热冲击前后的平均弯曲强度下降率为50%以下。
5)一种光记录介质,其通过使用1)至4)中任一项所述的靶进行溅射而成膜。
另外,本发明提供:
6)一种Bi-Ge-O型烧结体溅射靶的制造方法,其特征在于,
将Bi12GeO20粉末与Bi4Ge3O12粉末作为起始原料并进行热压,由此制作烧结体,所述Bi12GeO20粉末通过将14.3摩尔%的GeO2粉末和85.7摩尔%的Bi2O3粉末混合后进行固相反应而得到,所述Bi4Ge3O12粉末通过将60.0摩尔%的GeO2粉末和40.0摩尔%的Bi2O3粉末混合后进行固相反应而得到。
7)如上述6)所述的Bi-Ge-O型烧结体溅射靶的制造方法,其特征在于,将Bi12GeO20粉末和Bi4Ge3O12粉末作为起始原料,以Bi与Ge的原子数比为0.57<(Bi/(Bi+Ge))<0.75的方式将它们混合后,在600~840℃、加压0~400kg/cm2的条件下进行热压,由此制作烧结体。
8)如上述6)或7)所述的Bi-Ge-O型烧结体溅射靶的制造方法,其特征在于,使用微粉碎到平均粒径为1μm以下的Bi12GeO20粉末。
发明效果
本发明的Bi-Ge-O型烧结体溅射靶,特别地具有如下优良效果:耐热冲击性优良,可以高功率溅射因此可以预计生产效率大幅改善,并且在溅射时不产生靶的破裂、粉粒的产生少、可以稳定地制作高品质的薄膜,可以得到不产生记录位错误的光记录介质。
附图说明
图1是表示实施例1中得到的烧结体的扫描电镜观察结果的照片。
图2是表示比较例1中得到的烧结体的扫描电镜观察结果的照片。
具体实施方式
本发明的Bi-Ge-O型烧结体溅射靶,含有铋(Bi)、锗(Ge)和氧(O),其特征在于,Bi与Ge的原子数比为0.57<(Bi/(Bi+Ge))<0.75,并且由作为结晶相的Bi12GeO20和Bi4Ge3O12两相构成。使用该组成的记录膜,为可以通过多层化实现高密度记录的适合组成,可以稳定地进行良好的溅射成膜。
一般而言,在将氧化铋(Bi2O3)和氧化锗(GeO2)的粉末作为起始原料,将其烧结来制作该组成靶的情况下,成为Bi12GeO20和Bi4Ge3O12两相共存的组成。
不过,Bi12GeO20和Bi4Ge3O12的热膨胀系数差异大,因此耐热冲击性极弱,产生在使用高功率溅射成膜时产生破裂的问题。顺便说一下,Bi12GeO20的热膨胀系数为1.39×10-5,Bi4Ge3O12的热膨胀系数为6.00×10-6
另一方面,在该组成范围内,得到Bi4Ge3O12为基质,Bi12GeO20粒子分散的体系。此时发现:通过将分散系Bi12GeO20粒子微粒化,可以减少各个粒子的加热、冷却时的热膨胀、热收缩量,提高耐热冲击性。
另外发现:以Bi2O3和GeO2为起始原料,在Bi12GeO20和Bi4Ge3O12共存的状态下进行微粉碎时,Bi4Ge3O12被选择性地微粉碎,而分散系Bi12GeO20难以粉碎。
因此,通过以Bi12GeO20和Bi4Ge3O12为起始原料,并预先将Bi12GeO20微粉碎,可以实现耐热冲击性的提高。
结果,可以提高靶的耐热冲击性,由此可以得到如下显著优点:可以进行高功率成膜,可以提高生产效率。
另外,可以得到如下效果:引起破裂或龟裂的粉粒的产生显著减少,可以制作稳定的高品质的薄膜,可以制作不产生记录位错误、而且可以实现高记录密度的光记录介质。
Bi12GeO20与Bi4Ge3O12的摩尔比为(Bi12GeO20/Bi4Ge3O12)<0.56对于提高耐热冲击性是有效的。
另外,将靶烧结体中的Bi12GeO20微细化时,最大粒径为3微米以下,优选平均粒径为1μm以下更加有效。所述的靶,可以实现如下特性:通过在200℃加热30分钟后进行水中急冷而施加热冲击时,该热冲击前后的平均弯曲强度下降率为50%以下。
现有的Bi12GeO20和Bi4Ge3O12两相共存而组成的靶的情况下,所述热冲击前后的平均弯曲强度下降率超过80%,与此相对,本发明实现了显著的改善效果。由此抑制靶的热冲击造成的破裂时,就可以直接评价靶的特性。
本发明也包括通过使用所述靶进行溅射而成膜的光记录介质。
在制造Bi-Ge-O型烧结体溅射靶时,将Bi12GeO20粉末与Bi4Ge3O12粉末作为起始原料并将它们混合后进行热压,由此制作烧结体,所述Bi12GeO20粉末通过将14.3摩尔%的GeO2粉末和85.7摩尔%的Bi2O3粉末混合后进行固相反应而得到,所述Bi4Ge3O12粉末通过将60.0摩尔%的GeO2粉末和40.0摩尔%的Bi2O3粉末混合后进行固相反应而得到。
另外,制造本申请发明的Bi-Ge-O型烧结体溅射靶时,特别有效的是:将Bi12GeO20粉末和Bi4Ge3O12粉末作为起始原料,以Bi与Ge的原子数比为0.57<(Bi/(Bi+Ge))<0.75的方式将它们混合后,在600~840℃、加压0~400kg/cm2的条件下进行热压,由此制作烧结体。
此时,使用微粉碎到平均粒径为1μm以下的Bi12GeO20粉末也是有效的。
该烧结条件是可以得到均匀组成的靶的适合条件。通过上述范围以外的烧结条件也可以制造靶,但是靶品质的重现性差,因此期望设定为上述范围。另外,所述原料阶段的Bi与Ge的原子数比为0.57<(Bi/(Bi+Ge))<0.75,直接反映到靶上,可以得到相同组成比的靶。
实施例
以下,基于实施例和比较例进行说明。另外,本实施例仅仅是例子,无论如何不限于该实施例。即,本发明仅受权利要求书的限制,本发明也包括本发明所包括的实施例以外的各种变形。
(实施例1)
将纯度3N(99.9%)的氧化铋和氧化锗的粉末作为起始原料,预先准备Bi12GeO20粉末和Bi4Ge3O12粉末,配合16.67摩尔%的Bi12GeO20粉末和83.33摩尔%的Bi4Ge3O12粉末使Bi与Ge的原子数比为0.67,然后进行混合,再将混合后的粉末填充到碳制模具中,在温度700℃、压力250kg/cm2的条件下进行热压。
将热压后的烧结体精加工而得到靶。靶的相对密度为96%(100%密度为7.15g/cm3)。
该烧结体通过X射线衍射测定确认为Bi12GeO20和Bi4Ge3O12两相结构。
然后,该烧结体的扫描电镜观察照片示出于图1。由此确认,Bi4Ge3O12为基质(照片的灰色部分)、Bi12GeO20为分散系(照片的白色部分)。另外确认:Bi12GeO20的最大粒径为3μm以下,平均粒径为1μm以下。
然后,通过在200℃加热30分钟后在水中急冷而对该靶施加热冲击。然后,依照JIS标准1601实施弯曲试验(从靶中的任意5个部位取宽度4±0.1mm、高度3±0.1mm、长度40~50mm的试验片进行测定,并求出5个点的测定结果的平均值),测定该热冲击前后的平均弯曲强度比(强度的下降率)。该测定结果同样地示出于表1。根据测定部位而多少存在偏差,但是均低于50%,强度的下降率少。
然后,使用该靶,在玻璃衬底上以1kW预溅射约1小时后,以2kW的功率将溅射10s和停止5s的循环重复进行10000次,在该溅射循环作业后,打开腔室通过目测观察靶的异常,完全没有观察到靶上产生破裂或龟裂。另外,溅射中粉粒的产生也少。
结果,本申请发明的实施例为具有如下优良效果的良好的靶:不产生破裂,可以提高生产效率,并且可以稳定地制作高品质的薄膜,可以得到不产生记录位错误的光记录介质。
表1
Figure BDA00001618537500091
(比较例1)
将纯度3N(99.9%)的氧化铋和氧化锗的粉末作为起始原料,配合50.0摩尔%的GeO2粉末和50.0摩尔%的Bi2O3粉末使Bi与Ge的原子数比为0.67,然后进行混合,再将混合后的粉末填充到碳制模具中,在温度730℃、压力250kg/cm2的条件下进行热压。
将热压后的烧结体精加工而得到靶。靶的相对密度为103%(100%密度为7.44g/cm3)。
通过该烧结体的X射线衍射测定,确认靶的结晶相为Bi12GeO20和Bi4Ge3O12两相结构。
然后,该烧结体的扫描电镜观察照片示出于图2。由此确认,Bi4Ge3O12为基质(照片的灰色部分)、Bi12GeO20为分散系(照片的白色部分)。另外确认:Bi12GeO20的最大粒径为8μm以下,平均粒径为4μm以下。
然后,通过在200℃加热30分钟后在水中急冷而对该靶施加热冲击。然后,依照JIS1601实施弯曲强度试验。该热冲击前后的平均弯曲强度比(强度的下降率)的测定结果同样地示出于表1。结果,平均弯曲强度的下降率为82.1%。
然后,使用该靶,在玻璃衬底上以1kW预溅射约1小时后,以2kW的功率将溅射10s和停止5s的循环重复进行10次,在该溅射循环作业后,打开腔室通过目测观察靶的异常,发现靶产生破裂。另外,与实施例相比,粉粒的产生显著增加。认为这可能是由于溅射中靶的破裂而引起的。
产业实用性
根据本发明的Bi-Ge-O型烧结体溅射靶及其制造方法,特别地具有如下优良效果:耐热冲击性优良,可以高功率溅射因此可以预计生产效率大幅改善,并且在溅射时不产生靶的破裂、粉粒的产生少、可以稳定地制作高品质的薄膜,可以得到不产生记录位错误的光记录介质。可以提供可以提高光记录介质的成膜的生产效率,从而适合制造光记录介质的靶。

Claims (8)

1.一种Bi-Ge-O型烧结体溅射靶,含有铋(Bi)、锗(Ge)和氧(O),其特征在于,Bi与Ge的原子数比为0.57<(Bi/(Bi+Ge))<0.75,并且由作为结晶相的Bi12GeO20和Bi4Ge3O12两相构成。
2.如权利要求1所述的Bi-Ge-O型烧结体溅射靶,其特征在于,Bi12GeO20与Bi4Ge3O12的摩尔比为(Bi12GeO20/Bi4Ge3O12)<0.56。
3.如权利要求1或2所述的Bi-Ge-O型烧结体溅射靶,其特征在于,靶烧结体中的Bi12GeO20的最大粒径为3μm以下。
4.如权利要求1至3中任一项所述的烧结体溅射靶,其特征在于,通过在200℃加热30分钟后进行水中急冷而对靶施加热冲击时,该热冲击前后的平均弯曲强度下降率为50%以下。
5.一种光记录介质,其通过使用权利要求1至4中任一项所述的靶进行溅射而成膜。
6.一种Bi-Ge-O型烧结体溅射靶的制造方法,其特征在于,
将Bi12GeO20粉末与Bi4Ge3O12粉末作为起始原料并进行热压,由此制作烧结体,
所述Bi12GeO20粉末通过将14.3摩尔%的GeO2粉末和85.7摩尔%的Bi2O3粉末混合后进行固相反应而得到,
所述Bi4Ge3O12粉末通过将60.0摩尔%的GeO2粉末和40.0摩尔%的Bi2O3粉末混合后进行固相反应而得到。
7.如权利要求6所述的Bi-Ge-O型烧结体溅射靶的制造方法,其特征在于,将Bi12GeO20粉末和Bi4Ge3O12粉末作为起始原料,以Bi与Ge的原子数比为0.57<(Bi/(Bi+Ge))<0.75的方式将它们混合后,在600~840℃、加压0~400kg/cm2的条件下进行热压,由此制作烧结体。
8.如权利要求6或7所述的Bi-Ge-O型烧结体溅射靶的制造方法,
其特征在于,使用微粉碎到平均粒径为1μm以下的Bi12GeO20粉末。
CN201080050662.XA 2009-11-20 2010-10-21 Bi-Ge-O型烧结体溅射靶及其制造方法以及光记录介质 Active CN102597303B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009-264453 2009-11-20
JP2009264453 2009-11-20
PCT/JP2010/068547 WO2011062021A1 (ja) 2009-11-20 2010-10-21 Bi-Ge-O系焼結体スパッタリングターゲット及びその製造方法並びに光記録媒体

Publications (2)

Publication Number Publication Date
CN102597303A true CN102597303A (zh) 2012-07-18
CN102597303B CN102597303B (zh) 2014-08-27

Family

ID=44059505

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080050662.XA Active CN102597303B (zh) 2009-11-20 2010-10-21 Bi-Ge-O型烧结体溅射靶及其制造方法以及光记录介质

Country Status (4)

Country Link
JP (1) JP5265710B2 (zh)
CN (1) CN102597303B (zh)
TW (1) TWI421362B (zh)
WO (1) WO2011062021A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103586015A (zh) * 2013-11-22 2014-02-19 武汉理工大学 一种正三棱锥状锗酸铋可见光催化剂的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8435620B2 (en) * 2011-09-09 2013-05-07 Ritek Corporation Optical recording medium and recording material for the same
JP2014141375A (ja) * 2013-01-24 2014-08-07 Ulvac Japan Ltd 焼結体粉末の製造方法、焼結体粉末、スパッタリングターゲット、スパッタリングターゲットの製造方法及び焼結体粉末の製造装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109300A (en) * 1975-03-20 1976-09-28 Matsushita Electric Ind Co Ltd Gerumaniumusanbisumasuhakumakuno seizohoho
JPS5313200A (en) * 1976-07-21 1978-02-06 Matsushita Electric Ind Co Ltd Production method of piezo-electric thin film
JPS58167429A (ja) * 1982-03-26 1983-10-03 Otsuka Chem Co Ltd ビスマスーゲルマニウム系酸化物の製法
CN1906042A (zh) * 2004-08-31 2007-01-31 株式会社理光 一次写入多次读取的光学记录介质及其溅射靶
JP3984849B2 (ja) * 2002-03-27 2007-10-03 住友金属鉱山株式会社 スパッタリング用Ge−Bi合金ターゲット及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097802A (ja) * 2006-09-15 2008-04-24 Tdk Corp 多層光記録媒体及び多層光記録媒体への記録方法
JP4764858B2 (ja) * 2007-01-30 2011-09-07 株式会社リコー 光記録媒体、スパッタリングターゲット及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109300A (en) * 1975-03-20 1976-09-28 Matsushita Electric Ind Co Ltd Gerumaniumusanbisumasuhakumakuno seizohoho
JPS5313200A (en) * 1976-07-21 1978-02-06 Matsushita Electric Ind Co Ltd Production method of piezo-electric thin film
JPS58167429A (ja) * 1982-03-26 1983-10-03 Otsuka Chem Co Ltd ビスマスーゲルマニウム系酸化物の製法
JP3984849B2 (ja) * 2002-03-27 2007-10-03 住友金属鉱山株式会社 スパッタリング用Ge−Bi合金ターゲット及びその製造方法
CN1906042A (zh) * 2004-08-31 2007-01-31 株式会社理光 一次写入多次读取的光学记录介质及其溅射靶

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103586015A (zh) * 2013-11-22 2014-02-19 武汉理工大学 一种正三棱锥状锗酸铋可见光催化剂的制备方法
CN103586015B (zh) * 2013-11-22 2015-07-22 武汉理工大学 一种正三棱锥状锗酸铋可见光催化剂的制备方法

Also Published As

Publication number Publication date
CN102597303B (zh) 2014-08-27
WO2011062021A1 (ja) 2011-05-26
TWI421362B (zh) 2014-01-01
JP5265710B2 (ja) 2013-08-14
TW201129710A (en) 2011-09-01
JPWO2011062021A1 (ja) 2013-04-04

Similar Documents

Publication Publication Date Title
US9567665B2 (en) Sputtering target for magnetic recording film, and process for producing same
US20120304544A1 (en) Cubic Boron Nitride Sintered Body and Coated Cubic Boron Nitride Sintered Body and Preparation Processes Thereof
EP2418923A1 (en) Thermal expansion suppressing member and anti-thermally-expansive member
WO2016121367A1 (ja) Mn-Zn-W-O系スパッタリングターゲット及びその製造方法
CN102597303B (zh) Bi-Ge-O型烧结体溅射靶及其制造方法以及光记录介质
JP5878242B2 (ja) 焼結体、同焼結体からなる磁気記録膜形成用スパッタリングターゲット
KR20220062050A (ko) 지르코니아 세라믹, 지르코니아 세라믹을 제조하는 방법, 및 그의 적용 및 조성물
JPH05311423A (ja) スパッタリング・ターゲットの製造方法
CN102575339B (zh) Bi-Ge-O型烧结体溅射靶及其制造方法以及光记录介质
CN103748055A (zh) 导电性氧化物烧结体及其制造方法
WO2020059561A1 (ja) Mn-Nb-W-Cu-O系スパッタリングターゲット及びその製造方法
JP4115682B2 (ja) 金属間化合物基複合材料の製造方法
CN101283110A (zh) 材料混合物、溅射靶、该溅射靶的制备方法以及该材料混合物的用途
JP7554192B2 (ja) 非磁性層形成用スパッタリングターゲット部材
CN103946415B (zh) 强磁性材料溅射靶
JP2014077187A (ja) 薄膜形成用スパッタリングターゲット及びその製造方法
TW201505739A (zh) 薄膜形成用濺鍍靶及其製造方法
JP4953168B2 (ja) パーティクル発生の少ない光記録媒体膜形成用Te系スパッタリングターゲット
JP2008223077A (ja) 金属−セラミックス複合材料およびその製造方法
JPWO2005047206A1 (ja) 負又は低い熱膨張係数を示す材料及びその製造方法
JP4465711B2 (ja) 記録マークの保存安定性に優れた相変化型記録媒体を作製するためのGaSb系相変化型記録膜およびこの記録膜を形成するためのスパッタリングターゲット
KR102100850B1 (ko) 세라믹스 재료 및 스퍼터링 타겟 부재
JP2010254523A (ja) スピネル系セラミックスの製造方法
JP2016176114A (ja) Mn−Zn−Mo−O系スパッタリングターゲット及びその製造方法
CN113692457A (zh) 溅射靶以及溅射靶的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Tokyo, Japan

Patentee after: JX NIPPON MINING & METALS CORPORATION

Address before: Tokyo, Japan

Patentee before: JX Nippon Mining & Metals Corporation

CP01 Change in the name or title of a patent holder