CN102590188A - 具有对湿度降低的交叉敏感性的光致发光氧探测器 - Google Patents

具有对湿度降低的交叉敏感性的光致发光氧探测器 Download PDF

Info

Publication number
CN102590188A
CN102590188A CN2011103668891A CN201110366889A CN102590188A CN 102590188 A CN102590188 A CN 102590188A CN 2011103668891 A CN2011103668891 A CN 2011103668891A CN 201110366889 A CN201110366889 A CN 201110366889A CN 102590188 A CN102590188 A CN 102590188A
Authority
CN
China
Prior art keywords
oxygen
detector
light
emitting component
quick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103668891A
Other languages
English (en)
Other versions
CN102590188B (zh
Inventor
D·W·梅尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Modern Controls Inc
Original Assignee
Mocon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mocon Inc filed Critical Mocon Inc
Publication of CN102590188A publication Critical patent/CN102590188A/zh
Application granted granted Critical
Publication of CN102590188B publication Critical patent/CN102590188B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/20Oxygen containing
    • Y10T436/207497Molecular oxygen
    • Y10T436/209163Dissolved or trace oxygen or oxygen content of a sealed environment

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种氧敏发光元件和由其构造的具有对湿度降低的交叉敏感性的探测器,以及制备和使用这种发光元件和探测器测量封闭空间内的氧浓度的方法。所述发光元件包括具有氧敏光致发光染料的玻璃纤维载体基材。所述染料优选嵌在可透氧疏水聚合物基质内。通过将所述发光元件层压在结构支撑层上而由发光元件构造得到探测器。

Description

具有对湿度降低的交叉敏感性的光致发光氧探测器
背景技术
基于氧敏光致发光染料的固态聚合物材料广泛用作光学氧传感器和探测器。参见例如美国公布的专利申请2009/0029402、2008/8242870、2008/215254、2008/199360、2008/190172、2008/148817、2008/146460、2008/117418、2008/0051646、2006/0002822、7,569,395、7,534,615、7,368,153、7,138,270、6,689,438、5,718,842、4,810,655和4,476,870。这种光学传感器可获自很多供应商,包括德国雷根斯堡的Presens Precision Sensing,GmbH、美国德克萨斯州达拉斯的Oxysense和爱尔兰科克的LuxcelBiosciences,Ltd。
为增加可获自传感器的光致发光信号并由此增加光学测量的可靠性,氧敏材料经常引入光散射添加剂(例如TiO2-Klimant I.,Wolfbeis O.S.-Anal Chem,1995,v.67,p.3160-3166)或底层(例如微孔载体,参见Papkovsky,DB等人-Sensors Actuators B,1998,v.51,p.137-145)。遗憾的是,这种探测器趋于显示出对湿度的显著交叉敏感性,这阻止了它们在所研究的样品的湿度不能被控制的情况下使用时获得广泛认可。
因此,需要一种具有对湿度降低的交叉敏感性的光学光致发光氧探测器。
发明内容
本发明的第一方面为发光元件,其包括具有氧敏光致发光染料的玻璃纤维载体基材。所述氧敏光致发光染料优选嵌在可透氧疏水聚合物基质内。
本发明的第二方面为氧敏探测器,所述氧敏探测器包括层压在结构支撑层上的第一方面的发光元件。发光元件优选以固态组合物层压在结构支撑层上,其中所述固态组合物包括嵌在可透氧疏水聚合物基质内的氧敏光致发光染料。
本发明的第三方面为使用根据本发明第二方面的氧敏探测器测量封闭空间内的氧浓度的方法。所述方法包括如下步骤:(A)获得根据本发明第二方面的氧敏探测器,(B)将探测器置于封闭空间内,和(C)通过如下步骤确定所述封闭空间内的氧浓度:(i)使探测器随时间推移反复暴露于激发辐射,(ii)在所述暴露中的至少一些暴露后,测量由激发的探测器发射的辐射,(iii)测量在反复激发暴露和发射测量过程中所经过的时间段,以及(iv)将至少一些所测量的发射基于已知的转化算法转化为氧浓度。
本发明的第四方面为使用根据本发明第二方面的氧敏探测器监测封闭空间内的氧浓度的变化的方法。所述方法包括如下步骤:(A)获得根据本发明第二方面的氧敏探测器,(B)将探测器置于封闭空间内,(C)通过如下步骤确定所述封闭空间内随时间推移的氧浓度:(i)使探测器随时间推移反复暴露于激发辐射,(ii)在所述暴露中的至少一些暴露后,测量由激发的探测器发射的辐射,(iii)测量在反复激发暴露和发射测量过程中所经过的时间段,以及(iv)将至少一些所测量的发射基于已知的转化算法转化为氧浓度,和(D)报告以下中的至少之一:(i)至少两个确定的氧浓度和那些报告的浓度之间的时间间隔,和(ii)由在步骤(C)中获得的数据计算的封闭空间内的氧浓度的变化率。
本发明的第五方面为制备根据本发明第一方面的发光元件的方法。所述方法包括如下步骤:(A)制备在有机溶剂中的涂层混合物,所述涂层混合物包含光致发光氧敏染料和可透氧聚合物,(B)将所述混合物施加在所述玻璃纤维载体基材的第一主表面,以及(C)对所述混合物进行干燥,由此在玻璃纤维载体基材上形成固态薄膜涂层,以形成发光元件。
本发明的第六方面为制备根据本发明第二方面的光致发光氧敏探测器的方法。该方法包括如下步骤:(A)制备根据本发明第五方面的发光元件,和(B)将发光元件层压在结构支撑层的第一主表面上。
附图说明
图1为本发明一个实施方案的放大俯视图。
图2为图1中所示本发明的侧视图。
图2A为图2中所示本发明的中心部分的放大侧视图。
图2B为图2中所示本发明的发光部件的显微放大侧视图。
图2C为图2B中所示一个原纤的横截面图。
具体实施方式
定义
本文(包括权利要求书)中使用的术语“接近100%相对湿度”是指在无冷凝的情况下湿度尽合理可能地接近100%。
本文(包括权利要求书)中使用的术语“可透氧”是指当形成1密耳膜时,材料具有根据ASTM D 3985测得的大于1,000c3/m2的氧透过率。
命名
10氧敏探测器
20发光元件
21氧敏光致发光染料
22可透氧聚合物基质
23载体基材
24载体基材的单个原纤
24’载体基材的经涂布的单个原纤
30压敏粘合剂层
40结构支撑层
40a结构支撑层的第一主表面或上主表面
40b结构支撑层的第二主表面或下主表面
说明
构造
大致参见图1和2,本发明的第一方面为氧敏探测器或传感器10,其可用于光学测量封闭空间(未显示),例如密封包装(未显示)的保留室(未显示)内的氧浓度。探测器10包括层压在结构支撑层40上的发光元件20。
参见图2A-2C,发光元件20包括具有氧敏光致发光染料21的玻璃纤维载体基材23。所述氧敏光致发光染料21优选嵌在可透氧聚合物基质22内。参见图2C,但是不旨在不恰当地限于其中,据信复合的光致发光染料21和可透氧聚合物基质22渗透至玻璃纤维载体基材23的间隙空位体积中,并涂布载体基材23的单个原纤24以形成涂布的原纤24’。
氧敏光致发光染料21可以选自任何公知的氧敏光致发光染料21。本领域技术人员能够基于探测器10的意欲用途来选择合适的染料21。合适的氧敏光致发光染料21的非穷举性列举特别地但非排他地包括,钌(II)-联吡啶基和钌(II)-二苯基菲咯啉络合物、卟啉酮如铂(II)-八乙基卟吩-酮、铂(II)-卟啉如铂(II)-四(五氟苯基)卟吩、铂(II)-卟啉如铂(II)-四(五氟苯基)卟吩、四苯并卟啉的发磷光的金属络合物、二氢卟酚、氮杂卟啉,以及铱(III)或锇(II)的长衰变发光络合物。
通常,将疏水氧敏光致发光染料21与合适的可透氧且疏水载体基质22复合。再次,本领域技术人员能够基于探测器10和所选染料21的意欲用途来选择合适的可透氧疏水载体基质22。用作可透氧疏水载体基质22的合适的聚合物的非穷举性列举特别地但非排他地包括,聚苯乙烯、聚碳酸酯、聚砜、聚氯乙烯和某些共聚物。
玻璃纤维载体基材23为玻璃纤维片材,优选具有第一和第二主表面(未编号)的玻璃纤维过滤器。这样的材料,当用作氧敏光致发光染料21的载体时,相对于其他探测器10而言,显著降低了发光元件20对湿度的交叉敏感性。合适的玻璃纤维过滤盘片可广泛获自很多来源,特别地但非排他地包括,马萨诸塞州贝德福德的MilliporeCorporation(对于无粘结剂的过滤器而言,名称为APFA、APFB、APFC、APFD、APFF和AP40,对于包含粘结剂的过滤器而言,名称为AP15、AP20AP25)、佛罗里达州Oscala的Zefon International,Inc.(对于无粘结剂的过滤器而言,IW-AH2100、IW-A2100、IW-AE2100、IW-B2100、IW-C2100、IW-D2100、IW-E2100和IW-F2100)和纽约PortWashington的Pall Corporation(对于无粘结剂的过滤器而言,A/B、A/C A/D和A/E,对于包含粘结剂的过滤器而言,MetrigardTM)。
玻璃纤维载体基材23优选厚度为100微米至5,000微米,最优选200微米至2,000微米。
结构支撑层40可以选自具有足够结构完整性以物理支撑发光元件20且能够经得起延长地暴露于要使用探测器10的环境(例如高湿度、低湿度、浸没在水中、浸没在酸性溶液中,等等)中的任何材料。当然取决于要使用探测器10的环境,适于用作结构支撑层40的材料特别地但非排他地包括,纤维素材料如纸、蜡纸、卡片材料、纸板、木材和木材层压材料;塑料如聚乙烯、聚丙烯和聚对苯二甲酸乙二酯;金属如铝片、铝箔、钢和锡;织造和非织造织物;玻璃;和它们的各种组合和复合材料如迈拉聚酯薄膜。
参见图2A,探测器10优选包括在结构支撑层40的第一主表面40a上的压敏粘合剂层30,以将发光元件20固定在结构支撑层40上并有利于探测器10结合至容器(未显示)的表面(未显示),所述容器限定了要测量其氧浓度的封闭空间(未显示),其中通过容器(未显示)的对于在发光元件20中染料21的激发和发射波长的辐射透明或半透明的区域,探测器10上的发光元件20面向容器(未显示)外。粘合剂30可以但不应该覆盖发光元件20。
本发明的探测器10和发光元件20对湿度几乎没有交叉敏感性,其中在从0%到接近100%的分析物气体的相对湿度变化下在恒定O2浓度下的发光寿命的变化小于5%。实际上,对于特定氧敏光致发光染料21、特定可透氧疏水聚合物基质22和特定玻璃纤维载体基材23的某些组合,可易于获得小于3%,甚至小于1%的发光寿命的变化。
制造
发光元件20可通过用于制备这类元件20的传统方法制得。简言之,发光元件20可通过如下步骤方便地制得:(A)制备涂层混合物(未显示),所述涂层混合物包含有机溶剂(未显示)如乙酸乙酯中的光致发光氧敏染料21和可透氧聚合物22,(B)将所述混合物施加在所述玻璃纤维载体基材23的至少第一主表面(未编号),例如通过将玻璃纤维载体基材23浸在该混合物(未显示)中来进行,以及(C)对所述混合物(未显示)进行干燥,由此在玻璃纤维载体基材23上形成固态薄膜涂层,以形成发光元件20。
通常,聚合物22在有机溶剂(未显示)中的浓度应该为0.1至20%w/w(重量/重量)的范围,其中染料21与聚合物22之比为1∶20至1∶10,000w/w,优选1∶50至1∶5,000w/w的范围。
探测器10可通过将所述发光元件20层压在结构支撑层40的第一主表面40a上而由发光元件20制得。
优选将发光元件20粘合地层压至结构支撑层40。对于大部分应用而言,优选使用常规涂布技术将所述压敏粘合剂30的层涂布在支撑材料40的整个第一主表面40a上,使得暴露的压敏粘合剂30可用于将探测器10粘合至容器(未显示)的侧壁,其中发光元件20面向该侧壁,读出器(未显示)通过该侧壁(未显示)进行随后的询问。
用途
探测器10可用于快速、容易、精确并且可靠地测量封闭空间(未显示)内的氧浓度,而与封闭空间(未显示)内的相对湿度无关。探测器10可以以与其他氧敏光致发光探测器相同的方式用于测量氧浓度。简言之,探测器10通过如下方式用于测量封闭空间(未显示)内的氧浓度:(A)将探测器10置于封闭空间(未显示)内的这样的位置处,在该位置处在染料21的激发和发射波长下的辐射可最小干扰地被透射至发光元件20且被发光元件20接收,而且不会打开封闭件或破坏封闭件的完整性,和(B)通过如下步骤确定所述封闭空间(未显示)内的氧浓度:(i)使探测器10随时间推移反复暴露于激发辐射,(ii)在所述暴露中的至少一些暴露后,测量由激发的探测器10发射的辐射,(iii)测量在反复激发暴露和发射测量过程中所经过的时间段,以及(iv)将至少一些所测量的发射基于已知的转化算法转化为氧浓度。这样的转化算法是本领域技术人员公知且易于开发的。
以相似方式,探测器10可用于快速、容易、精确并且可靠地监测封闭空间(未显示)内氧浓度的变化,而与封闭空间(未显示)内的相对湿度无关。探测器10可以以与其他氧敏光致发光探测器相同的方式用于监测氧浓度的变化。简言之,探测器10通过如下方式用于监测封闭空间(未显示)内氧浓度的变化:(A)将探测器10置于封闭空间(未显示)内的这样的位置处,在该位置处在染料21的激发和发射波长下的辐射可最小干扰地被透射至发光元件20且被发光元件20接收,而且不会打开封闭件或破坏封闭件的完整性,(B)通过如下步骤确定所述封闭空间(未显示)内随时间推移的氧浓度:(i)使探测器10随时间推移反复暴露于激发辐射,(ii)在所述暴露中的至少一些暴露后,测量由激发的探测器10发射的辐射,(iii)测量在反复激发暴露和发射测量过程中所经过的时间段,以及(iv)将至少一些所测量的发射基于已知的转化算法转化为氧浓度,以及(C)报告以下中的至少之一:(i)至少两个确定的氧浓度和那些报告的浓度之间的时间间隔,和(ii)由在步骤(B)中获得的数据计算的封闭空间内的氧浓度的变化率。用于将测得的发射转化为氧浓度的转化算法是本领域技术人员公知且易于开发的。
由激发的探测器10发射的辐射可以就强度和/或寿命(衰变率、相移或各向异性)进行测量,当寻求通过测量染料21被氧猝灭的程度来建立氧浓度时,对寿命的测量通常优选作为更精确和可靠的测量技术。

Claims (24)

1.一种氧敏发光元件,其包括具有氧敏光致发光染料的玻璃纤维载体基材。
2.根据权利要求1所述的发光元件,其中所述玻璃纤维载体基材为无粘结剂的。
3.根据权利要求1所述的发光元件,其中所述玻璃纤维载体基材包含粘结剂。
4.根据权利要求1所述的发光元件,其中所述玻璃纤维载体基材为玻璃纤维过滤器。
5.根据权利要求1所述的发光元件,其中所述氧敏光致发光染料嵌在可透氧疏水聚合物基质内。
6.根据权利要求5所述的发光元件,其中所述氧敏光致发光染料为过渡金属络合物。
7.根据权利要求6所述的发光元件,其中所述过渡金属络合物选自钌联吡啶、钌二苯基菲咯啉、铂卟啉、钯卟啉、卟啉-酮的发磷光的金属络合物、氮杂卟啉、四苯并卟啉、二氢卟酚,以及铱(III)或锇(II)的长衰变发光络合物。
8.根据权利要求7所述的发光元件,其中所述可透氧聚合物基质选自聚苯乙烯、聚碳酸酯、聚砜和聚氯乙烯。
9.根据权利要求1所述的发光元件,其中所述玻璃纤维载体基材为100微米至5,000微米厚的片材。
10.一种氧敏探测器,其包括层压至结构支撑层上的根据权利要求1所述的发光元件。
11.根据权利要求10所述的氧敏探测器,其还包括在所述结构支撑层的第一主表面上的压敏粘合剂层,由此所述粘合剂层夹在所述结构支撑层和发光元件之间。
12.根据权利要求10所述的氧敏探测器,其中将所述发光元件以固态组合物层压至所述结构支撑层上,其中所述固态组合物包含嵌在可透氧疏水聚合物基质内的氧敏光致发光染料。
13.根据权利要求10所述的氧敏探测器,其中所述探测器在0%至接近100%的分析物气体的相对湿度的变化下具有小于5%的发光寿命变化。
14.一种用于测量封闭空间内的氧浓度的方法,其包括如下步骤:
(a)获得根据权利要求10所述的氧敏探测器,
(b)将所述探测器置于该封闭空间内,以及
(c)通过如下步骤确定所述封闭空间内的氧浓度:
(i)使探测器随时间推移反复暴露于激发辐射,
(ii)在所述暴露中的至少一些暴露后,测量由激发的探测器发射的辐射,
(iii)测量在反复激发暴露和发射测量过程中所经过的时间段,以及
(iv)将至少一些所测量的发射基于已知的转化算法转化为氧浓度。
15.一种用于测量封闭空间内的氧浓度的方法,其包括如下步骤:
(a)获得根据权利要求12所述的氧敏探测器,
(b)将所述探测器置于该封闭空间内,
(c)通过如下步骤确定所述封闭空间内的氧浓度:
(i)使探测器随时间推移反复暴露于激发辐射,
(ii)在所述暴露中的至少一些暴露后,测量由激发的探测器发射的辐射,
(iii)测量在反复激发暴露和发射测量过程中所经过的时间段,以及
(iv)将至少一些所测量的发射基于已知的转化算法转化为氧浓度。
16.根据权利要求14所述的方法,其中所述封闭空间为密封包装的保留室。
17.一种用于监测封闭空间内氧浓度变化的方法,其包括如下步骤:
(a)获得根据权利要求10所述的氧敏探测器,
(b)将所述探测器置于该封闭空间内,
(c)通过如下步骤确定所述封闭空间内随时间推移的氧浓度:
(i)使探测器随时间推移反复暴露于激发辐射,
(ii)在所述暴露中的至少一些暴露后,测量由激发的探测器发射的辐射,
(iii)测量在反复激发暴露和发射测量过程中所经过的时间段,以及
(iv)将至少一些所测量的发射基于已知的转化算法转化为氧浓度,以及
(d)报告以下中的至少之一:(i)至少两个确定的氧浓度和那些报告的浓度之间的时间间隔,和(ii)由在步骤(c)中获得的数据计算的封闭空间内的氧浓度的变化率。
18.一种用于监测封闭空间内氧浓度变化的方法,其包括如下步骤:
(a)获得根据权利要求12所述的氧敏探测器,
(b)将所述探测器置于该封闭空间内,
(c)通过如下步骤确定所述封闭空间内随时间推移的氧浓度:
(i)使探测器随时间推移反复暴露于激发辐射,
(ii)在所述暴露中的至少一些暴露后,测量由激发的探测器发射的辐射,
(iii)测量在反复激发暴露和发射测量过程中所经过的时间段,以及
(iv)将至少一些所测量的发射基于已知的转化算法转化为氧浓度,以及
(d)报告以下中的至少之一:(i)至少两个确定的氧浓度和那些报告的浓度之间的时间间隔,和(ii)由在步骤(c)中获得的数据计算的封闭空间内的氧浓度的变化率。
19.根据权利要求17所述的方法,其中所述封闭空间为密封包装的保留室。
20.一种制备根据权利要求5所述的发光元件的方法,其包括至少如下步骤:
(a)制备涂层混合物,所述涂层混合物包含有机溶剂中的光致发光氧敏染料和可透氧聚合物,
(b)将所述混合物施加在所述玻璃纤维载体基材的第一主表面,以及
(c)使得所述混合物干燥,由此在所述玻璃纤维载体基材上形成固态薄膜涂层,以形成该发光元件。
21.根据权利要求20所述的方法,其中通过将所述玻璃纤维载体基材浸渍在所述混合物的供料中,从而将所述混合物施加在所述玻璃纤维载体基材的第一主表面上。
22.根据权利要求20所述的方法,其中所述混合物包含铂-八乙基卟吩-酮和聚苯乙烯在乙酸乙酯中的溶液。
23.根据权利要求20所述的方法,其中所述聚合物在有机溶剂中的浓度为0.1至20%w/w的范围,染料∶聚合物之比为1∶20至1∶10,000w/w的范围。
24.一种制备光致发光氧敏探测器的方法,其包括如下步骤:
(a)制备根据权利要求20的发光元件,以及
(b)将该发光元件层压至结构支撑层的第一主表面上。
CN201110366889.1A 2010-11-19 2011-11-18 具有对湿度降低的交叉敏感性的光致发光氧探测器 Expired - Fee Related CN102590188B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/950,027 2010-11-19
US12/950,027 US20120129268A1 (en) 2010-11-19 2010-11-19 Photoluminescent oxygen probe with reduced cross-sensitivity to humidity

Publications (2)

Publication Number Publication Date
CN102590188A true CN102590188A (zh) 2012-07-18
CN102590188B CN102590188B (zh) 2016-06-15

Family

ID=45217244

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110366889.1A Expired - Fee Related CN102590188B (zh) 2010-11-19 2011-11-18 具有对湿度降低的交叉敏感性的光致发光氧探测器

Country Status (4)

Country Link
US (1) US20120129268A1 (zh)
EP (1) EP2455746B1 (zh)
JP (1) JP2012112939A (zh)
CN (1) CN102590188B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108700527A (zh) * 2016-02-08 2018-10-23 普森斯精密传感有限公司 光学传感器装置
CN117092079A (zh) * 2023-07-17 2023-11-21 哈尔滨工业大学 一种可视化的呼吸机微涡轮氧浓度测量方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9274060B1 (en) 2011-01-13 2016-03-01 Mocon, Inc. Methods for transmembrane measurement of oxygen concentration and monitoring changes in oxygen concentration within a space enclosed by a membrane employing a photoluminescent transmembrane oxygen probe
US11293866B2 (en) 2012-03-22 2022-04-05 John EASTMAN Fiber optic analyte sensor
US9057687B2 (en) 2012-04-20 2015-06-16 Mocon, Inc. Calibration vial and technique for calibrating a fiber optic oxygen sensing needle
US8658429B1 (en) * 2012-08-06 2014-02-25 Mocon, Inc. Photoluminescent oxygen probe tack
US9945778B2 (en) * 2012-12-05 2018-04-17 Luxcel Biosciences, Ltd Individually and flexibly deployable target-analyte sensitive particulate probes and method of making and using
US9316554B1 (en) 2014-12-23 2016-04-19 Mocon, Inc. Fiber optic analyte sensor with integrated in situ total pressure correction
US10295514B1 (en) 2016-10-17 2019-05-21 Mocon, Inc. Instrument and method for sealed penetration of rigid packaging to measure internal oxygen concentration with an optical oxygen analyzer
JP6997533B2 (ja) * 2017-04-28 2022-01-17 日東電工株式会社 生体センサ用シート
EP3622299A1 (en) * 2017-05-10 2020-03-18 Agilent Technologies, Inc. Real-time cellular or pericellular microenvironmental oxygen control

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1181810A (zh) * 1995-04-17 1998-05-13 美国3M公司 测量残存的可辐射固化的单体或低聚物的方法
US20030068827A1 (en) * 2001-10-05 2003-04-10 Ocean Optics, Inc. Enhanced scattering membranes for improved sensitivity and signal-to-noise of optical chemical sensors, fiber optic oxygen sensor for real time respiration monitoring utilizing same, and method of using sensor
US20070212789A1 (en) * 2006-03-13 2007-09-13 Cryovac, Inc. Non-invasive method of determining oxygen concentration in a sealed package

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4476870A (en) 1982-03-30 1984-10-16 The United States Of America As Represented By The Department Of Health And Human Services Fiber optic PO.sbsb.2 probe
AT377095B (de) * 1982-11-23 1985-02-11 List Hans Sensorelement zur bestimmung des o2-gehaltes einer probe sowie verfahren zur herstellung desselben
US4526752A (en) * 1982-12-16 1985-07-02 Daniel Perlman Oxygen indicator for packaging
CA1261717A (en) * 1982-12-23 1989-09-26 John R. Bacon Method and apparatus for oxygen determination
US5030420A (en) * 1982-12-23 1991-07-09 University Of Virginia Alumni Patents Foundation Apparatus for oxygen determination
US4810655A (en) 1985-07-03 1989-03-07 Abbott Laboratories Method for measuring oxygen concentration
US5006314A (en) * 1986-04-18 1991-04-09 Minnesota Mining And Manufacturing Company Sensor and method for sensing the concentration of a component in a medium
US5196347A (en) * 1986-07-03 1993-03-23 Terumo Kabushiki Kaisha Method for measuring oxygen concentration
EP0312293A3 (en) * 1987-10-16 1990-03-14 O.C.T. Optical Chemical Technologies Limited Sensing device for analysis
US5242835A (en) * 1987-11-03 1993-09-07 Radiometer A/S Method and apparatus for determining the concentration of oxygen
DK163194C (da) * 1988-12-22 1992-06-22 Radiometer As Fremgangsmaade ved fotometrisk in vitro bestemmelse af en blodgasparameter i en blodproeve
US5564419A (en) * 1987-11-25 1996-10-15 Radiometer A/S Method of photometric in vitro determination of the content of oxygen in a blood sample
US5096813A (en) * 1988-07-18 1992-03-17 Massachusetts Institute Of Technology Visual indicator system
US5271073A (en) * 1990-08-10 1993-12-14 Puritan-Bennett Corporation Optical fiber sensor and method of manufacture
US5155149A (en) * 1991-10-10 1992-10-13 Boc Health Care, Inc. Silicone polyurethane copolymers containing oxygen sensitive phosphorescent dye compounds
US5580527A (en) * 1992-05-18 1996-12-03 Moltech Corporation Polymeric luminophores for sensing of oxygen
IL102948A (en) * 1992-08-26 2000-06-01 Zusman Rivka Gel-fiberglass and a method for its preparation
US5441894A (en) * 1993-04-30 1995-08-15 Abbott Laboratories Device containing a light absorbing element for automated chemiluminescent immunoassays
US5718842A (en) 1994-10-07 1998-02-17 Joanneum Reserach Forschungsgesellschaft Mbh Luminescent dye comprising metallocomplex of a oxoporphyrin
US5863460A (en) * 1996-04-01 1999-01-26 Chiron Diagnostics Corporation Oxygen sensing membranes and methods of making same
DE69711634T2 (de) * 1996-07-22 2002-10-17 Novartis Ag Verfahren zur herstellung von platinum oder palladium benzoporphyrinen und cyclohexenoporphyrinen, zwischenprodukte und sauerstoffsensor
US5830138A (en) * 1996-12-16 1998-11-03 Trustees Of The University Of Pennsylvania Intravascular catheter probe for clinical oxygen, pH and CO2 measurement
US6190612B1 (en) * 1998-01-21 2001-02-20 Bayer Corporation Oxygen sensing membranes and methods of making same
US6254831B1 (en) * 1998-01-21 2001-07-03 Bayer Corporation Optical sensors with reflective materials
US6410255B1 (en) 1999-05-05 2002-06-25 Aurora Biosciences Corporation Optical probes and assays
US6689438B2 (en) 2001-06-06 2004-02-10 Cryovac, Inc. Oxygen detection system for a solid article
AU2003202120A1 (en) 2002-01-17 2003-07-30 University College Cork-National University Of Ireland, Cork An assay device and method for chemical or biological screening
US6607300B1 (en) * 2002-09-20 2003-08-19 Marcos Y. Kleinerman Methods and devices for sensing temperature and oxygen pressure with a single optical probe
US7368153B2 (en) 2002-12-06 2008-05-06 Cryovac, Inc. Oxygen detection system for a rigid container
EP1601955B1 (en) 2003-03-07 2013-01-09 Luxcel Biosciences Limited An oxygen sensitive probe and method for measuring oxygen uptake
US7534615B2 (en) 2004-12-03 2009-05-19 Cryovac, Inc. Process for detecting leaks in sealed packages
JP5124751B2 (ja) 2005-04-15 2013-01-23 ラクセル・バイオサイエンシズ・リミテッド 生物学的又は化学的試料の評価
CA2609430A1 (en) 2005-06-02 2006-12-07 Glaxo Group Limited Inductively powered remote oxygen sensor
EP1742039A1 (en) 2005-07-07 2007-01-10 F. Hoffmann-La Roche Ltd. Method for the determination of the concentration of a non-volatile analyte
JP2007232716A (ja) * 2006-02-03 2007-09-13 Tokyo Institute Of Technology 試料における酸素濃度及び/又は酸素分布を測定する方法
US7569395B2 (en) 2006-03-13 2009-08-04 Cryovac, Inc. Method and apparatus for measuring oxygen concentration
US20070243618A1 (en) * 2006-04-11 2007-10-18 Oxysense, Inc. Device and method for non-invasive oxygen sensing of sealed packages
US20080051646A1 (en) 2006-07-24 2008-02-28 Papkovsky Dmitri B Probe for cellular oxygen
US7679745B2 (en) 2006-11-21 2010-03-16 Neptec Optical Solutions Time-resolved fluorescence spectrometer for multiple-species analysis
US8242162B2 (en) 2006-12-15 2012-08-14 Ohio Aerospace Institute Fluorescent aromatic sensors and their methods of use
US7849729B2 (en) 2006-12-22 2010-12-14 The Boeing Company Leak detection in vacuum bags
US20080199360A1 (en) 2007-02-16 2008-08-21 Ocean Optics, Inc. Method and composition for a platinum embedded sol gel optical chemical sensor with improved sensitivity and chemical stability
US20110136247A1 (en) * 2009-12-07 2011-06-09 Dmitri Boris Papkovsky Photoluminescent oxygen probe with reduced cross-sensitivity to humidity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1181810A (zh) * 1995-04-17 1998-05-13 美国3M公司 测量残存的可辐射固化的单体或低聚物的方法
US20030068827A1 (en) * 2001-10-05 2003-04-10 Ocean Optics, Inc. Enhanced scattering membranes for improved sensitivity and signal-to-noise of optical chemical sensors, fiber optic oxygen sensor for real time respiration monitoring utilizing same, and method of using sensor
US20070212789A1 (en) * 2006-03-13 2007-09-13 Cryovac, Inc. Non-invasive method of determining oxygen concentration in a sealed package

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DMITRI B.PAPKOVSKY: "Biosensors on the basis of luminescent oxygen sensor:the use of microporous light-scattering support materials", 《SENSORS AND ACTUATORS B:CHEMICAL》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108700527A (zh) * 2016-02-08 2018-10-23 普森斯精密传感有限公司 光学传感器装置
CN108700527B (zh) * 2016-02-08 2021-05-18 普森斯精密传感有限公司 传感器装置
CN117092079A (zh) * 2023-07-17 2023-11-21 哈尔滨工业大学 一种可视化的呼吸机微涡轮氧浓度测量方法

Also Published As

Publication number Publication date
EP2455746A1 (en) 2012-05-23
JP2012112939A (ja) 2012-06-14
CN102590188B (zh) 2016-06-15
US20120129268A1 (en) 2012-05-24
EP2455746B1 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
CN102590188A (zh) 具有对湿度降低的交叉敏感性的光致发光氧探测器
EP2336753B1 (en) Photoluminescent oxygen probe with reduced cross sensitivity to humidity
Chu et al. Review on recent developments of fluorescent oxygen and carbon dioxide optical fiber sensors
Stich et al. Multiple fluorescent chemical sensing and imaging
US8093055B2 (en) Calibration card for photoluminescent oxygen sensors
Lobnik et al. Optical chemical sensors: design and applications
CN100520372C (zh) 带有参考通道的电光传感器件
Kameda et al. A fast-response pressure sensor based on a dye-adsorbed silica nanoparticle film
EP1965198A1 (en) Dry optical-chemical carbon-dioxide sensor
Papkovsky et al. Biosensors on the basis of luminescent oxygen sensor: the use of microporous light-scattering support materials
JP2006519381A (ja) 光学co2センサおよび一体化されたo2/co2センサ
WO2008146087A2 (en) Inks and coatings for the production of oxygen sensitive elements with improved photostability
Chu Optical fiber oxygen sensor based on Pd (II) complex embedded in sol–gel matrix
EP3184994B1 (en) Optical sensing film for detecting a chemical species, sensor system comprising the same and method of producing the same
US9599596B2 (en) Optical sensor element
Duong et al. Development of fluorescent pH sensors based on a sol-gel matrix for acidic and neutral pH ranges in a microtiter plate
US8834795B2 (en) Optochemical sensor for sensing O2, and method of its preparation
JP2004028650A (ja) 光学的酸素濃度測定方法及び光学的酸素濃度測定用センサ
EP2642278B1 (en) Fiber Optic Analyte Sensor
Cirulnick et al. Optical oxygen sensors with improved lifetime incorporating Titania beads and polydimethylsiloxane coatings
US20150177154A1 (en) Dry laminated photoluminescent probe and method of manufacture and use
JP4494324B2 (ja) 検知センサ及びその使用方法
Koronczi et al. Submicron sensors for ion detection based on measurement of luminescence decay time
US20140034847A1 (en) Photoluminescent oxygen probe tack
McGaughey et al. Development of a multi-analyte integrated optical sensor platform for indoor air-quality monitoring

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160615

CF01 Termination of patent right due to non-payment of annual fee