CN102560632A - 用于非平面酞菁薄膜弱外延生长的固熔体诱导层 - Google Patents

用于非平面酞菁薄膜弱外延生长的固熔体诱导层 Download PDF

Info

Publication number
CN102560632A
CN102560632A CN2010106055692A CN201010605569A CN102560632A CN 102560632 A CN102560632 A CN 102560632A CN 2010106055692 A CN2010106055692 A CN 2010106055692A CN 201010605569 A CN201010605569 A CN 201010605569A CN 102560632 A CN102560632 A CN 102560632A
Authority
CN
China
Prior art keywords
inducing layer
solid solution
epitaxial growth
solution inducing
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010106055692A
Other languages
English (en)
Other versions
CN102560632B (zh
Inventor
闫东航
耿延候
田洪坤
黄丽珍
申剑锋
郭晓东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHANGCHUN FULEBO DISPLAY TECHNOLOGY Co Ltd
Original Assignee
SHANGHAI ZHONGKE LIANHE DISPLAY TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI ZHONGKE LIANHE DISPLAY TECHNOLOGY Co Ltd filed Critical SHANGHAI ZHONGKE LIANHE DISPLAY TECHNOLOGY Co Ltd
Priority to CN201010605569.2A priority Critical patent/CN102560632B/zh
Priority to EP11171083.6A priority patent/EP2468930B1/en
Priority to US13/187,217 priority patent/US8598151B2/en
Priority to JP2011235585A priority patent/JP5743848B2/ja
Publication of CN102560632A publication Critical patent/CN102560632A/zh
Application granted granted Critical
Publication of CN102560632B publication Critical patent/CN102560632B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/54Organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/002Controlling or regulating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/261In terms of molecular thickness or light wave length
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

本发明涉及用于非平面酞菁弱外延生长薄膜的固熔体诱导层以及在该固熔体诱导层上弱外延生长形成的非平面酞菁薄膜及包含该非平面酞菁薄膜的有机薄膜晶体管。固熔体诱导层是由通式I和II所示种的任意两种诱导层分子:(通式I)(通式II)在一定的衬底温度下采用共蒸镀的分子气相沉积方法制成。该固熔体诱导层具有均一结构,其晶胞参数和能级通过调节组分比例进行调控,该固熔体诱导层可弱外延生长高质量的非平面酞菁薄膜以及形成基于此薄膜的高性能晶体管器件。

Description

用于非平面酞菁薄膜弱外延生长的固熔体诱导层
技术领域
本发明涉及用于制备非平面酞菁弱外延薄膜的固熔体诱导层以及基于此外延薄膜的电子器件。
背景技术
有机半导体具有质量轻,容易加工,柔性等特点在信息显示,集成电路,光伏电池和传感器表现出巨大的应用价值。近年来,由于有机电子的迅速发展,对于高载流子迁移率有机半导体材料以及薄膜的需求越来越明显。Haibo Wang等(先进材料杂志,Adv.Mater.,2007,19,2168-2171)首次报道了一种制备有机半导体多晶薄膜的方法——弱外延生长(Weak Epitaxy growth),所制备出的多晶薄膜表现出单晶水平的载流子迁移率。弱外延生长是指采用具有绝缘性质的结晶性有机诱导层(inducing layer)作为衬底,生长有机半导体晶体薄膜的方法。有机半导体晶体的晶格与诱导层晶体的晶格之间存在外延关系,实现有机半导体晶体的取向生长;同时,采用有机诱导层,诱导层分子和有机半导体分子之间存在比较弱的范德华力,半导体分子“站立”在诱导层上生长,使有机半导体的导电优势方向在薄膜平面内,弱外延的有机半导体薄膜具有类单晶的导电性质。非平面酞菁是一类具有高迁移率性质的材料,其晶体堆积通常表现出二维堆积。Haibo Wang等(应用物理快报,Appl.Phys.Lett.,2007,90,253510)采用p-6P为诱导层外延的酞菁氧钒(VOPc)场效应迁移率达到1.5cm2/Vs。然而酞菁氧钒薄膜在六联苯诱导层上的弱外延生长表现出无公度外延关系,这是由于两者晶格失配引起的。非平面金属酞菁的晶胞参数和晶胞类型与平面金属酞菁之间存在显著差异,其对外延诱导层的晶胞的要求也不一样。中国专利(“用于非平面酞菁弱外延生长薄膜的诱导层材料”,中国专利申请号:200910200459.5)中利用化学合成的方法,通过改变棒状分子的基团,提供了一系列新型诱导层材料。通过多种诱导层材料的晶胞参数差异来匹配有机半导体外延材料需要大量的筛选工作,同时微调晶胞参数不容易控制。Norbert Koch等(物理化学杂志B辑,J.Phys.Chem.B,2007,111,14097-14101)指出有机半导体分子共混薄膜的晶格参数表现出随共混比例变化而变化的现象,这种物理共混形成固熔体的方法方便晶胞参数的微调。本发明采用共蒸镀的物理方法制备具有均一结构的固熔体诱导层,用于弱外延生长非平面酞菁薄膜。在一定的衬底温度下共蒸镀形成固熔体诱导层,诱导层薄膜均匀一致无相分离出现,单畴表现出单晶结构,畴间融合形成大尺寸平整薄膜,其晶格常数随组分比例连续变化,并且电子结构随组分比例而变化。
发明内容
为了克服现有技术的不足,本发明的一个目的是提供一种固熔体诱导层,其由以下通式I和II所示中的任意两种诱导层分子:
Figure BSA00000398346700021
(通式I)
Figure BSA00000398346700022
(通式II)
在一定衬底温度下采用共蒸镀方法制备。
本发明的另一个目的是提供一种由上述固熔体诱导层弱外延生长形成的非平面酞菁薄膜。
本发明的又一个目的是提供一种以固熔体诱导层弱外延生长的非平面酞菁薄膜为有机半导体层的有机薄膜晶体管。
本发明的原理是采用共蒸镀的分子气相沉积方法制备固熔体诱导层。两种单质诱导层分子在一定衬底温度下共蒸镀后形成具有类单晶结构的大尺寸均匀平整固熔体薄膜,通过组分比例调控固熔体薄膜的晶胞参数,同时固熔体薄膜的电子结构不同于各单组分的电子结构。
本发明的优点在于其一是诱导层薄膜晶胞参数可通过组分比例调控,从而调控诱导层与非平面酞菁之间的晶格匹配,利于生长高质量的非平面酞菁薄膜。
另一方面固熔体诱导层薄膜的电子结构通过组分比例可调控。由于诱导层与非平面酞菁之间常常具有异质结效应,电子结构的变化导致诱导层与非平面酞菁之间的异质结效应变化,有利于调节非平面酞菁薄膜晶体管器件性能。
本发明中用于构成固熔体薄膜的诱导层分子为中国专利(“用于非平面酞菁弱外延生长薄膜的诱导层材料”,中国专利申请号:200910200459.5)中提供的分子,其具有以下通式:
Figure BSA00000398346700031
(通式I)
(通式II)
通式I中的Ar为芳香共轭基团或以下结构之一:
Figure BSA00000398346700041
n=2(5),3(6),4(7),
通式I和II中的R1为氢原子(H)或氟原子(F),R2为氢原子(H)或氟原子(F)。
通式I中的Ar为芳香共轭基团时,可以包括以下结构:
诱导层的分子有2,7-二(4-联苯基)-菲(BPPh),2,7-二(4-联苯基)-硫芴(BPBTB),2,6-二(4-联苯基)-苯并[1,2-β:4,5-β′]二噻吩(BPTBT),2,5-二(4-联苯基)-[3,2-β]并二噻吩(BPTT),5,5″-二(4-联苯基)-2,2′:5′,2″-三噻吩(BP3T),5,5′″-二(4-联苯基)-2,2′:5′,2″:5″,2′″-四噻吩(BP4T),1,1′:4′,1″:4″,1′″:4″″,1″″:4″″,1′″″:4′″″,1″″″:4″″″,1″″″L八联苯(p8P),2,5-二(4-1,1′:4′,1″-三联苯基)-噻吩(3PT),5,5′-二(4-1,1′:4′,1″-三联苯基)-2,2′-二噻吩(3P2T),2,5-二(4-1,1′:4′,1″-三联苯基)-[3,2-β]并二噻吩(3PTT),2,7-二(4-4′-氟代联苯基)-菲(F2-BPPh),2,7-二(4-4′-氟代联苯基)-硫芴(F2-BPBTB),2,6-二(4-4′-氟代联苯基)-苯并[1,2-β:4,5-β′]二噻吩(F2-BPTBT),2,5-二(4-4′-氟代联苯基)-[3,2-b]并二噻吩(F2-BPTT),5,5′-二(4-4′-氟代联苯基)-2,2′-二噻吩(F2-BP2T),5,5″-二(4-4′-氟代联苯基)-2,2′:5′,2″-三噻吩(F2-BP3T),5,5′″-二(4-4′-氟代联苯基)-2,2′:5′,2″:5″,2′″-四噻吩(F2-BP4T),4,4′″″-二(4-氟苯基)-1,1′:4′,1″:4″,1′″:4′″,1″″:4″″,1′″″-六联苯(F2-p8P),2,5-二(4-4″-氟代-1,1′:4′,1″-三联苯基)-噻吩(F2-3PT),5,5′-二(4-4″-氟代-1,1′:4′,1″-三联苯基)-2,2′-二噻吩(F2-3P2T),2,5-二(4-4″-氟代-1,1′:4′,1″-三联苯基)-[3,2-β]并二噻吩(F2-3PTT),2,7-二(4-3′,5′-二氟代联苯基)-菲(F4-BPPh),2,7-二(4-3′,5′-二氟代联苯基)-硫芴(F4-BPBTB),2,6-二(4-3′,5′-二氟代联苯基)-苯并[1,2-β:4,5-β′]二噻吩(F4-BPTBT),2,5-二(4-3′,5′-二氟代联苯基)-[3,2-β]并二噻吩(F4-BPTT),5,5′-二(4-3′,5′-二氟代联苯基)-2,2-二噻吩(F4-BP2T),5,5″-二(4-3′,5′-二氟代联苯基)-2,2′:5′,2″-三噻吩(F4-BP3T),5,5′″-二(4-3′,5′-二氟代联苯基)-2,2′:5′,2″:5″,2′″-四噻吩(F4-BP4T),4,4′″″-二(3,5-二氟代苯基)-1,1′:4′,1″:4″,1′″:4′″,1″″:4″″,1′″″-八联苯(F4-p8P),2,5-二(4-3″,5″-二氟代-1,1′:4′,1″-三联苯基)-噻吩(F4-3PT),5,5′-二(4-3″,5″-二氟代-1,1′:4′,1″-三联苯基)-2,2′-二噻吩(F4-3P2T),2,5-二(4-3″,5″-二氟代-1,1′:4′,1″-三联苯基)-[3,2-β]并二噻吩(F4-3PTT),5,5′″-二苯基-2,2′:5′,2″:5″,2′″-四噻吩(P4T),5,5′″-二(4-氟苯基)-2,2′:5′,2″:5″,2′″-四噻吩(F2-P4T)和5,5′″-二(3,5-二氟苯基)-2,2′:5′,2″:5″,2′″-四噻吩(F4-P4T)
根据固熔体诱导层中材料对的选择,分为以下几种类型,
类型一,两个诱导层分子均以苯为端基即R1,R2为氢原子,中间基团变化,例如:BPPh∶BPTT,BPPh∶BP2T,BPPh∶6P,BPPh∶BPTBT,BPPh∶BPBTB,BPPh∶BP3T,BPTT∶BPTBT,BPTT∶3PT,BP3T∶3PT,p6P∶p8P,BP3T∶BP4T,BPTBT∶3PTT,3PTT∶p8P。
类型二,一个诱导层以苯为端基,另一个诱导层分子以F取代的苯为端基即R1或者R2为氟原子,中间基团可相同或者不同,例如:P4T∶F2-P4T,P4T∶F4-P4T,BP3T∶F2-BP3T,BP3T∶F4-BP3T,BPPh∶F2-BPPh,BPPh∶F4-BPPh,BPTT∶F2-BPTT,BPTT∶F4-BPTT,BP4T∶F2-BP4T,BP4T∶F4-BP4T,BPTBT∶F2-BPTBT,BPTBT∶F4-BPTBT,p8P∶F2-p8P,3PT∶F2-3PT,3P2T∶F2-3P2T,3PTT∶F2-3PTT,BPTT∶F2-BPPh,BPPh∶F2-BPTT。
类型三,组成固溶体的诱导层分子均以F取代苯为端基,中间基团可相同或者不同,例如:F2-BPPh∶F4-BPPh,F2-BPTT∶F4-BPTT,F2-BP3T∶F4-BP3T,F2-BPTBT∶F4-BPTBT,F2-3PT∶F4-3PT,F2-3PTT∶F4-3PTT,F2BP3T∶F2BP4T,F2-BPPh∶F2-BPTT,F2-BPBTB∶F2∶BPTBT。
本发明固熔体诱导层所用诱导层分子可以是上述诱导层分子的任意两种或其组合。
本发明的固熔体诱导层中所用两种诱导层分子可以任意比例共蒸镀。
本发明的共蒸镀是在气相沉积中同时加热两个样品源,使两种分子同时沉积至衬底上,通过调整两个样品源的蒸发速率来调控薄膜的组分比例。
附图说明
图1a是采用共蒸镀制备的2.5内米组分比例为(2∶1)的BPTT∶BPPh固熔体诱导层薄膜原子力高度图;
图1b是采用共蒸镀制备的2.5内米组分比例为(1∶1)的BPTT∶BPPh固熔体诱导层薄膜原子力高度图;
图1c是采用共蒸镀制备的2.5内米组分比例为(1∶2)的BPTT∶BPPh固熔体诱导层薄膜原子力高度图;
图2a是采用共蒸镀制备的20纳米不同比例BPTT∶BPPh固熔体诱导层薄膜平面外X射线衍射谱;
图2b是采用共蒸镀制备的20纳米不同比例BPTT∶BPPh固熔体诱导层薄膜(001)晶面间距与组分比例的关系图;
图3a是采用共蒸镀制备的5纳米不同比例BPTT∶BPPh固熔体诱导层薄膜平面内掠入射X射线衍射谱(GIXD);
图3b是采用共蒸镀制备的5纳米不同比例BPTT∶BPPh固熔体诱导层薄膜(110)晶面间距与组分比例的关系图;
图4a是2.5内米以(1∶2)比例共蒸镀的BPTT∶BPPh固熔体诱导层薄膜选区电子衍射及其相应的电子显微形貌图;
图4b是2.5纳米以(2∶1)比例共蒸镀的BPTT∶BPPh固熔体诱导层薄膜选区电子衍射及其相应的电子显微形貌图;
图5是BPTT∶BPPh固熔体诱导层HOMO能级与组分比例关系;
图6a是采用2.5内米组分比例(2∶1)共蒸镀的BPTT∶BPPh外延生长20纳米VOPc原子力形貌图;
图6b是采用2.5纳米组分比例(1∶1)共蒸镀的BPTT∶BPPh外延生长20纳米VOPc原子力形貌图;
图6c是采用2.5纳米组分比例(1∶2)共蒸镀的BPTT∶BPPh外延生长20纳米VOPc原子力形貌图;
图7a是以固熔体诱导层BPTT∶BPPh外延生长的非平面酞菁薄膜晶体管结构图,其中:(1)源/漏电极,(2)有机半导体层,(3)固熔体诱导层,(4)绝缘层,(5)栅电极,(6)衬底;
图7b是2.5纳米组分比例(2∶1)共蒸镀BPTT∶BPPh外延生长VOPc薄膜晶体管转移曲线;
图7c是2.5纳米组分比例(1∶1)共蒸镀BPTT∶BPPh外延生长VOPc薄膜晶体管转移曲线;
图7d是2.5纳米组分比例(1∶2)共蒸镀BPTT∶BPPh外延生长VOPc薄膜晶体管转移曲线;
图8a是不同比例诱导层外延VOPc薄膜晶体管迁移率与诱导层比例关系;
图8b是不同比例诱导层外延VOPc薄膜晶体管阈值电压与诱导层比例关系;
图9a是2.5纳米组分比例为(2∶1)的P4T∶F2-P4T固熔体诱导层薄膜原子力高度图;
图9b是2.5纳米组分比例为(1∶1)的P4T:F2-P4T固熔体诱导层薄膜原子力高度图;
图9c是2.5纳米组分比例为(1∶2)的P4T∶F2-P4T固熔体诱导层薄膜原子力高度图;
图10是采用共蒸镀制备的5纳米不同比例P4T∶F2-P4T固熔体诱导层薄膜平面内掠入射X射线衍射谱(GIXD);
图11a是2.5内米(2∶1)共蒸镀的P4T∶F2-P4T固熔体诱导层薄膜选区电子衍射及其相应的电子显微形貌图;
图11b是2.5内米(1∶1)共蒸镀的P4T∶F2-P4T固熔体诱导层薄膜选区电子衍射及其相应的电子显微形貌图;
图11c是2.5内米(1∶2)共蒸镀的P4T∶F2-P4T固熔体诱导层薄膜选区电子衍射及其相应的电子显微形貌图;
图12a是不同比例P4T∶F2-P4T固熔体诱导层外延生长VOPc薄膜晶体管器件迁移率与诱导层组分比例关系;
图12b是不同比例P4T∶F2-P4T固熔体诱导层外延生长VOPc薄膜晶体管器件阈值电压与诱导层组分比例关系;
图13是2.5纳米(1∶1)共蒸镀的F2-BP3T∶F4-BP3T诱导层薄膜原子力高度形貌图;以及
图14是2.5纳米(1∶1)共蒸镀的F2-BP3T∶F4-BP3T诱导层外延VOPc薄膜晶体管转移特性曲线。
具体实施方式
下面结合实施例说明本发明。
实施例1:
实验所用衬底是商业产品康宁7059玻璃基板(6),从美国corning公司购买,衬底经过清洗后使用。实验所用非平面金属酞菁是商业产品,由美国Aldrich公司购买,经过升华纯化后使用。实验所用诱导层材料经过升华纯化后使用。
首先,在康宁7059玻璃基板(6)上射频磁控溅射方法镀上一层Al/Mo/Nd合金膜,溅射的条件为:本底真空2x10-3Pa,Ar气气压1Pa,射频功率500W,并光刻成栅极(5),然后采用化学气相沉积方法生长厚度为300纳米的氮化硅为绝缘层(4)。然后,在氮化硅表面沉积1-3个分子层厚度的固熔体诱导层薄膜(3),具体方法为将两种单质分子BPTT和BPPh分别置于两个样品源中,同时加热两个源使两种分子同时沉积至绝缘层(4)上,通过调整两个源的蒸发速率来调控薄膜的组分比例,沉积过程中真空度为10-4帕,基底温度为230℃。然后,在诱导层上沉积20纳米的非平面金属酞菁作为有机半导体层(2),真空度和基底温度与制备诱导层(3)相同。最后采用真空热蒸镀的方法在半导体晶体薄膜上沉积60纳米Au并形成源/漏电极(1),热蒸镀的真空度为10-4帕。
图1为2.5纳米不同共蒸镀比例的BPTT∶BPPh诱导层薄膜原子力形貌,在实验所有组分比例下薄膜呈现层状生长,晶畴与晶畴融合,形成晶畴尺寸大,连续且平滑的薄膜,适合于上层半导体的外延生长。
图2a为20纳米不同比例的BPTT∶BPPh薄膜平面外x射线衍射图,薄膜表现处一系列(001)衍射峰,可见薄膜是高有序薄膜,同时每个衍射峰呈现单一峰,说明共蒸镀薄膜均匀一致,具有类单晶结构,是一种固熔体薄膜,图2b结果表明衍射峰位置随着组分比例连续变化。图3为20纳米不同比例的BPTT∶BPPh薄膜的平面内掠入射x射线衍射图,所有比例的共混薄膜表现出一组单一结构衍射峰,且其薄膜结构参数随组分比例线性变化。图4a和图4b分别为组分比例BPTT∶BPPh为(1∶2)和(2∶1)的固熔体薄膜选区电子衍射图,单一晶畴表现出类单晶衍射图谱,进一步表明共蒸镀薄膜是结构不同于单组分薄膜的固熔体薄膜。
图5为不同组分比例共蒸镀薄膜HOMO能级测试结果,其HOMO值介于两个单质材料之间,随着组分比例变化。
图6分别为组分比例BPTT∶BPPh为(2∶1),(1∶1),(1∶2)的固熔体诱导层外延生长VOPc薄膜形貌图。VOPc均为层加岛生长方式。图7a给出以图6薄膜为有机半导体层的晶体管器件结构,图7b,c,d为相应的晶体管转移曲线,薄膜表现出高迁移率。图8a给出不同组分比例诱导层外延的VOPc薄膜晶体管迁移率与组分比例关系,薄膜迁移率在中间比例获得最高值。图8b为阈值电压与组分比例关系。
实施例2:
实验方法与例1一样,诱导层材料分别为P4T,F2-P4T。
图9为2.5纳米不同组分比例的P4T∶F2-P4T诱导层薄膜形貌图。薄膜呈现层状生长方式,晶畴中间表现出很好的融合,形成大尺寸,平滑的薄膜,适合作为外延的诱导层。图10为上述组分薄膜5纳米的平面内XRD衍射图,所有组分比例的薄膜表现出几乎一样的晶面间距值。由于P4T与F2-P4T的晶胞参数非常近似。图11给出P4T∶F2-P4T共混组分比例分别为(2∶1),(1∶1),(1∶2)的薄膜选区电子衍射,每个薄膜单畴表现出类单晶的衍射图。
图12a为固熔体诱导层薄膜外延生长VOPc薄膜晶体管迁移率随诱导层组分比例关系变化图。其迁移率随诱导层组分比例线性增加,共蒸镀的介于两个单质材料之间。图11给出了阈值电压变化,同样的,表现出随诱导层组分比例线性变化的趋势。
实施例3:
实验方法与例1一样,诱导层材料分别为F2-BP3T,F4-BP3T。
图13为2.5纳米共蒸镀的F2-BP3T∶:F4-BP3T(组分比例为1∶1)薄膜形貌
图14给出上述薄膜外延生长VOPc薄膜晶体管器件性能
表1给出不同材料组合共蒸镀的固熔体诱导层薄膜以及其外延非平面酞菁薄膜晶体管性能
Figure BSA00000398346700121
Figure BSA00000398346700131
Figure BSA00000398346700141
Figure BSA00000398346700151
Figure BSA00000398346700161
本发明不限于上述实施例。一般来说,在此公开的用于弱取向外延生长的固熔体诱导层薄膜可以用于其他有机半导体元件中,形成二维和三维的集成器件中的元件。这些集成器件可能应用在集成电路、有源矩阵显示、传感器和光伏电池方面。使用基于本发明的电子元件容易大面积加工和制备。

Claims (10)

1.一种用于非平面酞菁弱外延生长薄膜的固熔体诱导层,其特征在于,所述固熔体诱导层由两种诱导层分子在一定基底温度下共蒸镀形成,所述固熔体诱导层薄膜均匀一致,单畴呈现类单晶结构;
所述诱导层分子为具有以下结构通式的分子中的任意两种:
Figure FSA00000398346600011
(通式I)
Figure FSA00000398346600012
(通式II)
通式I中的Ar为芳香共轭基团或以下结构之一:
Figure FSA00000398346600013
n=2(5),3(6),4(7),
通式I和II中的R1为氢原子(H)或氟原子(F),R2为氢原子(H)或氟原子(F)。
2.如权利要求1所述的用于非平面酞菁弱外延生长薄膜的固熔体诱导层,其特征在于,通式I中的Ar包括以下结构:
Figure FSA00000398346600021
3.如权利要求1所述的用于非平面酞菁弱外延生长薄膜的固熔体诱导层,其特征在于,所述两种诱导层分子按以下三种类型组合,类型一,两种分子均以苯为端基,中间基团不同,类型二,一种分子以苯基为端基,另一种分子以F取代苯基为端基,中间基团相同或者不同,类型三,两种分子均以F取代苯基为端基,中间基团相同或者不同。
4.如权利要求1或2所述的用于非平面酞菁弱外延生长薄膜的固熔体诱导层,其特征在于,所述基底的温度为150℃至240℃
5.如权利要求1-3中任一项所述的用于非平面酞菁弱外延生长薄膜的固熔体诱导层,其特征在于,所述共蒸镀采用气相沉积方法同时沉积所述两种诱导层分子。
6.如权利要求1-4中任一项所述的用于非平面酞菁弱外延生长薄膜的固熔体诱导层,其特征在于,所述气相沉积为分子气相沉积方法,沉积过程中真空度为10-4至10-5帕。
7.如权利要求1-5中任一项所述的用于非平面酞菁弱外延生长薄膜的固熔体诱导层,其特征在于,所述在共蒸镀所述诱导层分子前,衬底上沉积有氮化硅层,其厚度为200到500纳米。
8.如权利要求1-6中任一项所述的用于非平面酞菁弱外延生长薄膜的固熔体诱导层,其特征在于,在衬底上共蒸镀的固熔体诱导层厚度为1-3个分子层。
9.一种非平面酞菁薄膜,其特征在于,其由非平面酞菁在权利要求1-7任一所述的固熔体诱导层上弱外延生长而形成,并与所述固熔体诱导层具有取向关系。
10.一种有机薄膜晶体管,其特征在于,其包含权利要求8所述的在固熔体诱导层(3)上弱外延生长的非平面酞菁薄膜,以及所述固熔体诱导层上弱外延生长的非平面酞菁薄膜是所述晶体管中的有机半导体层(2)。
CN201010605569.2A 2010-12-21 2010-12-21 用于非平面酞菁薄膜弱外延生长的固熔体诱导层 Active CN102560632B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201010605569.2A CN102560632B (zh) 2010-12-21 2010-12-21 用于非平面酞菁薄膜弱外延生长的固熔体诱导层
EP11171083.6A EP2468930B1 (en) 2010-12-21 2011-06-22 Solid solution inducing layer for weak epitaxy growth of non-planar phthalocyanine
US13/187,217 US8598151B2 (en) 2010-12-21 2011-07-20 Solid solution inducing layer for weak epitaxy growth of non-planar phthalocyanine
JP2011235585A JP5743848B2 (ja) 2010-12-21 2011-10-27 非平面フタロシアニンの弱エピタキシー成長用の固溶体誘起層

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010605569.2A CN102560632B (zh) 2010-12-21 2010-12-21 用于非平面酞菁薄膜弱外延生长的固熔体诱导层

Publications (2)

Publication Number Publication Date
CN102560632A true CN102560632A (zh) 2012-07-11
CN102560632B CN102560632B (zh) 2016-06-29

Family

ID=44674137

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010605569.2A Active CN102560632B (zh) 2010-12-21 2010-12-21 用于非平面酞菁薄膜弱外延生长的固熔体诱导层

Country Status (4)

Country Link
US (1) US8598151B2 (zh)
EP (1) EP2468930B1 (zh)
JP (1) JP5743848B2 (zh)
CN (1) CN102560632B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105336880A (zh) * 2015-10-23 2016-02-17 长春工业大学 一种基于双层诱导技术制备红荧烯薄膜的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3664069B2 (ja) * 1999-12-24 2005-06-22 松下電器産業株式会社 有機電界発光素子
JP2003017276A (ja) * 2001-04-27 2003-01-17 Semiconductor Energy Lab Co Ltd 発光装置及びその作製方法
JP3946484B2 (ja) * 2001-10-22 2007-07-18 独立行政法人科学技術振興機構 光電流増倍装置及びその増倍率制御方法
US6869821B2 (en) * 2002-12-30 2005-03-22 Xerox Corporation Method for producing organic electronic devices on deposited dielectric materials
JP4220951B2 (ja) * 2004-09-24 2009-02-04 国立大学法人広島大学 新規な有機半導体化合物、その製造方法およびそれを用いた有機半導体デバイス
US7671448B2 (en) * 2005-03-24 2010-03-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including two organic semiconductor layers
CN100555702C (zh) * 2006-04-29 2009-10-28 中国科学院长春应用化学研究所 有机半导体晶体薄膜及弱取向外延生长制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUNLIANG YANG ET AL.: "Weak epitaxy growth of organic semiconductor thin films", 《CHEM. SOC. REV.》 *
T. SHIMADA ET AL.: "Energy-transferred photoluminescence from thiophene/phenylene oligomer thin films", 《JOURNAL OF LUMINESCENCE》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105336880A (zh) * 2015-10-23 2016-02-17 长春工业大学 一种基于双层诱导技术制备红荧烯薄膜的方法
CN105336880B (zh) * 2015-10-23 2017-09-12 长春工业大学 一种基于双层诱导技术制备红荧烯薄膜的方法

Also Published As

Publication number Publication date
US8598151B2 (en) 2013-12-03
JP2012134457A (ja) 2012-07-12
JP5743848B2 (ja) 2015-07-01
EP2468930A2 (en) 2012-06-27
EP2468930A3 (en) 2014-01-01
CN102560632B (zh) 2016-06-29
EP2468930A9 (en) 2012-08-22
EP2468930B1 (en) 2016-11-23
US20120153265A1 (en) 2012-06-21

Similar Documents

Publication Publication Date Title
He et al. Crystal alignment for high performance organic electronics devices
CN100555702C (zh) 有机半导体晶体薄膜及弱取向外延生长制备方法和应用
Tao et al. The effect of seed layer on morphology of ZnO nanorod arrays grown by hydrothermal method
Lee et al. Abrupt heating-induced high-quality crystalline rubrene thin films for organic thin-film transistors
Tian et al. An asymmetric oligomer based on thienoacene for solution processed crystal organic thin-film transistors
Jiang et al. Controllable growth of C 8-BTBT single crystalline microribbon arrays by a limited solvent vapor-assisted crystallization (LSVC) method
CN103194729A (zh) 金属硫属化物薄膜的制备方法
CN107109697B (zh) 在衬底表面外延生长超薄有机晶体层的方法及其应用
Hu et al. Influence of different dielectrics on the first layer grain sizes and its effect on the mobility of pentacene-based thin-film transistors
CN108193276A (zh) 制备大面积单一取向六方氮化硼二维原子晶体的方法
Du et al. Growth of rubrene crystalline thin films using thermal annealing on DPPC LB monolayer
Chen et al. Intrinsic charge carrier mobility in single-crystal OFET by “fast trapping vs. slow detrapping” model
Strickland et al. Low-temperature growth and ion-assisted deposition
Mori et al. N-type field-effect transistor based on a fluorinated-graphene
Liu et al. Induced crystallization of rubrene with diazapentacene as the template
CN102560632A (zh) 用于非平面酞菁薄膜弱外延生长的固熔体诱导层
Nagashima et al. Organic field-effect transistors based on naphthyl end-capped divinylbenzene: Performance, stability and molecular packing
CN108374200A (zh) 一种纳米线状有机单晶晶畴的制备方法
CN104651777A (zh) 二维硫族晶体的印刷式定点生长方法
Zhu et al. Improving the performance of TIPS-pentacene thin film transistors via interface modification
Xu et al. Organic field-effect transistors fabricated with N, N′-substituted dialkyl-1, 3, 8, 10-tetramethylquinacridone compounds
CN103255480A (zh) 大尺寸6,13-双(三异丙基甲硅烷基乙炔基)并五苯薄晶体的制备方法
CN102208364A (zh) 与卷对卷技术兼容的大面积有机薄膜晶体管列阵制备方法
Liu et al. Spiral growth mode in DMDPC organic thin film transistors by physical vapor deposition
CN105552232A (zh) 一种高沸点溶剂调控的树状红荧烯晶体薄膜制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
ASS Succession or assignment of patent right

Owner name: CHANGCHUN FULEBO DISPLAY TECHNOLOGY CO., LTD.

Free format text: FORMER OWNER: SHANGHAI ZHONGKE LIANHE DISPLAY TECHNOLOGY CO., LTD.

Effective date: 20130815

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 201203 PUDONG NEW AREA, SHANGHAI TO: 130103 CHANGCHUN, JILIN PROVINCE

TA01 Transfer of patent application right

Effective date of registration: 20130815

Address after: 130103, Shunda Road 333, hi tech Zone, Jilin, Changchun

Applicant after: Changchun Fulebo Display Technology Co., Ltd.

Address before: 201203, 22, Lane 572, Lane 115, blue wave road, Shanghai, Pudong New Area

Applicant before: Shanghai Zhongke Lianhe Display Technology Co., Ltd.

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant