CN102527416A - 具有磷酸铜修饰表面的半导体光催化剂及其制备方法 - Google Patents

具有磷酸铜修饰表面的半导体光催化剂及其制备方法 Download PDF

Info

Publication number
CN102527416A
CN102527416A CN201110423915XA CN201110423915A CN102527416A CN 102527416 A CN102527416 A CN 102527416A CN 201110423915X A CN201110423915X A CN 201110423915XA CN 201110423915 A CN201110423915 A CN 201110423915A CN 102527416 A CN102527416 A CN 102527416A
Authority
CN
China
Prior art keywords
catalyst
phosphate
semiconductor light
semiconductor
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201110423915XA
Other languages
English (en)
Inventor
许宜铭
陈海航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201110423915XA priority Critical patent/CN102527416A/zh
Publication of CN102527416A publication Critical patent/CN102527416A/zh
Priority to PCT/CN2012/086791 priority patent/WO2013091522A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1817Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with copper, silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种具有磷酸铜修饰表面的半导体光催化剂。它包括半导体粉体颗粒,所述半导体粉体颗粒外设有磷酸铜,所述磷酸铜以固体粉末形式均匀的分散在半导体粉体颗粒表面。本发明的光催化速率显著提高。本发明还提供以上半导体光催化剂的制备方法。本发明以半导体光催化剂为前驱体,以磷酸铜为修饰材料,将磷酸铜颗粒通过湿法化学的方法均匀的沉积分散于半导体粉体颗粒表面。在不改变前驱体半导体自身的晶体结构、晶相组成和平均粒径的情况下制备出具有磷酸铜修饰表面的半导体光催化剂。原料成本低廉,设备简单,易于操作;所得光催化剂相比于单纯的半导体光催化剂本身,其紫外可见光催化活性明显提高,同时对有机污染物的吸附能力也有所提升。

Description

具有磷酸铜修饰表面的半导体光催化剂及其制备方法
 
技术领域
本发明涉及一种半导体纳米光催化剂及其制备方法,属于催化技术领域,更加具体的是本发明提供了一种具有磷酸铜修饰表面且具有高催化活性的半导体纳米粉体光催化剂及其制备方法。
背景技术
21世纪,能源短缺和环境污染日益严峻,已成为当今世界所面临的主要问题。因此,各国政府、科学家和技术人员积极采取措施,加以应对。在诸多处理方法中,半导体光催化技术格外引人注目,它能直接利用包括太阳光在内的各种途径的紫外光,在室温条件下就能使各种有机的或无机的污染物发生彻底降解和矿化,从而达到清除环境污染物的目的。该项技术具有能耗低、易操作、除净度高等特点,尤其对一些特殊的污染物,光催化技术更具有其他技术无法比拟的优点,且无二次污染。目前,光催化技术已经成为各国高科技竞争中的一个热点,具有广泛的应用前景。
1972年,Fujishima和Honda发现,受紫外光激发的金红石相二氧化钛单晶电极能在常温下使水发生分解。1976年,Carey等发现,受紫外光激发的二氧化钛也能使有毒的联苯和氯联苯发生降解。一年后,Frank和Bard发现二氧化钛可以光催化降解水中的氰化物,并提出了将光催化技术应用于环境净化的建议。此后,治理环境污染成为半导体光催化领域中最为活跃的研究方向。但是TiO2本身还是存在一些明显的不足,如1.TiO2的禁带宽度过大(E=3.2Vvs NHE左右),只能受紫外光激发;2.TiO2受激发产生的电子空穴对容易复合,导致了光催化效率的降低。随着研究的深入,许多人提出了在TiO2上掺杂或负载某些元素或化合物来提高其光催化活性或使其能扩展到可见光领域。
1999年,P.A.Connor等发现TiO2能吸附溶液中的磷酸阴离子,而且磷酸阴离子主要以双齿结构吸附在TiO2表面。随后,2003年,Hidaka等研究了磷酸阴离子与TiO2一起降解染料,同样发现磷酸阴离子较好的吸附在TiO2表面,并有效地提高了光催化降解染料的效率。随着后续工作的展开,磷酸阴离子修饰TiO2表面所得的光催化剂越来越受到人们的关注:2007年,Wu等成功把此催化剂应用到生物中用来检测肾上腺素等生命大分子的含量。后来,Zhao等系统的研究了这个光催化剂的催化机理,他们认为磷酸阴离子吸附在TiO2表面,主要作用是吸附有机物和水分子等物质,并提高了羟基自由基的数量,从而导致了催化活性大大提高。但是,磷酸阴离子是吸附到TiO2表面而不是固载在催化剂上,所以Xu等利用磷酸钙与TiO2混合,使磷酸钙固载在TiO2上,也有效的提高了光催化活性。由此可见,TiO2表面吸附磷酸阴离子,是提高二氧化钛光催化效率的一个重要手段,而TiO2表面修饰金属磷酸盐更加有效的提高其光催化效率。
随着光催化领域的不断深入研究,人们不单单只是局限于TiO2的研究,1984年Nenadovic等发现一些电子受体与WO3一起作用可以明显提高WO3的可见光光催化活性;后来, Kudo等发现单斜晶相BiVO4在有AgNO3电子受体存在时具有很高的氧化水生成O2的能力。随着工作的不断展开,半导体光催化剂Fe2O3、ZnO等都相继被发现是较好的半导体光催化剂前驱体。
综上所述,金属磷酸盐作为电子受体或是吸附剂,修饰在半导体光催化剂表面都能很好的提高光催化效率,而磷酸铜修饰在半导体光催化剂的表面能大幅的提高光催化效率,且具有很高的应用前景。
本发明所采用参考资料:
M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann. Chem. Rev. 1995, 95, 69-96;
P.A.Connor, A.J.McQuilla., Langmuir 1999,15, 2916-2921;
Feng Chen, Jincai Zhao. Hisao Hidaka. Res. Chem. Intermed 2003, 29,7-9, 733-748;
Hsin-Pin Wu, Tian-Lu Cheng, Wei-Lung Tseng. Langmuir 2007, 23, 7880-7885;
Dan Zhao, Chuncheng Chen, Yifeng Wang, Hongwei Ji, Wanhong Ma, Ling Zang, Jincai Zhao. J. Phys. Chem. C 2008, 112, 5993-6001;
Shan Cong, Yiming Xu. J. Hazard. Mater. 2011, 05, 043.
M. T. Nenadovic, T. Rajh, O. L. Micic, A. J. Nozik. J. Phys. Chem. 1984, 88, 5827-5830.
Akihiko Kudo, Keiko Omori, Hideki Kato. J. Am. Chem. Soc. 1999, 121, 11459-11467.
发明内容
本发明的目的在于提供一种具有高催化活性的具有磷酸铜修饰表面的半导体光催化剂。本发明的目的通过以下技术措施实现:
它包括半导体粉体颗粒,所述半导体粉体颗粒外设有磷酸铜,所述磷酸铜以固体粉末形式均匀的分散在半导体粉体颗粒表面。
通过以上技术方案,本发明的光催化速率显著提高。
 
本发明的目的还在于提供具有磷酸铜修饰表面的半导体光催化剂的制备方法,本发明的目的通过以下技术措施实现:
本发明以半导体光催化剂为前驱体,以磷酸铜为修饰材料,将磷酸铜颗粒通过湿法化学的方法均匀的沉积分散于半导体粉体颗粒表面。
通过以上技术方案,本发明在不改变前驱体半导体自身的晶体结构、晶相组成和平均粒径的情况下制备出具有磷酸铜修饰表面的半导体光催化剂。本发明使用的原料成本低廉,设备简单,易于操作;所得光催化剂相比于单纯的半导体光催化剂本身,其紫外可见光催化活性明显提高,同时对有机污染物的吸附能力也有所提升。
 
附图说明
图1为表面有磷酸铜修饰的半导体光催化剂的结构示意图;
图2为实施例5、11的X射线衍射图谱(与纯TiO2比较);
图3为实施例5、11对有机污染物(2,4-二氯苯酚)的蓝缪尔吸附等温线(与纯TiO2比较);
图4为实施例1、3、5、11的紫外光降解苯酚曲线(与纯TiO2比较);
图5为实施例12、14的紫外光降解X3B曲线(与纯WO3比较);
图6为实施例15的紫外光降解X3B曲线(与纯Fe2O3比较);
图7为实施例16、17的紫外光降解苯酚曲线(与纯ZnO比较);
图8为具有磷酸铜修饰表面的半导体光催化剂的制备方法一的流程图;
图9为具有磷酸铜修饰表面的半导体光催化剂的制备方法二的流程图;
图10为具有磷酸铜修饰表面的半导体光催化剂的制备方法三的流程图。
 
具体实施方式
参照附图1,本发明为一种具有磷酸铜修饰表面的半导体光催化剂,它包括半导体粉体颗粒1,所述半导体粉体颗粒1外设有磷酸铜2,所述磷酸铜以固体粉末形式均匀分散在半导体粉体颗粒1表面。
该复合催化剂具有与半导体原料相类似的晶体结构、晶相组成和平均粒径,但它具有更高的紫外可见光光催化活性。本发明在易得的商品或人工制备的半导体粉体颗粒表面修饰有无机磷酸铜,实现了磷酸铜与半导体光催化剂粒子表面的固载化;所得催化剂具有很高的光催化活性,在有机催化和环境科学与工程领域有着很大的应用潜力。
 
本发明还公开了一种在半导体粉体颗粒表面修饰有无机磷酸铜、且具有高光催化活性的半导体粉体光催化剂的制备方法。它以半导体光催化剂为前驱体,通过湿法化学沉积法,以磷酸铜为修饰材料,将难溶于水的磷酸铜修饰在半导体粉体颗粒表面。制备过程不改变前驱体半导体光催化剂的晶体结构、晶相组成和平均粒径,该复合催化剂具有与半导体原料相类似的晶体结构、晶相组成和平均粒径,但所得的催化剂比原来的半导体光催化剂具有更高的紫外可见光催化活性。
本发明方法可以在易得的商品或人工制备的半导体粉体颗粒表面修饰有磷酸铜,实现了磷酸铜与半导体光催化剂粒子表面的固载化;所得催化剂具有很高的光催化活性,在有机催化和环境科学与工程领域有着很大的应用潜力。本发明工艺简单,对设备要求较低,原料廉价易得,产品保持了基体半导体光催化剂的晶体结构和组成,同时提高了半导体光催化剂的紫外可见光光催化活性。
 
所述制备方法具体如下:
方法1  具有磷酸铜修饰表面的半导体光催化剂的制备方法一,包括以下步骤:
1)在常温下,将前驱体半导体光催化剂分散于作为沉淀剂的铜离子的水溶液中,半导体光催化剂与铜离子的摩尔比为12500:2~12500:780;
2)在剧烈搅拌下,加入磷酸盐水溶液,半导体光催化剂与磷酸阴离子摩尔比为12500:1~12500:520,其中铜离子与磷酸阴离子的摩尔比为0.75:1~3:1;
3)通过加入pH调节剂,使反应液的pH值在6~11;
4)在室温下,搅拌30min,超声30min;
5)沉淀物经过滤、水洗涤和70℃~120℃下烘干,研磨成粉末,即得具有磷酸铜修饰表面的半导体光催化剂。
以上过程表达如图8。
所述磷酸盐可以是磷酸钠、磷酸钾、磷酸铵、磷酸氢二钾、磷酸氢二钠、磷酸氢二铵、磷酸二氢钠、磷酸二氢钾或磷酸二氢铵或其任意两种或三种、四种、五种、六种、七种、八种、九种的混合。
所述pH调节剂是氢氧化钠稀溶液、氨水稀溶液、稀盐酸或稀高氯酸或其任意两种或三种、四种的混合。
所述半导体光催化剂为TiO2或WO3、Fe2O3、ZnO、BiVO4
 
方法2,具有磷酸铜修饰表面的半导体光催化剂的制备方法二,包括以下步骤:
1)在常温下,将前驱体半导体光催化剂分散于水溶剂或醇溶剂,比如异丙醇溶液中;
2)加入固体粉末磷酸铜,半导体光催化剂与磷酸铜的摩尔比为125000:6~125000:760,在室温下,搅拌30min,超声30min;
3)混合液在80℃~120℃下烘干,研磨成粉末,即得具有磷酸铜修饰表面的半导体光催化剂。
以上过程表达如图9。
所述溶剂是水溶剂或醇溶剂,例如异丙醇。
所述半导体光催化剂为TiO2或WO3、Fe2O3、ZnO、BiVO4
 
方法3  具有磷酸铜修饰表面的半导体光催化剂的制备方法三,包括以下步骤:
1)在常温下,将前驱体半导体光催化剂分散于水溶剂或醇溶剂,比如水溶液中;
2)加入固体粉末磷酸铜,半导体光催化剂与磷酸铜的摩尔比为125000:6~125000:760,在室温下,搅拌30min,超声30min;
3)混合液在80℃~120℃下烘干,研磨成粉末,即得具有磷酸铜修饰表面的半导体光催化剂。
以上过程表达如图10。
所述溶剂是水溶剂或醇溶剂,例如水溶液。
所述半导体光催化剂为TiO2或WO3、Fe2O3、ZnO、BiVO4
 
方法4,具有磷酸铜修饰表面的半导体光催化剂的制备方法四,包括以下步骤:
1)在常温下,将可溶性磷酸盐溶解于水溶液中,滴加作为沉淀剂的铜离子盐溶液,磷酸阴离子与硝酸铜的摩尔比为2:3~5:3;
2)通过加入pH调节剂,使反应液的pH值在8~12;
3)在60℃~100℃下,反应2小时;
4)冷却至室温后,陈化24小时; 
5)沉淀物经过滤、水洗涤和60℃~100℃下烘干,研磨成粉末,即得固体粉末磷酸铜;
6)重复方法2~3所述步骤,即得具有磷酸铜修饰表面的半导体光催化剂。
 
以上制备过程中,所选用前驱体为商品的半导体光催化剂或自行制备的半导体光催化剂、磷酸铜为商品的磷酸铜或自行制备的磷酸铜。
磷酸盐可以是磷酸钠、磷酸钾、磷酸铵、磷酸氢二钾、磷酸氢二钠、磷酸氢二铵、磷酸二氢钠、磷酸二氢钾或磷酸二氢铵或其任意两种或三种、四种、五种、六种、七种、八种、九种的混合。
pH调节剂可以是氢氧化钠稀溶液、氨水稀溶液、稀盐酸或稀高氯酸等中的任何一种或其任意两种或三种、四种的混合。
 
催化剂对有机物吸附性能的评价方法为:50mg催化剂与50ml浓度为40ppm的2,4-二氯苯酚溶液混合,避光振荡过夜。取1.5ml反应液,经微孔滤膜(0.45μm)过滤,用高效液相色谱HPLC(Dionex P680)测定滤液中氯苯酚的浓度C e。根据吸附前后氯苯酚的浓度变化,计算催化剂的吸附量qe。根据qe与Ce作图,衡量不同催化剂的吸附性能差异。
 
光催化活性的评价方法为:以高压汞灯(300W)、卤灯(500W)为外照光源,催化剂用量为50mg,反应前与50ml浓度为40ppm的苯酚溶液混合,避光振荡过夜。光照反应于具备冷却循环水夹套的Pyrex玻璃容器中进行,反应温度保持在25±2℃。每隔一定时间取2.5ml反应液,经微孔滤膜(0.22μm)过滤,用HPLC测定滤液中苯酚浓度C t.根据C t与光照时间的变化关系,衡量不同催化剂的相对光催化活性。
 
实施例一
取2.6g商品二氧化钛,分散于40ml浓度为0.516mM的Cu(NO3)2水溶液中(溶液S1),室温下置于磁力搅拌器搅拌,缓慢滴入40mL浓度为0.762mM的Na3PO4水溶液(溶液S2)。通过加入20%稀氨水,控制体系pH值约为10。滴加完成后,继续搅拌30min、超声30min。所得沉淀经过滤、洗涤后,90℃干燥,得到具有磷酸铜修饰表面的二氧化钛催化剂A。其中TiO2与Cu元素、PO4 3-离子的投料摩尔比为12500:7.77:11.96。用上述光催化活性评价方法,在紫外光下照射2小时后,催化剂A和二氧化钛对苯酚的降解率分别为42.61%和20.33%。显然,在相同条件下,催化剂A比催化剂二氧化钛具有更强的紫外光催化活性。
 
实施例二
实验条件、步骤同实施例一,其中改变各物质的投料比,取0.9949g商品二氧化钛,分散于40ml浓度为0.992mM的Cu(NO3)2水溶液中,滴加40ml浓度为2.027mM的Na3PO4水溶液,其中TiO2与Cu元素、PO4 3-离子的投料摩尔比为12500:39.87:81.51。用上述光催化活性评价方法,在紫外光下照射2小时后,所得催化剂B和二氧化钛对苯酚的降解率分别为23.77%和20.33%。
 
实施例三
取1.6g商品二氧化钛,分散于40ml水溶液中,磁力搅拌器搅拌下,加入0.0016g Cu3(PO4)2。室温下,搅拌30min,超声30min。所得混合液100℃干燥过夜,得到具有磷酸铜修饰表面的二氧化钛催化剂C。其中TiO2与Cu3(PO4) 2的投料摩尔比为125000:27.81。用上述光催化活性评价方法,在紫外光下照射2小时后,苯酚的降解率为47.96%。
 
实施例四
实验条件、步骤同实施例三,改变各物质的投料比,取1.2241g商品二氧化钛与0.0061g Cu3(PO4)2混合,其中TiO2与Cu3(PO4) 2的投料摩尔比为12500:130.41。用上述光催化活性评价方法,在紫外光下照射2小时后,所得催化剂D对苯酚的降解率为35.65%。
 
实施例五
实验条件、步骤同实施例三,将水溶液改为异丙醇溶液,干燥温度为90℃,制得具有磷酸铜修饰表面的二氧化钛催化剂E(见图1~4中E线)。其中TiO2与Cu3(PO4) 2的投料摩尔比为125000:27.81,用上述光催化活性评价方法,在紫外光照射下2小时后,苯酚的降解率为50.81%。
 
实施例六
实验条件、步骤同例五,其中TiO2与Cu3(PO4) 2的投料摩尔比为125000:6.54,用上述光催化活性评价方法,在紫外光照射下2小时后,所得催化剂F对苯酚的降解率为46.61%。
 
实施例七
实验条件、步骤同例五,其中TiO2与Cu3(PO4) 2的投料摩尔比为125000:261.78,用上述光催化活性评价方法,在紫外光照射下2小时后,所得催化剂G苯酚的降解率为28.73%。
 
实施例八
取1g自制锐钛矿相氧化钛(s-AT),分散于40ml异丙醇溶液中,室温下置于磁力搅拌器搅拌,加入0.00106g Cu3(PO4)2。室温下,搅拌30min,超声30min。所得混合液90℃干燥过夜,得到具有磷酸铜修饰表面的二氧化钛催化剂H。其中TiO2与Cu3(PO4) 2的投料摩尔比为125000:27.81。用上述光催化活性评价方法,在紫外光下照射2小时后,催化剂H和s-AT对苯酚的降解率分别为9.94%和7.06%。
 
实施例九
将实施例八中所得的磷酸铜修饰二氧化钛催化剂H与s-AT分别煅烧450℃、3小时,制得具有磷酸铜修饰表面的二氧化钛催化剂I以及s-AT(450),用上述光催化活性评价方法,在紫外光下照射2小时后,催化剂I和s-AT(450)对苯酚的降解率分别为45.47%和16.85%。
 
实施例十
实验条件、步骤同实施例八,将s-AT改为s-RT(自制金红石),制得具有磷酸铜修饰表面的二氧化钛催化剂J。其中TiO2与Cu3(PO4) 2的投料摩尔比为125000:27.81,用上述光催化活性评价方法,在紫外光照射下2小时后,催化剂J和s-RT对苯酚的降解率分别为24.42%和13.50%。
 
实施例十一
实验条件、步骤同实施例三,将水溶液改为异丙醇溶液,将Cu3(PO4) 2改为加入0.0016gCa3(PO4)2,制得具有磷酸钙修饰表面的二氧化钛催化剂K(见图1~4中K线)。其中TiO2与Ca3(PO4) 2的投料摩尔比为125000:32.25,用上述光催化活性评价方法,在紫外光照射下2小时后,苯酚的降解率为24.43%。
 
实施例十二
取1.6037g商品三氧化钨(c-WO3),分散于40ml水溶液中,室温下置于磁力搅拌器搅拌,加入0.0016g Cu3(PO4)2。室温下,搅拌30min,超声30min。所得混合液100℃干燥过夜,得到具有磷酸铜修饰表面的三氧化钨催化剂L(见图5中L线)。其中WO3与Cu3(PO4) 2的投料摩尔比为125000:75.76。用上述光催化活性评价方法,在紫外光下照射2小时后,催化剂L和c-WO3对X3B的降解率分别为25.58%和2.89%。
 
实施例十三
实验条件、步骤同实施例十二,把水溶液改为异丙醇溶液,且干燥温度为90℃,其中WO3与Cu3(PO4) 2的投料摩尔比为125000:759.16, 用上述光催化活性评价方法,在紫外光照射下2小时后,所得催化剂M对X3B的降解率为15.63%。
 
实施例十四
取1.2408g商品三氧化钨(c-WO3),分散于40ml浓度为0.25mM的Cu(NO3)2水溶液中(溶液S1),室温下置于磁力搅拌器搅拌,缓慢滴入40mL浓度为0.55mM的Na3PO4水溶液(溶液S2)。通过加入20%稀氨水,控制体系pH值约为10。滴加完成后,继续搅拌30min、超声30min。所得沉淀经过滤、洗涤后,100℃干燥,得到具有磷酸铜修饰表面的半导体催化剂N(见图5中N线)。其中WO3与Cu元素、PO4 3-离子的投料摩尔比为12500:23.37:51.42。用上述光催化活性评价方法,在紫外光下照射2小时后,催化剂N和c-WO3对X3B的降解率分别为38.51%和2.89%。显然,在相同条件下,催化剂N比催化剂三氧化钨具有更强的紫外光催化活性。
 
实施例十五
取0.2747g自制氧化铁(s-Fe2O3),分散于40ml异丙醇溶液中,室温下置于磁力搅拌器搅拌,加入0.0027g Cu3(PO4)2。室温下,搅拌30min,超声30min。所得混合液90℃干燥过夜,得到具有磷酸铜修饰表面的氧化铁催化剂O(见图6中O线)。其中Fe2O3与Cu3(PO4) 2的投料摩尔比为125000:514.59。用上述光催化活性评价方法,在紫外光下照射2小时后,催化剂O和s-Fe2O3对X3B的降解率分别为36.26%和24.40%。
 
实施例十六
取4.3973g商品氧化锌(c-ZnO),分散于40ml异丙醇溶液中,室温下置于磁力搅拌器搅拌,加入0.0044g Cu3(PO4)2。室温下,搅拌30min,超声30min。所得混合液90℃干燥过夜,得到具有磷酸铜修饰表面的氧化铁催化剂P(见图7中P线)。其中ZnO与Cu3(PO4) 2的投料摩尔比为125000:26.52。用上述光催化活性评价方法,在紫外光下照射2小时后,催化剂P和c-ZnO对苯酚的降解率分别为91.87%和89.07%。
 
实施例十七
实验条件、步骤同实施例十六,其中ZnO与Cu3(PO4) 2的投料摩尔比为125000:265.2, 用上述光催化活性评价方法,在紫外光照射下2小时后,所得催化剂Q(见图7中Q线)对苯酚的降解率为92.55%。

Claims (9)

1.具有磷酸铜修饰表面的半导体光催化剂,其特征在于:它包括半导体粉体颗粒,所述半导体粉体颗粒外设有磷酸铜,所述磷酸铜以固体粉末形式均匀的分散在半导体粉体颗粒表面。
2.具有磷酸铜修饰表面的半导体光催化剂的制备方法,其特征在于所述制备方法为:以半导体光催化剂为前驱体,以磷酸铜为修饰材料,将磷酸铜颗粒通过湿法化学的方法均匀的沉积分散于半导体粉体颗粒表面。
3.如权利要求2所述具有磷酸铜修饰表面的半导体光催化剂的制备方法,其特征在于它包括以下步骤:
1)在常温下,将前驱体半导体光催化剂分散于作为沉淀剂的铜离子的水溶液中,半导体光催化剂与该铜离子的摩尔比为12500:2~12500:780;
2)在剧烈搅拌下,加入磷酸盐水溶液,半导体光催化剂与磷酸阴离子摩尔比为12500:1~12500:520,其中铜离子与磷酸阴离子的摩尔比为0.75:1~3:1;
3)通过加入pH调节剂,使反应液的pH值在6~11;
4)在室温下,搅拌,超声;
5)沉淀物经过滤、水洗涤和70℃~120℃下烘干,研磨成粉末,即得具有磷酸铜修饰表面的半导体光催化剂。
4.根据权利要求3所述的具有磷酸铜修饰表面的半导体光催化剂的制备方法,其特征在于所述磷酸盐是磷酸钠、磷酸钾、磷酸铵、磷酸氢二钾、磷酸氢二钠、磷酸氢二铵、磷酸二氢钠、磷酸二氢钾或磷酸二氢铵或其任意两种或三种、四种、五种、六种、七种、八种、九种的混合。
5.根据权利要求3所述具有磷酸铜修饰表面的半导体光催化剂的制备方法,其特征在于所述pH调节剂是氢氧化钠稀溶液、氨水稀溶液、稀盐酸或稀高氯酸或其任意两种或三种、四种的混合。
6.根据权利要求3所述的制备具有磷酸铜修饰表面的半导体光催化剂的方法,其特征在于所述半导体光催化剂是TiO2、WO3、Fe2O3、ZnO、BiVO4
7.如权利要求2所述具有磷酸铜修饰表面的半导体光催化剂的制备方法,其特征在于它包括以下步骤:
1)在常温下,将前驱体半导体分散于溶剂中;
2)加入固体粉末磷酸铜,半导体光催化剂与磷酸铜的摩尔比为125000:6~125000:760,在室温下,搅拌,超声;
3)混合液在80℃~120℃下烘干,研磨成粉末,即得具有磷酸铜修饰表面的半导体光催化剂。
8.根据权利要求7所述具有磷酸铜修饰表面的半导体光催化剂的制备方法,其特征在于所述溶剂是水溶剂或醇溶剂。
9.根据权利要求7所述的制备具有磷酸铜修饰表面的半导体光催化剂的方法,其特征在于所述半导体光催化剂是TiO2、WO3、Fe2O3、ZnO、BiVO4
CN201110423915XA 2011-12-18 2011-12-18 具有磷酸铜修饰表面的半导体光催化剂及其制备方法 Pending CN102527416A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201110423915XA CN102527416A (zh) 2011-12-18 2011-12-18 具有磷酸铜修饰表面的半导体光催化剂及其制备方法
PCT/CN2012/086791 WO2013091522A1 (zh) 2011-12-18 2012-12-17 具有磷酸铜修饰表面的半导体光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110423915XA CN102527416A (zh) 2011-12-18 2011-12-18 具有磷酸铜修饰表面的半导体光催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN102527416A true CN102527416A (zh) 2012-07-04

Family

ID=46336163

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110423915XA Pending CN102527416A (zh) 2011-12-18 2011-12-18 具有磷酸铜修饰表面的半导体光催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN102527416A (zh)
WO (1) WO2013091522A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013091522A1 (zh) * 2011-12-18 2013-06-27 浙江大学 具有磷酸铜修饰表面的半导体光催化剂及其制备方法
CN103878005A (zh) * 2014-03-27 2014-06-25 常州大学 一种碳改性磷酸银/钛铌酸盐复合可见光光催化剂及其制备方法
CN107252698A (zh) * 2017-07-11 2017-10-17 柳州若思纳米材料科技有限公司 一种铜掺杂磷酸铟光催化剂的制备方法
CN109354935A (zh) * 2018-10-25 2019-02-19 陈换换 一种耐污防霉硅藻泥涂料及其制备方法
CN110270357A (zh) * 2019-07-05 2019-09-24 浙江大学 一种表面磷酸镍修饰的二氧化钛光催化剂及其制备方法和用途
CN113373307A (zh) * 2021-04-28 2021-09-10 上海师范大学 一种利用磷酸根修饰光催化剂进行光催化溶解金属的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113145115B (zh) * 2021-04-16 2023-07-25 河南师范大学 一种金纳米粒子修饰的钨酸铋半导体光催化剂的制备方法及其应用
CN114990609B (zh) * 2022-06-01 2024-01-26 华东理工大学 一种磷酸铜催化剂及其制备方法和应用
CN115041210A (zh) * 2022-06-02 2022-09-13 大连理工大学 一类光解水产氢用双金属单原子修饰的半导体光催化剂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5926727A (en) * 1995-12-11 1999-07-20 Stevens; Gary Don Phosphorous doping a semiconductor particle
JP2004269737A (ja) * 2003-03-10 2004-09-30 National Institute Of Advanced Industrial & Technology 塗料
CN101406836A (zh) * 2007-10-09 2009-04-15 住友化学株式会社 光催化体分散液及其制造方法
CN101596460A (zh) * 2008-06-05 2009-12-09 住友化学株式会社 光催化剂分散液及其制造方法
CN102234133A (zh) * 2010-04-21 2011-11-09 中国科学院上海硅酸盐研究所 一种半导体复合多孔壁二氧化钛空心球材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100431706C (zh) * 2003-08-08 2008-11-12 株式会社丰田中央研究所 有可见光活性的光催化剂体、其原料及其制造方法
CN102527416A (zh) * 2011-12-18 2012-07-04 浙江大学 具有磷酸铜修饰表面的半导体光催化剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5926727A (en) * 1995-12-11 1999-07-20 Stevens; Gary Don Phosphorous doping a semiconductor particle
JP2004269737A (ja) * 2003-03-10 2004-09-30 National Institute Of Advanced Industrial & Technology 塗料
CN101406836A (zh) * 2007-10-09 2009-04-15 住友化学株式会社 光催化体分散液及其制造方法
CN101596460A (zh) * 2008-06-05 2009-12-09 住友化学株式会社 光催化剂分散液及其制造方法
CN102234133A (zh) * 2010-04-21 2011-11-09 中国科学院上海硅酸盐研究所 一种半导体复合多孔壁二氧化钛空心球材料及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013091522A1 (zh) * 2011-12-18 2013-06-27 浙江大学 具有磷酸铜修饰表面的半导体光催化剂及其制备方法
CN103878005A (zh) * 2014-03-27 2014-06-25 常州大学 一种碳改性磷酸银/钛铌酸盐复合可见光光催化剂及其制备方法
CN103878005B (zh) * 2014-03-27 2016-05-04 常州大学 一种碳改性磷酸银/钛铌酸盐复合可见光光催化剂的制备方法
CN107252698A (zh) * 2017-07-11 2017-10-17 柳州若思纳米材料科技有限公司 一种铜掺杂磷酸铟光催化剂的制备方法
CN109354935A (zh) * 2018-10-25 2019-02-19 陈换换 一种耐污防霉硅藻泥涂料及其制备方法
CN110270357A (zh) * 2019-07-05 2019-09-24 浙江大学 一种表面磷酸镍修饰的二氧化钛光催化剂及其制备方法和用途
CN113373307A (zh) * 2021-04-28 2021-09-10 上海师范大学 一种利用磷酸根修饰光催化剂进行光催化溶解金属的方法
CN113373307B (zh) * 2021-04-28 2022-12-16 上海师范大学 一种利用磷酸根修饰光催化剂进行光催化溶解金属的方法

Also Published As

Publication number Publication date
WO2013091522A1 (zh) 2013-06-27

Similar Documents

Publication Publication Date Title
CN102527416A (zh) 具有磷酸铜修饰表面的半导体光催化剂及其制备方法
Abdelhaleem et al. Photodegradation of 4-chlorophenoxyacetic acid under visible LED activated N-doped TiO2 and the mechanism of stepwise rate increment of the reused catalyst
Taheri-Ledari et al. Synergistic photocatalytic effect between green LED light and Fe3O4/ZnO-modified natural pumice: a novel cleaner product for degradation of methylene blue
Gou et al. Fabrication of Ag2O/TiO2-Zeolite composite and its enhanced solar light photocatalytic performance and mechanism for degradation of norfloxacin
Naik et al. Facile synthesis of N-and S-incorporated nanocrystalline TiO2 and direct solar-light-driven photocatalytic activity
Wang et al. Synthesis of natural porous minerals supported TiO2 nanoparticles and their photocatalytic performance towards Rhodamine B degradation
Behpour et al. Study of the photocatalytic activity of nanocrystalline S, N-codoped TiO2 thin films and powders under visible and sun light irradiation
CN100475335C (zh) 具有可见光响应的光催化剂及其制备方法和应用
CN100398201C (zh) 钒酸铋负载氧化钴的复合光催化剂及其制备方法
Mohammadi et al. Photocatalytic degradation of aqueous ammonia by using TiO2ZnO/LECA hybrid photocatalyst
de Luna et al. Photocatalytic oxidation of acetaminophen using carbon self-doped titanium dioxide
Al-Hamdi et al. Photocatalytic degradation of phenol in aqueous solution by rare earth-doped SnO 2 nanoparticles
Ma et al. Fabrication of MnO2/TiO2 nano-tube arrays photoelectrode and its enhanced visible light photoelectrocatalytic performance and mechanism
Jaafar et al. Strategies for the formation of oxygen vacancies in zinc oxide nanoparticles used for photocatalytic degradation of phenol under visible light irradiation
Narayan et al. A novel nano-sized calcium hydroxide catalyst prepared from clam shells for the photodegradation of methyl red dye
Mao et al. RhB-sensitized effect on the enhancement of photocatalytic activity of BiOCl toward bisphenol-A under visible light irradiation
Sadia et al. Metal doped titania nanoparticles as efficient photocatalyst for dyes degradation
CN101733133B (zh) 一种表面包覆有包覆层的二氧化钛光催化剂及其制备方法
Tseng et al. Synthesis of TiO2/SBA-15 photocatalyst for the azo dye decolorization through the polyol method
Rostamzadeh et al. Ni doped zinc oxide nanoparticles supported bentonite clay for photocatalytic degradation of anionic and cationic synthetic dyes in water treatment
CN1899686A (zh) 掺铁TiO2/活性炭复合可见光催化剂的制备方法
Han et al. Chapter green nanotechnology: development of nanomaterials for environmental and energy applications
CN102266783A (zh) 一种铁掺杂三氧化钨光催化剂及其制备方法
CN103084160A (zh) 一种掺杂ZnO的TiO2碳纳米管空气净化剂材料、制备方法及其用途
CN100460067C (zh) 负载氧化镍的钒酸铋复合光催化剂、其制备方法及应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120704