CN102517112A - Automatic molding system for biomass flat-die particle - Google Patents
Automatic molding system for biomass flat-die particle Download PDFInfo
- Publication number
- CN102517112A CN102517112A CN2011103884829A CN201110388482A CN102517112A CN 102517112 A CN102517112 A CN 102517112A CN 2011103884829 A CN2011103884829 A CN 2011103884829A CN 201110388482 A CN201110388482 A CN 201110388482A CN 102517112 A CN102517112 A CN 102517112A
- Authority
- CN
- China
- Prior art keywords
- biomass
- drying
- feed
- discharge port
- opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002028 Biomass Substances 0.000 title claims abstract description 66
- 238000000465 moulding Methods 0.000 title claims abstract description 65
- 239000002245 particle Substances 0.000 title claims description 23
- 238000001035 drying Methods 0.000 claims abstract description 53
- 238000001816 cooling Methods 0.000 claims abstract description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 238000002309 gasification Methods 0.000 claims description 8
- 238000010298 pulverizing process Methods 0.000 claims description 6
- 239000007921 spray Substances 0.000 claims description 5
- 239000002918 waste heat Substances 0.000 claims description 3
- 230000000740 bleeding effect Effects 0.000 claims 1
- 238000013022 venting Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 47
- 238000000034 method Methods 0.000 abstract description 14
- 230000008569 process Effects 0.000 abstract description 12
- 238000005516 engineering process Methods 0.000 abstract description 10
- 239000010902 straw Substances 0.000 abstract description 10
- 238000009835 boiling Methods 0.000 abstract description 8
- 238000005265 energy consumption Methods 0.000 abstract description 8
- 239000008187 granular material Substances 0.000 abstract description 7
- 238000002485 combustion reaction Methods 0.000 abstract description 2
- 238000010336 energy treatment Methods 0.000 abstract description 2
- 239000000446 fuel Substances 0.000 description 32
- 239000008188 pellet Substances 0.000 description 21
- 239000002994 raw material Substances 0.000 description 21
- 238000011160 research Methods 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000012544 monitoring process Methods 0.000 description 11
- 238000000926 separation method Methods 0.000 description 11
- 238000011161 development Methods 0.000 description 10
- 239000004484 Briquette Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 238000000748 compression moulding Methods 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 7
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 5
- 239000003546 flue gas Substances 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000033228 biological regulation Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 3
- 241000209094 Oryza Species 0.000 description 3
- 235000007164 Oryza sativa Nutrition 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 235000009566 rice Nutrition 0.000 description 3
- 229920000742 Cotton Polymers 0.000 description 2
- 241000209140 Triticum Species 0.000 description 2
- 235000021307 Triticum Nutrition 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010981 drying operation Methods 0.000 description 2
- 238000011031 large-scale manufacturing process Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- 239000002154 agricultural waste Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Solid Fuels And Fuel-Associated Substances (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
本发明公开了一种生物质平模颗粒自动化成型系统,包括干燥部分、粉碎部分、物料输送部分、成型部分和冷却干燥分离部分,干燥部分的出料口与粉碎部分的进料口连接,粉碎部分的出料口通过物料输送部分与成型部分的进料口连接,成型部分的出料口与冷却干燥分离部分的进料口连接。本发明包含了一套集秸秆干燥、粉碎及冷态致密成型于一体的智能化、自动化、规模化的能源处理工艺路线。本发明采用一体化的自动控制系统,实现生物质成型的各个环节自动运行,减少了人工操作,保证系统在优化的工况下自动运行,能耗及人工费用低,生物质干燥过程采用沸腾燃烧技术提供热源,不消耗传统能源,设备热利用率可达60%以上。
The invention discloses an automatic molding system for biomass flat die granules, which comprises a drying part, a crushing part, a material conveying part, a molding part and a cooling, drying and separating part. The outlet of the drying part is connected with the feeding port of the crushing part, and the The discharge port of the part is connected with the feed port of the forming part through the material conveying part, and the discharge port of the forming part is connected with the feed port of the cooling, drying and separating part. The invention includes a set of intelligent, automatic and large-scale energy treatment process routes integrating straw drying, crushing and cold-state compact forming. The invention adopts an integrated automatic control system to realize the automatic operation of each link of biomass forming, reduces manual operations, ensures automatic operation of the system under optimized working conditions, low energy consumption and labor costs, and uses boiling combustion in the drying process of biomass The technology provides a heat source without consuming traditional energy, and the heat utilization rate of the equipment can reach more than 60%.
Description
技术领域 technical field
本发明属于生物质燃料制备技术领域,具体涉及生物质平模颗粒自动化成型系统。 The invention belongs to the technical field of biomass fuel preparation, in particular to an automatic molding system for biomass flat die particles.
背景技术 Background technique
国外成型燃料的发展分为三个阶段:从20世纪30~50年代为研究、示范、交叉引进阶段,研究的着眼点以代替化石能源为目标;20世纪70~90年代为第二阶段,各国普遍重视了化石能源对环境的影响,对数量较大的、可再生的生物质能源产生了兴趣,开展生物质致密成型燃料的研究,到90年代,欧洲、美洲、亚洲的一些国家在生活领域比较大量的应用生物质致密成型燃料;20世纪90年代后期至今为第三阶段,首先以丹麦为首开展了规模化利用的研究工作,丹麦著名的能源投资公司BWE率先研制成功了第一座生物质致密成型燃料发电厂,随后,瑞典、德国、奥地利等国家先后开展了利用生物质致密成型燃料发电和作为锅炉燃料研究。目前丹麦已经建立了130座发电厂,美国已经在25个州兴建了树皮成型燃料加工场,每天生产燃料超过300吨。但生物成型燃料以欧洲的一些国家如丹麦、瑞典、奥地利发展最快。例如,瑞典人均生物质致密成型燃料消耗量达到160㎏/年。欧洲现有近百家生物质致密成型燃料加工厂,农场主以秸秆为原料,靠近城市的加工厂以木屑为原料。 The development of foreign briquette fuels is divided into three stages: from the 1930s to the 1950s is the stage of research, demonstration, and cross-introduction, and the focus of research is to replace fossil energy; the second stage is from the 1970s to the 1990s. The impact of fossil energy on the environment has been generally paid attention to, and interest in a large amount of renewable biomass energy has been developed, and research on biomass compact briquette fuel has been carried out. A relatively large number of biomass densified briquette fuels are used; from the late 1990s to the present, it is the third stage. First, the research work on large-scale utilization was carried out led by Denmark. The famous Danish energy investment company BWE took the lead in developing the first biomass fuel. Densified briquette fuel power plants, followed by Sweden, Germany, Austria and other countries have carried out research on the use of biomass compact briquette fuel for power generation and as boiler fuel. At present, Denmark has established 130 power plants, and the United States has built bark molding fuel processing plants in 25 states, producing more than 300 tons of fuel per day. However, some countries in Europe such as Denmark, Sweden and Austria have the fastest development of bio-briquettes. For example, the per capita fuel consumption of biomass densification in Sweden reaches 160kg/year. There are nearly a hundred biomass compact briquette fuel processing plants in Europe. Farmers use straw as raw material, and processing plants near cities use wood chips as raw material.
我国的生物质致密成型技术的研究和开发起步较晚。“七五”开始,国内的一些研究所和企业开始对生物质致密颗粒成型机及生物质成型理论研究。2000年前后,一些单位先后研制和生产了几种不同规格的生物质颗粒成型机和碳化机组,这些设备包括机械冲压式颗粒成型机、液压驱动式颗粒成型机、电加热螺杆颗粒成型机等。但这些设备存在着一些诸如成型筒及螺旋轴磨损严重、寿命较短、电耗大等缺点。进入21世纪,国家开始对各种可再生清洁能源开发重视,生物质成型燃料也进入了良好的发展阶段,颗粒状、小方块状成型燃料也引起高度关注。目前,包括国内很多企业和大专院校、科研院所开发成功挤压式、液压冲击式、螺杆式成型燃料生产设备,并在取暖炉、锅炉、机制木炭生产等方面广泛使用。我国从20世纪80年代引进螺旋推进式秸秆颗粒成型机,先后有几十家研究院所、生产企业投入成型燃料技术研究与开发利用工作。目前,比较成熟的技术有:螺旋挤压成型、活塞挤压成型、环境挤压成型、平模挤压成型等。 The research and development of biomass densification technology in my country started relatively late. Since the "Seventh Five-Year Plan", some domestic research institutes and enterprises have begun to study the biomass compact particle molding machine and the theory of biomass molding. Around 2000, some units successively developed and produced several different specifications of biomass pellet forming machines and carbonization units, including mechanical stamping pellet molding machines, hydraulically driven pellet molding machines, electric heating screw pellet molding machines, etc. However, these devices have some disadvantages such as serious wear of the forming cylinder and the screw shaft, short life, and high power consumption. In the 21st century, the country began to pay attention to the development of various renewable and clean energy sources. Biomass briquettes have also entered a good development stage. Granular and small cube briquettes have also attracted great attention. At present, many domestic enterprises, tertiary institutions, and scientific research institutes have successfully developed extrusion, hydraulic impact, and screw-type fuel production equipment, and are widely used in heating furnaces, boilers, and mechanism charcoal production. Since the 1980s, our country has introduced the screw propulsion type straw granule forming machine, and dozens of research institutes and production enterprises have invested in the research, development and utilization of briquetting fuel technology. At present, relatively mature technologies include: screw extrusion molding, piston extrusion molding, environmental extrusion molding, flat die extrusion molding, etc.
目前,国内外还少有完整的此类成套集成化设备,居多的都是单一的压缩成型设备,而最常见的压缩成型设备主要包括螺旋挤压式颗粒成型机、活塞冲压式颗粒成型机和压辊式颗粒成型机。 At present, there are few such complete sets of integrated equipment at home and abroad, most of which are single compression molding equipment, and the most common compression molding equipment mainly includes screw extrusion pellet molding machines, piston stamping pellet molding machines and Pressure roller pellet forming machine.
螺旋挤压式颗粒成型机是开发应用最早的颗粒成型机,它是靠外部加热成型套筒,使成型温度保持在150~300℃之间,利用螺杆来推进和挤压生物质,成型温度使生物质中的木质素和纤维素软化,进而致密成块状燃料。该成型及具有运行平稳、连续生产成型燃料易燃等优点,但存在原料含水率要求高、成型部件使用寿命短、能耗高等缺点。 The screw extrusion pellet molding machine is the earliest pellet molding machine developed and applied. It relies on external heating to form the sleeve to keep the molding temperature between 150 and 300°C. The screw is used to push and extrude the biomass. The lignin and cellulose in the biomass are softened and densified into fuel lumps. The molding machine has the advantages of stable operation and continuous production of flammable molding fuel, but has the disadvantages of high moisture content requirements of raw materials, short service life of molding parts, and high energy consumption.
活塞冲压式颗粒成型机一般不用外部加热,是靠活塞的往复运动来实现生物质原料的压缩成型,通常用于生产实心棒状或块状燃料。按驱动类型,活塞冲压式颗粒成型机可分为机械式和液压式两种,前者是利用飞轮储存的能量,通过曲柄栏杆机构带动冲压活塞将原料压缩成型;后者是利用液压油缸所提供的压力,带动冲压活塞使生物质冲压成型。活塞冲压式颗粒成型机具有成型部件是有寿命长、能耗低等优点,但也存在机器运行稳定性差、噪音大、润滑油污染严重等缺点。 Piston stamping granule molding machine generally does not need external heating, and relies on the reciprocating motion of the piston to realize the compression molding of biomass raw materials, and is usually used to produce solid rod or block fuel. According to the driving type, the piston stamping pellet molding machine can be divided into two types: mechanical type and hydraulic type. The former uses the energy stored in the flywheel to drive the stamping piston through the crank railing mechanism to compress the raw material; the latter uses the energy provided by the hydraulic cylinder. The pressure drives the stamping piston to stamp the biomass into shape. Piston stamping pellet molding machine has the advantages of long service life of molding parts and low energy consumption, but it also has disadvantages such as poor machine operation stability, high noise, and serious lubricating oil pollution.
压辊式颗粒成型机的基本工作部件有压辊和压模组成,其中压辊可绕自己的轴转动,其中外周加工有齿和槽,便于物料压入和防止打滑,压模上设计有一定数量的成型孔。它的工作原理是:在压辊的作用下,进入压辊和压模之间的生物质原料被挤压入成型孔内然后被挤出,在出料口处被切成一定长度的成型燃料。按照结构不同,压辊式颗粒成型机可分为平模造粒机和环模造粒机,其中环模造粒机又可分为卧式和立式两种机型。 The basic working parts of the pressure roller granule forming machine are composed of a pressure roller and a pressure die. The pressure roller can rotate around its own axis, and the outer periphery is processed with teeth and grooves, which are convenient for the material to be pressed in and prevent slipping. The pressure mold is designed with certain Number of forming holes. Its working principle is: under the action of the pressure roller, the biomass raw material entering between the pressure roller and the die is squeezed into the forming hole and then extruded, and is cut into a certain length of molded fuel at the discharge port. . According to the different structures, the pressure roller granulator can be divided into flat die granulator and ring die granulator, and the ring die granulator can be divided into horizontal and vertical models.
总体来说,国内生物质平模成型方面的研究已经取得一些进展和成果,但是在研制方法、工艺流程和设备整体匹配性能分析方面还存在一些问题。(1)、平模成型理论基础薄弱,生物质的成型特性和机理研究还不够系统和深入,目前尚未有生物质平模技术及设备的开发和应用;(2)、主要部件设备存在磨损严重,维修周期短,耗能高等缺点,并且在一体化、自动化的生物质平模成型研究还很不成熟,平模成型与其他设备如干燥设备、粉碎设备的衔接还不是很好;(3)、平模成型在模具上缺少多样化,难以满足不同生物质利用设备需求;(4)、国外生物质平模压缩成型技术比较成熟,有的国家如北欧已经形成较大的产业规模,但设备复杂,造价很高,且适用原料主要为林业生物质,不适合我国国情。 Generally speaking, some progress and achievements have been made in domestic research on biomass flat die molding, but there are still some problems in the development method, process flow and overall matching performance analysis of equipment. (1) The theoretical foundation of flat die forming is weak, and the research on the forming characteristics and mechanism of biomass is not systematic and in-depth. At present, there is no development and application of biomass flat die technology and equipment; (2), the main components and equipment are severely worn , short maintenance cycle, high energy consumption, etc., and the research on integrated and automated biomass flat die molding is still immature, and the connection between flat die molding and other equipment such as drying equipment and crushing equipment is not very good; (3) 1. Flat die molding lacks diversity in molds, and it is difficult to meet the needs of different biomass utilization equipment; (4) Overseas biomass flat die compression molding technology is relatively mature, and some countries such as Northern Europe have formed a large industrial scale, but the equipment It is complicated, the cost is high, and the applicable raw material is mainly forestry biomass, which is not suitable for China's national conditions.
发明内容 Contents of the invention
本发明为了解决现有技术中的不足之处,提供一种性能好、能耗低、产率大、生产成本低的生物质平模颗粒自动化成型系统。 In order to solve the deficiencies in the prior art, the present invention provides an automatic molding system for biomass flat die particles with good performance, low energy consumption, high yield and low production cost.
为解决上述技术问题,本发明采用如下技术方案:生物质平模颗粒自动化成型系统,包括干燥部分、粉碎部分、物料输送部分、成型部分和冷却干燥分离部分,干燥部分的出料口与粉碎部分的进料口连接,粉碎部分的出料口通过物料输送部分与成型部分的进料口连接,成型部分的出料口与冷却干燥分离部分的进料口连接。 In order to solve the above-mentioned technical problems, the present invention adopts the following technical solutions: a biomass flat die particle automatic molding system, including a drying part, a crushing part, a material conveying part, a molding part and a cooling and drying separation part, the discharge port of the drying part and the crushing part The feed port of the crushing part is connected with the feed port of the crushing part, and the feed port of the forming part is connected with the feed port of the forming part through the material conveying part, and the discharge port of the forming part is connected with the feed port of the cooling and drying separation part.
所述干燥部分包括沸腾气化炉12、沉降室11和干燥器10,沸腾气化炉12的热气出口通过沉降室11与干燥器10的进气口连接;干燥器10上设有第一电流传感器17、第一湿度传感器18和第一温度传感器19。
Described drying part comprises boiling gasification furnace 12, settling chamber 11 and
所述粉碎部分为粉碎机1和第一旋风分离器2,粉碎机1的进料口与干燥器10的出料口连接,粉碎机1的出料口与第一旋风分离器2进料口连接;粉碎机1上设有第二电流传感器20。
The crushing part is a pulverizer 1 and a
所述物料输送部分为螺旋输送机3。 The material conveying part is a screw conveyor 3 .
所述成型部分包括喂料搅拌器4、水箱13和颗粒成型机14,水箱13的喷水管口伸入到喂料搅拌器4的进料斗16内,喂料搅拌器4的出料口与颗粒成型机14的进料口连接;进料斗16内设有第二温度传感器21和第二湿度传感器22,沸腾气化炉12的余热出口与进料斗16连通。
Described molding part comprises feeding agitator 4,
所述冷却干燥分离部分包括冷却器6、卸料器15、第二旋风分离器7和引风机8,冷却器6顶部的进料口通过提升机5与颗粒成型机14的出料口连接,冷却器6底部的出料口与卸料器15的进料口连接,冷却器6顶部的碎料出口与第二旋风分离器7的进料口连接,第二旋风分离器7的排气口与引风机8的抽气口连接;冷却器6内设有第三温度传感器23,卸料器15内设有压力传感器24。
The cooling and drying separation part comprises a cooler 6, an
所述干燥器10的进料口处设有上料机9。
A
采用上述技术方案,本发明包含了一套集秸秆干燥、粉碎及冷态致密成型于一体的智能化、自动化、规模化的能源处理工艺路线。该技术研究主要包裹干燥器、粉碎机、颗粒成型机、沸腾气化炉等设备的研制和理论创新,最终形成的生产路线为:米秸秆、玉米芯、稻草、小麦秸秆、棉花秸秆等农业废弃物等原料首先被送入的干燥机,干燥机的热源由沸腾气化炉提供热风经过沉降室的配风后进入干燥机;干燥后的物料进入粉碎机进行切揉粉碎,粉碎后经物料输送部分进入成型部分,进入压缩颗粒成型机,生产出有光泽、高密度的颗粒燃料,再经过冷却、分离形成成型燃料产品。整个系统采用先进的控制理论和技术,将温度、湿度、给料量、料位高度(压力)实时控制,实现系统的智能化运行。 By adopting the above-mentioned technical scheme, the present invention includes a set of intelligent, automatic and large-scale energy treatment process routes integrating straw drying, crushing and cold-state compact forming. This technical research mainly covers the development and theoretical innovation of equipment such as dryers, pulverizers, particle molding machines, and fluidized gasifiers. The final production route is: agricultural waste such as rice straw, corn cob, rice straw, wheat straw, and cotton straw. The raw materials such as materials are first sent to the dryer, the heat source of the dryer is provided by the boiling gasification furnace, and the hot air enters the dryer after passing through the air distribution of the settling chamber; the dried material enters the pulverizer for cutting, kneading and crushing, and after crushing, the material is conveyed Part of it enters the molding section and enters the compressed pellet molding machine to produce shiny, high-density pellet fuel, which is then cooled and separated to form a pellet fuel product. The whole system adopts advanced control theory and technology to control the temperature, humidity, feeding amount and material level height (pressure) in real time to realize the intelligent operation of the system.
本发明具有的有益效果如下: The beneficial effects that the present invention has are as follows:
⑴、基础研究:利用ANSYS有限元软件比较深入地研究了生物质成型特性和颗粒成型机理,为生物质平模技术及设备的开发和应用提供基础支持,并对其关键部件和技术参数进行优化设计。 (1) Basic research: use ANSYS finite element software to study the biomass forming characteristics and particle forming mechanism in depth, provide basic support for the development and application of biomass flat die technology and equipment, and optimize its key components and technical parameters design.
⑵、部件设备的优化:主要部件设备经软件优化后更加符合实际运行机理,磨损小、寿命长,减少维护量。 (2) Optimization of components and equipment: After software optimization, the main components and equipment are more in line with the actual operating mechanism, with less wear and tear, longer life and less maintenance.
⑶、模具结构:研发了平模结构尺寸可变化的生物质成型设备,实现了平模成型模具及设备的系列化开发,生产成型燃料直径范围广,更好地适应了不同用户需求。 ⑶. Mold structure: The biomass molding equipment with variable flat mold structure size has been developed, and the series development of flat mold molding molds and equipment has been realized. The diameter range of the produced molding fuel is wide, which better adapts to the needs of different users.
⑷、控制部分:对平模成型中的生物质原料温度、湿度、流量、料位(压力)等主要参数进行自动化控制,减少了压辊、电动机等因为原料的类型变化而引起的堵料和故障,通过队平模颗粒成型机进行实时控制,使其实现了智能化、参数可视化运行。 ⑷. Control part: automatic control of main parameters such as temperature, humidity, flow rate, and material level (pressure) of biomass raw materials in flat die forming, reducing material blocking and Faults, through real-time control of the flat die pellet molding machine, so that it can realize intelligent and parameter visualized operation.
根据干燥器内的第一温度传感器和第一湿度传感器的实时监控,实现沸腾气化炉运行的自动控制,使其可根据总程序的要求为干燥器提供相应温度与总量的热风;干燥器运行的自动控制,可使干燥器在总程序的要求下以最高的热利用率把生物质原料干燥到合适的水分,并根据第一电流传感器的实时监测,如果电流较小,即干燥作业慢、需要干燥的时间长,则下调粉碎部分、物料输送部分、成型部分和冷却干燥分离部分的运行速度或暂停作业,这样可以更加节约能源,反之,则加大其他部分的运行速度; According to the real-time monitoring of the first temperature sensor and the first humidity sensor in the dryer, the automatic control of the operation of the fluidized gasifier can be realized, so that it can provide the dryer with corresponding temperature and total amount of hot air according to the requirements of the general program; the dryer The automatic control of the operation can make the dryer dry the biomass raw material to the appropriate moisture with the highest heat utilization rate under the requirements of the general program, and according to the real-time monitoring of the first current sensor, if the current is small, the drying operation will be slow 1. If it takes a long time to dry, reduce the operating speed of the crushing part, material conveying part, forming part and cooling and drying separation part or suspend the operation, which can save more energy. On the contrary, increase the operating speed of other parts;
通过第二电流传感器对粉碎机的实时监控,若电流过大,就知道物料不易粉碎,需要粉碎作业的时间长,则下调干燥部分、物料输送部分、成型部分和冷却干燥分离部分的运行速度或暂停作业,这样可以更加节约能源,反之,则加大其他部分的运行速度; Through the real-time monitoring of the pulverizer by the second current sensor, if the current is too large, it is known that the material is not easy to pulverize, and it takes a long time to pulverize, so the operating speed of the drying part, material conveying part, forming part and cooling and drying separation part should be lowered or Suspend operations, which can save energy more, and vice versa, increase the speed of other parts;
通过第二温度传感器和第二湿度传感器的实时监控,可以实现调整温度和加水过程控制,如控制沸腾气化炉向进料斗的热气的多少,如生物质原来的含水率低于成型工艺要求的最佳含水率,可向粉碎后尚未成型的生物质加入一定的水分,达到成型工艺的要求; Through the real-time monitoring of the second temperature sensor and the second humidity sensor, temperature adjustment and water addition process control can be realized, such as controlling the amount of hot gas from the boiling gasifier to the feed hopper, such as the original moisture content of the biomass is lower than the molding process requirements The optimal moisture content can be added to the unformed biomass after crushing to meet the requirements of the forming process;
通过第三温度传感器的实时监控,达到冷却温度,冷却干燥器打开出料口,向卸料器下放成型燃料,卸料器内的料位达到规定高度,即压力达到设定值,卸料器内的压力传感器感知,卸料器进行放料作业。 Through the real-time monitoring of the third temperature sensor, when the cooling temperature is reached, the cooling dryer opens the discharge port, and the molding fuel is lowered to the unloader. The material level in the unloader reaches the specified height, that is, the pressure reaches the set value, and the unloader The internal pressure sensor senses, and the unloader performs the discharge operation.
⑸、自适应工作模式:本发明采用目前先进的自动化控制理论和技术,实现生物质能源化预处理系统生产工艺的自动化、智能化控制,提高设备的技术集成化水平,进一步降低成本,提高产量。可自动运行,也可手动控制。自动模式下可根据原料的种类、含水率等要求,对生产线的运行参数自动调整。针对玉米秸秆、玉米芯、稻草、小麦秸秆、棉花秸秆等原料的不同特点,根据其对成型参数的要求,有不同的控制程序,分别调用相应的数据库,使其在最佳状态下工作。针对成型工艺的不同过程,也有相应的子程序,使各个工段的设备在最佳状态下工作。 (5) Self-adaptive working mode: This invention adopts the current advanced automation control theory and technology to realize the automation and intelligent control of the production process of the biomass energy pretreatment system, improve the technical integration level of the equipment, further reduce the cost and increase the output . It can be operated automatically or manually controlled. In the automatic mode, the operating parameters of the production line can be automatically adjusted according to the type of raw material, moisture content and other requirements. According to the different characteristics of corn stalks, corncobs, rice straw, wheat straw, cotton stalks and other raw materials, according to the requirements for molding parameters, there are different control programs, and the corresponding databases are called respectively to make them work in the best state. For the different processes of the molding process, there are also corresponding subroutines to make the equipment in each section work in the best state.
⑹、集成化设计:平模成型与其他设备干燥设备、粉碎设备的无缝衔接,使整套装备流水线工作,耗能低、效率高,促使了生物质平模成型燃料的流水线生产、自动化工作,减少人工作业和用工量,为规模化生产提供保障。 ⑹. Integrated design: The seamless connection between flat die forming and other equipment drying equipment and crushing equipment makes the whole set of equipment work in an assembly line with low energy consumption and high efficiency, which promotes the assembly line production and automation of biomass flat die forming fuel. Reduce manual work and labor consumption, and provide guarantee for large-scale production.
附图说明 Description of drawings
图1是本发明的结构示意图。 Fig. 1 is a structural schematic diagram of the present invention.
具体实施方式 Detailed ways
如图1所示,本发明的生物质平模颗粒自动化成型系统,包括干燥部分、粉碎部分、物料输送部分、成型部分和冷却干燥分离部分,干燥部分的出料口与粉碎部分的进料口连接,粉碎部分的出料口通过物料输送部分与成型部分的进料口连接,成型部分的出料口与冷却干燥分离部分的进料口连接。 As shown in Figure 1, the biomass flat die particle automatic molding system of the present invention includes a drying part, a crushing part, a material conveying part, a molding part and a cooling and drying separation part, the discharge port of the drying part and the feed port of the crushing part Connection, the discharge port of the crushing part is connected with the feed port of the forming part through the material conveying part, and the discharge port of the forming part is connected with the feed port of the cooling and drying separation part.
干燥部分包括沸腾气化炉12、沉降室11和干燥器10,沸腾气化炉12的热气出口通过沉降室11与干燥器10的进气口连接,干燥器10的进料口处设有上料机9;干燥器10上设有第一电流传感器17、第一湿度传感器18和第一温度传感器19。
The drying part includes a fluidized gasifier 12, a settling chamber 11 and a drier 10. The hot gas outlet of the fluidized gasifier 12 is connected to the air inlet of the drier 10 through the settling chamber 11. The feed inlet of the drier 10 is provided with an upper The
干燥是生物质进行能源化预处理的首要环节,干燥器10的供热热源由生物质沸腾气化炉12提供,该气化炉以生物质为燃料,不用化石能源。沸腾气化炉12产生的热风通过沉降室11配风后烟气温度控制在350度左右,然后进入干燥器10。根据干燥器10内的第一温度传感器19和第一湿度传感器18的实时监控,实现沸腾气化炉12运行的自动控制,使其可根据总程序的要求为干燥器10提供相应温度与总量的热风;干燥器10运行的自动控制,可使干燥器10在总程序的要求下以最高的热利用率把生物质原料干燥到合适的水分,并根据第一电流传感器17的实时监测,如果电流较小,即干燥作业慢、需要干燥的时间长,则下调粉碎部分、物料输送部分、成型部分和冷却干燥分离部分的运行速度或暂停作业,这样可以更加节约能源,反之,则加大其他部分的运行速度;为保证在进风温度为350 ℃ 时,排风温度80 ℃ ,干燥器10内的第一电流传感器17运行方式为:当控制中心检测到排风温度高于80 ℃,对干燥器10的拖动电机发出降低转速的指令,物料在干燥设备内停留时间增加,从而提高了干燥设备的热利用效率。
Drying is the primary link in biomass energy pretreatment. The heat source for
粉碎部分包括粉碎机1和第一旋风分离器2,粉碎机1的进料口与干燥器10的出料口连接,粉碎机1的出料口与第一旋风分离器2进料口连接;粉碎机1上设有第二电流传感器20。
The crushing part includes a pulverizer 1 and a
干燥后的物料先经粉碎机1粉碎,针对原料中含水率差别比较大,粉碎物料种类不固定,研制了具有较好的物料适用性和水分适用性的组合式生物质切揉粉碎设备,它在主轴上安装有风叶,可以一定的风速把物料吹出粉碎室。第一旋风分离器2不再单独配置风机,阻力较小,效率高。经粉碎的物料由第一旋风分离器2进一步分离并收集,收集的不合格物料重新回收利用。通过第二电流传感器20对粉碎机1的实时监控,若电流过大,就知道物料不易粉碎,需要粉碎作业的时间长,则下调干燥部分、物料输送部分、成型部分和冷却干燥分离部分的运行速度或暂停作业,这样可以更加节约能源,反之,则加大其他部分的运行速度。
The dried materials are first crushed by the pulverizer 1. In view of the relatively large difference in moisture content in the raw materials and the unfixed types of pulverized materials, a combined biomass cutting, kneading and pulverizing equipment with good material applicability and moisture applicability has been developed. Fan blades are installed on the main shaft, which can blow the material out of the crushing chamber at a certain wind speed. The
成型部分包括喂料搅拌器4、水箱13和颗粒成型机14,水箱13的喷水管口伸入到喂料搅拌器4的进料斗16内,喂料搅拌器4的出料口与颗粒成型机14的进料口连接;进料斗16内设有第二温度传感器21和第二湿度传感器22,沸腾气化炉12的余热出口与进料斗16连通。物料输送部分为螺旋输送机3,第一旋风分离器2的出料口与螺旋输送机3的进料口连接,螺旋输送机3的出料口与喂料搅拌器4的进料斗16连接。
The molding part comprises a feed mixer 4, a
螺旋输送机3可以根据粉碎后的物料直径等因素调整螺旋输送机3的生产能力,物料在经第一旋风分离器2的分离后再经过螺旋输送机3进入喂料搅拌器4,粉状物料在进料斗16内加水后调至含水率为12~30%。水在水箱13中由一增压泵加压(水压力为0.1MPa),由喷水管喷入喂料搅拌器4内,使物料的含水率达到12~30%。在喂料搅拌器4内搅拌均匀并符合成型的工艺条件后,物料送入颗粒成型机14压缩成型。粉状物料在颗粒成型机14内成型。
The screw conveyor 3 can adjust the production capacity of the screw conveyor 3 according to factors such as the diameter of the crushed material. After the material is separated by the
通过第二温度传感器21和第二湿度传感器22的实时监控,可以实现调整温度和加水过程控制,如控制沸腾气化炉12向进料斗16的热气的多少,如生物质原来的含水率低于成型工艺要求的最佳含水率,可向粉碎后尚未成型的生物质加入一定的水分,达到成型工艺的要求。
Through the real-time monitoring of the second temperature sensor 21 and the second humidity sensor 22, temperature adjustment and water addition process control can be realized, such as controlling the amount of hot gas from the boiling gasifier 12 to the
冷却干燥分离部分包括冷却干燥器6、卸料器15、第二旋风分离器7和引风机8,冷却干燥器6顶部的进料口通过提升机5与颗粒成型机14的出料口连接,冷却干燥器6底部的出料口与卸料器15的进料口连接,冷却干燥器6顶部的碎料出口与第二旋风分离器7的进料口连接,第二旋风分离器7的排气口与引风机8的抽气口连接;冷却干燥器6内设有第三温度传感器23,卸料器15内设有压力传感器24。
The cooling and drying separation part includes a cooling drier 6, a
由于颗粒成型机14的出料口处颗粒燃料的温度约为60~70℃,含水率为12~25%,此时的硬度较低,不易贮存与运输,因此需要对颗粒燃料进行冷却干燥。成型燃料由斗式提升机5送入冷却干燥器6,提升机5的输送量取决于线荷载的值(单位长度上物料的重量)和提升速度。颗粒燃料在冷却干燥器6内由冷空气冷却干燥后落入卸料器15,完成颗粒燃料与未成型粉料的分离。冷却干燥器6的工作原理是,热颗粒燃料直接通过进口进入冷却干燥器6,并落入底部的卸料栅格上,当物料堆积至料位器上限位置时,卸料栅格在电机的带动下作相对移动,开始排出成型颗粒燃料。在引风机8的作用下,冷却干燥器6内的碎料被抽到第二旋风分离器7,第二旋风分离器7将碎物料分离并收集,然后回收再利用。
Since the temperature of the granular fuel at the discharge port of the
本发明包括生物质干燥、粉碎、输送、水分调整、压缩成型、冷却干燥分离等一套完整的生物质成型成套设备及生产工艺流程,实现全系统的一体化运行;根据原料的进料量、粉碎量、供热量出料量及物料水分含量等条件的变化自动调整设备的运行工况,实现自动化运行,使该系统运行连续稳定,形成规模化生产。 The invention includes a complete set of biomass molding equipment and production process including biomass drying, crushing, transportation, moisture adjustment, compression molding, cooling, drying and separation, etc., and realizes the integrated operation of the whole system; according to the feed amount of raw materials, Changes in conditions such as crushing amount, heat supply and output, and material moisture content automatically adjust the operating conditions of the equipment to realize automatic operation, making the system run continuously and stably, and forming a large-scale production.
本发明的主要检测功能有:控制中心可对进颗粒成型机14前的生物质的含水率进行在线检测,对粉碎机1、颗粒成型机14的电流进行在线监测、对进入干燥设备前的热风与排出的湿气温度在线检测、进料仓16的温度和湿度在线检测。
The main detection functions of the present invention are: the control center can carry out online detection of the moisture content of the biomass before entering the
本发明的主要调节功能有:可对沸腾气化炉的加料与鼓风进行无级调节、对干燥器10的进料皮带机进行无级调节、对配风电机进行无级调节、对干燥器10的拖动电机进行无级调节。
The main adjustment functions of the present invention include: stepless regulation of the feeding and blasting of the fluidized gasifier, stepless regulation of the feeding belt conveyor of the
其控制过程为:控制中心检测到成型原料的含水率高于所需含水率时,可同时调用热风控制程序,增加高温烟气的含量,温度要保证在设定的温度,同时降低拖动电机的转速,使干燥器10的热利用率保持在较高的水平;如含水率低于设定的值,则向相反的方向调节,启动加水程序,增加原料含水率,以满足成型设备对原料水分的要求。检测中心检测到粉碎机1或颗粒成型机14的主电机工作电流大于设定值时,则减少干燥器10进料皮带的转速,减少给料量,同时沸腾气化炉12的产风量也相应减少,干燥器10拖动电机转速增加。
The control process is as follows: when the control center detects that the moisture content of the molding material is higher than the required moisture content, it can call the hot air control program at the same time to increase the content of high-temperature flue gas. The temperature must be kept at the set temperature, and at the same time reduce the drag motor speed, so that the heat utilization rate of the
干燥的同时控制中心检测到干燥器10的排烟温度增加,控制中心发出降低拖动电机转速指令,增加原料的干燥时间,使干燥器10排气温度维持在设计的80 ℃。使干燥器10的干燥效率最高。干燥部分运行参数的控制过程为:加入物料的含水率增加时,在控制中心的作用下,沸腾气化炉12提供的高温烟气量也相应,如物料干燥时间不变,排烟温度会升高,其干燥效率会下降。而干燥控制子程序能较好的解决这个问题。当控制中心检测到干燥器10的排气温度高于设定的80 ℃时,控制中心的干燥子程序启动,发出指令降低电机转速,提高物料干燥时间,高温烟气能充分与物料换热,从而降低排气温度,可保证干燥器10在较高的效率下工作。
While drying, the control center detected an increase in the exhaust gas temperature of the
通过第二湿度传感器22及压力传感器24连续测量设备生产过程中原料水分和成型压力的变化,根据测量值采用微电脑控制自动调整进料系统的水箱13的喷水速率以及喂料搅拌器4加料绞龙的给料速度,从而保持颗粒成型机14始终在最佳的成型原料水分及成型压力下工作,达到最经济的运行状态。其水分控制精度在±3%以内,成型压力控制精度在±1Mpa以内。
The second humidity sensor 22 and the pressure sensor 24 continuously measure the change of raw material moisture and molding pressure during the production process of the equipment, and adopt microcomputer control to automatically adjust the water spray rate of the
综上所述,本发明采用一体化的自动控制系统,实现生物质成型的各个环节自动运行,减少了人工操作,保证系统在优化的工况下自动运行,能耗及人工费用低,生物质干燥过程采用沸腾燃烧技术提供热源,不消耗传统能源,设备热利用率可达60%以上。 In summary, the present invention adopts an integrated automatic control system to realize the automatic operation of each link of biomass forming, which reduces manual operations, ensures that the system automatically operates under optimized working conditions, and has low energy consumption and labor costs. The drying process adopts boiling combustion technology to provide heat source, does not consume traditional energy, and the heat utilization rate of the equipment can reach more than 60%.
本发明集生物质的干燥、粉碎和平模压缩成型、冷却干燥于一体,其具体流程为:上料机9将生物质原料送入的干燥器10内,通过等压分流稳压箱和板式射流加热板组成高效气流组织进行干燥,干燥后的物料的含水不均匀度小于3%,其含水率可灵活调节,设备热利用率不小于60%。干燥后的生物质进入粉碎机1,利用平衡性好、振动小、粉碎效率高、能耗低生物质切揉制粉机进行切割粉碎,使其粒径在3~6mm以满足下一步的压缩成型。粉碎后的生物质经物料输送部分进入颗粒成型机14,压缩后形成密度为0.9~1.3g/cm3的生物质成型燃料。最后再经过冷却干燥器6的冷却并进一步降低成型燃料的含水率。图中实线为生物质原料成型路线,虚线为热风及烟气路线。
The present invention integrates biomass drying, crushing and flat die compression molding, and cooling and drying. The heating plate forms a high-efficiency airflow organization for drying. The moisture content unevenness of the dried material is less than 3%, and the moisture content can be adjusted flexibly. The heat utilization rate of the equipment is not less than 60%. The dried biomass enters the pulverizer 1, and is cut and pulverized by a biomass cutting and kneading mill with good balance, small vibration, high pulverization efficiency and low energy consumption, so that the particle size is 3-6mm to meet the next step of compression forming. The pulverized biomass enters the
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103884829A CN102517112A (en) | 2011-11-30 | 2011-11-30 | Automatic molding system for biomass flat-die particle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103884829A CN102517112A (en) | 2011-11-30 | 2011-11-30 | Automatic molding system for biomass flat-die particle |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102517112A true CN102517112A (en) | 2012-06-27 |
Family
ID=46288187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011103884829A Pending CN102517112A (en) | 2011-11-30 | 2011-11-30 | Automatic molding system for biomass flat-die particle |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102517112A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103614180A (en) * | 2013-11-27 | 2014-03-05 | 横县华能木糠加工场 | Device for producing biomass fuel particles |
CN103710068A (en) * | 2012-09-28 | 2014-04-09 | 北京奥科瑞丰新能源股份有限公司 | Automatic biomass fuel briquette production line |
CN103710067A (en) * | 2012-09-28 | 2014-04-09 | 北京奥科瑞丰新能源股份有限公司 | Automatic biomass fuel briquette production technology |
CN103952204A (en) * | 2014-04-23 | 2014-07-30 | 界首市立雨能源有限公司 | Intelligent comprehensive environment-friendly carbonizing device using waste straw resources |
CN105107425A (en) * | 2015-08-31 | 2015-12-02 | 重庆达沃斯食品有限公司 | Spirulina granulating and moulding machine |
CN105238473A (en) * | 2015-10-23 | 2016-01-13 | 毛清林 | Biomass fuel briquette and preparation device and process thereof |
CN105783018A (en) * | 2016-04-29 | 2016-07-20 | 黄山市白岳新能源科技有限公司 | Biomass pellet production system |
CN108211991A (en) * | 2018-03-21 | 2018-06-29 | 庞中化 | A kind of straw biomass particle manufacture assembly line |
CN109532086A (en) * | 2018-12-27 | 2019-03-29 | 江苏华宏科技股份有限公司 | One kind being crushed hot-forming line |
CN110356038A (en) * | 2019-08-20 | 2019-10-22 | 长沙市晨来新材料科技有限公司 | A kind of molding fireworks delivery sheet |
CN111704948A (en) * | 2020-07-28 | 2020-09-25 | 茅台学院 | Method and system for making koji waste rice straw to make biomass fuel particles in Maotai wine |
CN114272993A (en) * | 2021-12-27 | 2022-04-05 | 业彩环保科技江苏有限公司 | Quick extrusion moulding equipment of super high rigidity 6H powder coating |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1637122A (en) * | 2004-11-30 | 2005-07-13 | 中南林学院 | Environment-protecting granular wooden fuel and its production process |
CN101899346A (en) * | 2009-05-25 | 2010-12-01 | 广州迪森热能技术股份有限公司 | Biomass moulding fuel preparation method and system thereof |
CN101957128A (en) * | 2010-06-08 | 2011-01-26 | 广州迪森热能技术股份有限公司 | Biomass material drying system |
CN201999910U (en) * | 2011-02-22 | 2011-10-05 | 苏州迪森生物能源有限公司 | Biomass rod-shaped granule preparation system |
CN201999911U (en) * | 2011-03-01 | 2011-10-05 | 苏州迪森生物能源有限公司 | Biomass molded fuel preparation system |
-
2011
- 2011-11-30 CN CN2011103884829A patent/CN102517112A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1637122A (en) * | 2004-11-30 | 2005-07-13 | 中南林学院 | Environment-protecting granular wooden fuel and its production process |
CN101899346A (en) * | 2009-05-25 | 2010-12-01 | 广州迪森热能技术股份有限公司 | Biomass moulding fuel preparation method and system thereof |
CN101957128A (en) * | 2010-06-08 | 2011-01-26 | 广州迪森热能技术股份有限公司 | Biomass material drying system |
CN201999910U (en) * | 2011-02-22 | 2011-10-05 | 苏州迪森生物能源有限公司 | Biomass rod-shaped granule preparation system |
CN201999911U (en) * | 2011-03-01 | 2011-10-05 | 苏州迪森生物能源有限公司 | Biomass molded fuel preparation system |
Non-Patent Citations (2)
Title |
---|
王志伟等: "生物质成型系统一体化和自动化设计", 《可再生能源》 * |
田宜水等: "《秸秆能源化技术与工程》", 30 November 2010, 人民邮电出版社 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103710067B (en) * | 2012-09-28 | 2016-04-06 | 北京奥科瑞丰新能源股份有限公司 | The compact formed automatic production process of biomass fuel |
CN103710068A (en) * | 2012-09-28 | 2014-04-09 | 北京奥科瑞丰新能源股份有限公司 | Automatic biomass fuel briquette production line |
CN103710067A (en) * | 2012-09-28 | 2014-04-09 | 北京奥科瑞丰新能源股份有限公司 | Automatic biomass fuel briquette production technology |
CN103710068B (en) * | 2012-09-28 | 2015-11-11 | 北京奥科瑞丰新能源股份有限公司 | The compact formed automatic production line of biomass fuel |
CN103614180A (en) * | 2013-11-27 | 2014-03-05 | 横县华能木糠加工场 | Device for producing biomass fuel particles |
CN103952204A (en) * | 2014-04-23 | 2014-07-30 | 界首市立雨能源有限公司 | Intelligent comprehensive environment-friendly carbonizing device using waste straw resources |
CN105107425A (en) * | 2015-08-31 | 2015-12-02 | 重庆达沃斯食品有限公司 | Spirulina granulating and moulding machine |
CN105238473A (en) * | 2015-10-23 | 2016-01-13 | 毛清林 | Biomass fuel briquette and preparation device and process thereof |
CN105783018A (en) * | 2016-04-29 | 2016-07-20 | 黄山市白岳新能源科技有限公司 | Biomass pellet production system |
CN108211991A (en) * | 2018-03-21 | 2018-06-29 | 庞中化 | A kind of straw biomass particle manufacture assembly line |
CN109532086A (en) * | 2018-12-27 | 2019-03-29 | 江苏华宏科技股份有限公司 | One kind being crushed hot-forming line |
CN109532086B (en) * | 2018-12-27 | 2024-01-09 | 江苏华宏科技股份有限公司 | Broken hot briquetting line |
CN110356038A (en) * | 2019-08-20 | 2019-10-22 | 长沙市晨来新材料科技有限公司 | A kind of molding fireworks delivery sheet |
CN111704948A (en) * | 2020-07-28 | 2020-09-25 | 茅台学院 | Method and system for making koji waste rice straw to make biomass fuel particles in Maotai wine |
CN114272993A (en) * | 2021-12-27 | 2022-04-05 | 业彩环保科技江苏有限公司 | Quick extrusion moulding equipment of super high rigidity 6H powder coating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102517112A (en) | Automatic molding system for biomass flat-die particle | |
CN202322767U (en) | Crop straw particle forming device | |
CN203244949U (en) | Solidification circular-mold granule forming machine for biological substances | |
CN104046403B (en) | Straw briquette forming production line device | |
CN103074137A (en) | Continuous production method of biomass fuel blocks | |
CN208466142U (en) | A kind of biomass granule fuel is with breaing up grinding device | |
CN201988365U (en) | Automatic pelleting equipment for biomass fuels | |
CN109883166A (en) | Agitated drum biomass drying device based on eccentric motion | |
CN206577728U (en) | Novel intelligent biomass granule fuel facility for granulating | |
CN103521131B (en) | Equipment system for preparing agricultural and forestry waste-derived fuels from intelligent agricultural and forestry waste | |
CN202792077U (en) | Biomass feeding device integrating sieving and drying and conveying | |
CN105713698B (en) | A kind of method of afforestation Castoff material energizing | |
CN202130015U (en) | A biomass fuel briquetting forming machine enabling spiral adjustment of compression roller heights | |
CN101928621B (en) | Manufacturing method of mulberry branch briquettes | |
CN202037894U (en) | Flat die forming machine for biomass fuel | |
CN105238473A (en) | Biomass fuel briquette and preparation device and process thereof | |
CN201678651U (en) | Biological coal forming machine | |
CN202989087U (en) | Continuous production system of biomass fuel block | |
CN202654994U (en) | Energy-saving efficient biomass fuel particle complete producing equipment | |
CN105879780A (en) | Circular mould granulation machine | |
CN201325195Y (en) | Charcoal rod making machine | |
CN108007071A (en) | The drying integrated method and system of moist material fast-crushing | |
CN104401031A (en) | Stalk pellet flat die forming device | |
CN202968513U (en) | Biomass particle generation system | |
CN106823998A (en) | Novel intelligent biomass granule fuel facility for granulating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: ENERGY INSTITUTE CO., LTD. OF HENAN ACADEMY OF SCI Free format text: FORMER OWNER: DU JINYU Effective date: 20131231 |
|
C41 | Transfer of patent application or patent right or utility model | ||
C53 | Correction of patent of invention or patent application | ||
CB03 | Change of inventor or designer information |
Inventor after: Sun Yincong Inventor after: Wang Yujing Inventor after: Wang Zhiwei Inventor after: Yang Shuhua Inventor after: Li Zaifeng Inventor after: Du Jinyu Inventor after: Lei Tingzhou Inventor after: Yue Zenghe Inventor after: He Xiaofeng Inventor after: Zhu Jinling Inventor before: Du Jinyu |
|
COR | Change of bibliographic data |
Free format text: CORRECT: INVENTOR; FROM: DU JINYU TO: SUN YINCONG WANG ZHIWEI YANG SHUHUA LI ZAIFENG DU JINYU LEI TINGZHOU YUE ZENGHE HE XIAOFENG ZHU JINLING WANG YUJING Free format text: CORRECT: ADDRESS; FROM: 450002 ZHENGZHOU, HENAN PROVINCE TO: 450008 ZHENGZHOU, HENAN PROVINCE |
|
TA01 | Transfer of patent application right |
Effective date of registration: 20131231 Address after: 450008 No. 29, Huayuan Road, Henan, Zhengzhou Applicant after: Energy Institute Co., Ltd. of Henan Academy of Sciences Address before: 450002 School of mechanical and electrical engineering,, Zhengzhou, Henan Province, Henan Agricultural University Applicant before: Du Jinyu |
|
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20120627 |