JP2011140610A - Method for producing composite fuel - Google Patents

Method for producing composite fuel Download PDF

Info

Publication number
JP2011140610A
JP2011140610A JP2010017254A JP2010017254A JP2011140610A JP 2011140610 A JP2011140610 A JP 2011140610A JP 2010017254 A JP2010017254 A JP 2010017254A JP 2010017254 A JP2010017254 A JP 2010017254A JP 2011140610 A JP2011140610 A JP 2011140610A
Authority
JP
Japan
Prior art keywords
composite
particles
pulverized coal
coal
combustible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010017254A
Other languages
Japanese (ja)
Inventor
達也 ▲高▼野
Tatsuya Takano
Akira Shimo
彰 下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010017254A priority Critical patent/JP2011140610A/en
Publication of JP2011140610A publication Critical patent/JP2011140610A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a composite fuel which improves utilization of coal granules, fine powder coal, scot particles or plant based biomass in mixed combustion of a coal thermal power station. <P>SOLUTION: The method includes: a step of sticking a liquid filler to a combustible granules having a particle diameter of ≤2 mm or a combustible fibrous body having a length of ≤100 mm and thickness of ≤2 mm and a granulating; and a granulating and mixing step of granulating composite granules by sticking the fine powder coal having particle diameter of ≤2 mm or the scot particles to the combustible granules or the fibrous body to which the liquid filler is stuck and heating them by hot air while mixing them. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、バイオマス等の可燃粒体と煤などの炭素微粒子をも含む微粉炭とを混合した組成物からなる複合燃料を製造する方法に関する。   The present invention relates to a method for producing a composite fuel comprising a composition in which combustible particles such as biomass and pulverized coal including carbon fine particles such as soot are mixed.

バイオマスとは、元来、生態学における生物現存量を示す概念で、化石資源を除くエネルギー源や原材料などの生物資源全体を指す用語として、一般的に、再生可能な生物由来の有機性資源としてよく知られている。   Biomass is a concept that originally indicates the abundance of living organisms in ecology. As a term that refers to the entire biological resources such as energy sources and raw materials excluding fossil resources, it is generally used as an organic resource derived from renewable organisms. well known.

バイオマスは「廃棄物系」「未利用系」「作物系」に大別され、「廃棄物系」とは、生活や産業活動によって生じるいわゆる副産物、一般に、産業廃棄物を示しており、「未利用系」とは、現状では有効利用されていない農産物の非食用部、間伐材、林地残材などであり、その他が、作物系となっている。   Biomass is broadly divided into “waste”, “unused” and “crop”, and “waste” refers to so-called by-products generated by daily life and industrial activities, generally industrial waste. “Use system” refers to non-edible parts of agricultural products, thinned wood, and remaining forest land that are not effectively used at present, and other crops.

近年、地球温暖化問題、石油資源枯渇問題等々により、循環型のエネルギーであるバイオマスエネルギーとして化石燃料の代替となり得る新エネルギーの一つ植物系のバイオマス燃料が注目されている。植物系バイオマスが燃えるときに二酸化炭素は出ている。その二酸化炭素は原材料の草や木が育つ間に吸収したものなので、全体で見ると二酸化炭素排出ゼロと見なされ、バイオマス燃料の使用により二酸化炭素の総排出量が増えないと考えられている。   In recent years, plant-based biomass fuel, which is one of the new energies that can replace fossil fuels, is attracting attention as biomass energy, which is a circulation type energy, due to the global warming problem, the oil resource depletion problem, and the like. Carbon dioxide is emitted when plant biomass burns. The carbon dioxide is absorbed while the raw material grass and trees are grown, so it is considered that there is no carbon dioxide emission overall, and the use of biomass fuel is not expected to increase the total carbon dioxide emission.

バイオマスエタノール、バイオディーゼルなど液体系のバイオマス燃料が石油資源を一部代替し得るとして注目されているが、固体系のバイオマス燃料でも、例えば、効率よく燃焼させるため微粉炭として石炭を使用する石炭火力発電においてバイオマス混焼技術が開発されている(例えば、非特許文献1参照)。   Liquid biomass fuels such as biomass ethanol and biodiesel are attracting attention as being able to partially replace petroleum resources, but solid biomass fuels, for example, use coal as pulverized coal for efficient combustion. Biomass co-firing technology has been developed for power generation (see, for example, Non-Patent Document 1).

「FOCUS NEDO」 Vol.4 No. 15, pp15−16, 第15号平成16年7月10日発行“FOCUS NEDO” Vol. 4 No. 15, pp15-16, Issue 15 July 10, 2004

バイオマス混焼技術、すなわち物性及び燃焼性が大きく異なる石炭及び植物系バイオマスを効率良く混焼させるための技術では、既存の石炭火力発電の設備を使用するため、さまざまな取り組みがなされている。   In the biomass co-firing technology, that is, the technology for efficiently co-firing coal and plant-based biomass having greatly different physical properties and combustibility, various efforts have been made to use existing coal-fired power generation facilities.

石炭火力発電所におけるバイオマス混焼は、大別して2種類の方法がある。一つは、木幹や木皮(バーク)の削りチップなど木質バイオマスを燃料石炭とともに既設のミル(微粉炭機)に投入して粉砕し粉末として、微粉炭とバイオマス粒の混合燃料を既設のバーナを用いてボイラで燃焼させる方法と、もう一つは、石炭用微粉炭機とは別に木質バイオマス専用のミルを設けかつ、石炭用バーナとは別にバイオマス用バーナを設けてボイラで燃焼させる方法である。   There are roughly two types of biomass co-firing in coal-fired power plants. One is the introduction of wood biomass, such as wood chips and bark shaving chips, into an existing mill (pulverized coal machine) together with fuel coal, pulverizing it as a powder, and mixing fuel of pulverized coal and biomass particles into an existing burner The other is a method for burning in a boiler with a wood biomass separate burner separate from the coal pulverizer and a biomass burner separate from the coal burner. is there.

前者のバイオマス混焼方法は、木質バイオマスと燃料石炭をともに微粉炭機にて粉砕しているので火力発電設備改造が少ない。石炭火力発電の通常の微粉炭機では繊維質の多い木質バイオマスが粉砕しにくいために、微粉炭機へ投入するバイオマスの混合割合が数%を越えると微粉炭機の電力消費量が増加する。   In the former biomass co-firing method, both woody biomass and fuel coal are pulverized by a pulverized coal machine, so there is little modification of thermal power generation facilities. In a normal pulverized coal machine of coal-fired power generation, woody biomass with a lot of fiber is difficult to pulverize. Therefore, when the mixing ratio of biomass to be input to the pulverized coal machine exceeds several percent, the power consumption of the pulverized coal machine increases.

後者の木質バイオマス専用のミルを設けるバイオマス混焼方法では、微粉炭とバイオマスの混合割合を大きくとることができるが、前者に比べて大幅なボイラ設備改修の必要がある。   The biomass co-firing method with a mill dedicated to woody biomass can increase the mixing ratio of pulverized coal and biomass, but it requires significant boiler equipment renovation compared to the former.

一方、固定床燃焼方式、流動床燃焼方式、噴流床燃焼方式のいずれの石炭火力発電においても、石炭を粉砕し粒体あるいは微粉炭としてボイラで燃焼させる。よって、いずれのバイオマス混焼方法の方法でも、従前と変わらず、微粉炭機は必要であり、微粉炭機による大量石炭の粉砕処理により、本来の燃焼に供さない微粉炭の未使用分の増加する。すなわち、燃焼に利用されない石炭粒体あるいは微粉炭のリサイクルや廃棄処理が必要となる。   On the other hand, in any coal thermal power generation of a fixed bed combustion system, a fluidized bed combustion system, and a spouted bed combustion system, coal is pulverized and burned in a boiler as granular or pulverized coal. Therefore, in any biomass co-firing method, a pulverized coal machine is necessary as before, and a large amount of pulverized coal that is not subjected to the original combustion is increased by pulverizing a large amount of coal with the pulverized coal machine. To do. That is, it is necessary to recycle and discard coal particles or pulverized coal that are not used for combustion.

さらに、石炭火力発電の他、石油火力発電においても、その燃焼後の排煙から大量の未燃カーボンを含む重油灰(煤塵)が集塵機により集積され、その煤粒子のリサイクルや廃棄処理が必要となる。ここでは、煤など重油灰(煤塵)に含まれる炭素を主成分とする微粒子を煤粒子と称する。   Furthermore, in oil-fired power generation as well as coal-fired power generation, heavy oil ash (dust) containing a large amount of unburned carbon is accumulated by dust collectors from the flue gas after combustion, and the soot particles need to be recycled and disposed of. Become. Here, fine particles mainly containing carbon contained in heavy oil ash (dust) such as soot are referred to as soot particles.

そこで、本発明の目的は、火力発電所の混焼における石炭粒体あるいは微粉炭又は煤粒子や植物系バイオマスの利用を向上できる複合燃料の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing a composite fuel capable of improving the utilization of coal particles, pulverized coal, soot particles, and plant biomass in mixed combustion in a thermal power plant.

本発明の複合燃料の製造方法は、粒径2mm以下の可燃粒体又は繊維長100mm以下繊維太さ2mm以下の可燃繊維体に液体充填材を付着させる工程と、
前記液体充填材の付着した可燃粒体又は繊維体に粒径2mm以下の微粉炭又は煤粒子を付着させ混合しつつ熱風加熱して複合粒体を造粒する造粒混合工程と、を含むことを特徴とする。
The method for producing a composite fuel of the present invention comprises a step of attaching a liquid filler to a combustible granule having a particle size of 2 mm or less or a fiber length of 100 mm or less and a fiber thickness of 2 mm or less.
A granulation mixing step of granulating a composite granule by heating with hot air while adhering and mixing pulverized coal or soot particles having a particle size of 2 mm or less to the combustible granule or fiber body to which the liquid filler is adhered. It is characterized by.

上記の複合燃料の製造方法においては、前記可燃粒体又は繊維体が、コーヒー抽出糟、茶殻、大豆糟、漢方薬抽出糟、焼酎搾り糟、柑橘類果皮粉砕物、オガ屑及び製紙スラッジの粉砕物からなる群より選ばれた1種以上の粉末原料であることとすることができる。   In the above-mentioned method for producing a composite fuel, the combustible granules or fiber body is made from coffee ground lees, tea husk, soybean koji, Chinese herbal medicine lees, shochu lees, citrus peels, sawdust, and paper sludge. One or more powder raw materials selected from the group consisting of:

上記の複合燃料の製造方法においては、前記可燃粒体又は繊維体の表面に微粉炭又は煤粒子を付着させて表面に微粉炭又は煤粒子の層を形成することとすることができる。   In the above composite fuel production method, pulverized coal or soot particles may be attached to the surface of the combustible particles or fibers to form a layer of pulverized coal or soot particles on the surface.

上記の複合燃料の製造方法においては、前記混合工程で得られた前記複合粒体をプレス成型機により成型する工程を含むこととすることができる。   The method for producing a composite fuel may include a step of molding the composite particles obtained in the mixing step with a press molding machine.

上記の複合燃料の製造方法においては、前記複合粒体をプレス成型機により板状に成型する工程を含むこととすることができる。   The method for producing a composite fuel may include a step of forming the composite particles into a plate shape using a press molding machine.

本発明によれば、バイオマス等の粉砕物からなる植物系可燃粒体又は繊維体に液体充填材を付着させ、液体充填材付着の可燃粒体又は繊維体に微粉炭又は煤粒子を所定の割合で混合し熱風加熱しつつ、造粒することにより、複合粒体の複合燃料が生成される。さらに、複合粒体の複合燃料を、可燃粒体又は繊維体間の粘結材としての液体充填材と微粉炭又は煤粒子の層を圧着することにより、例えば、板状の高密度成型燃料を得ることができ、貯蔵及び輸送に適した固体燃料を製造できる。この固体燃料の破砕及び粉砕処理により、フレーク状の複合燃料として使用できる。   According to the present invention, a liquid filler is attached to a plant combustible granule or fiber body made of a pulverized product such as biomass, and pulverized coal or soot particles are added to the combustible granule or fiber body attached to the liquid filler at a predetermined ratio. Then, the mixture is granulated while being heated and heated to produce a composite fuel of composite granules. Further, by compressing the composite fuel of the composite particles, a liquid filler as a binder between the combustible particles or fiber bodies and a layer of pulverized coal or soot particles, for example, a plate-shaped high density molded fuel And can produce a solid fuel suitable for storage and transportation. By this solid fuel crushing and pulverization treatment, it can be used as a flaky composite fuel.

微粉炭又は煤粒子のそれぞれの粒子形状、サイズや比重に違いがある場合、均一に混合しても粉体のままでは搬送や移動中の振動などにより偏りが出るが、均一な混合に引き続き造粒すると、粒一つ一つの中の各成分の比率が一定のまま固定化される。   If there is a difference in the particle shape, size, or specific gravity of pulverized coal or soot particles, even if they are mixed uniformly, they will be biased due to vibrations during transportation and movement even if they are in powder form. When granulated, the ratio of each component in each grain is fixed and fixed.

粉炭のままでは流動性が高く、一気に流れすぎ微粉炭機に留まらない、発塵性が高く輸送効率が悪いなど、粉体であるので様々な問題が発生するが、造粒による嵩密度が増加した複合粒体によってかかる問題を解消することができる。   If it is pulverized coal, the fluidity is high, it will flow too much at a stretch, it will not stay in the pulverized coal machine, dust generation is high and transportation efficiency is bad, and various problems occur because it is powder, but the bulk density due to granulation increases Such a problem can be solved by the composite particles.

微粉炭又は煤粒子を複合粒体にすることにより、粒体単位重量あたりの表面積が小さくなるので、水分を徐々に外部に放出でき、造粒することにより複合粒体同士との接する部分が少なくなり、乾燥性を制御することができる。   By making pulverized coal or soot particles into composite particles, the surface area per unit weight of the particles is reduced, so that moisture can be gradually released to the outside, and there are few parts in contact with the composite particles by granulating. Thus, the drying property can be controlled.

また、石炭とバイオマスを同時に混焼すると、燃焼効率が上昇したり、或いはバイオマスに含まれる窒素分が石炭に含まれる窒素分より少ないため、排ガス中におけるNOxの濃度を低減できるとともに、石炭のみの燃焼において生成される熱合成NOxの低減を図ることもできる。またプレス成型機による成型燃料の成型時の高速回転化を図ることにより、成型燃料の量産性が向上できるとともに、製造コストを低減できる。更に板状の成型燃料の破砕及び粉砕処理によって、各種ボイラーに用いられるフレーク状燃料や、火力発電に用いられる微粉状燃料など、多目的用途に対応した複合燃料を製造できる。この結果、微粉状複合燃料の混焼により燃焼性を改善できるとともに、低負荷燃焼時における高効率化を図ることができる。   In addition, when coal and biomass are co-fired at the same time, the combustion efficiency increases, or the nitrogen content in the biomass is less than the nitrogen content in the coal, so the concentration of NOx in the exhaust gas can be reduced and only the coal is combusted. It is also possible to reduce the thermal synthesis NOx produced in the process. In addition, mass production of the molded fuel can be improved and the manufacturing cost can be reduced by increasing the rotation speed at the time of molding the molded fuel by the press molding machine. Further, by crushing and pulverizing the plate-shaped molded fuel, a composite fuel corresponding to a multipurpose application such as a flaky fuel used in various boilers and a fine powder fuel used in thermal power generation can be produced. As a result, combustibility can be improved by co-firing the finely powdered composite fuel, and high efficiency can be achieved during low load combustion.

本発明の実施形態の複合燃料製造方法における複合粒体の製造手順を示すブロック線図である。It is a block diagram which shows the manufacture procedure of the composite grain body in the composite fuel manufacturing method of embodiment of this invention. 本発明の実施形態の複合燃料製造方法における粗混合工程に用いる攪拌タンク及び液体充填材タンクを示す概略斜視図である。It is a schematic perspective view which shows the stirring tank and liquid filler tank which are used for the rough mixing process in the composite fuel manufacturing method of embodiment of this invention. 本発明の実施形態の複合燃料製造方法における混合造粒工程に用いる複合燃料製造装置を示す概略斜視図である。It is a schematic perspective view which shows the composite fuel manufacturing apparatus used for the mixing granulation process in the composite fuel manufacturing method of embodiment of this invention. 本発明の実施形態の複合燃料製造方法における例えば板状に成型された複合燃料の製造を示す概略斜視図である。It is a schematic perspective view which shows manufacture of the composite fuel shape | molded, for example in the plate shape in the composite fuel manufacturing method of embodiment of this invention. 本発明の実施形態の複合燃料製造方法における例えば板状に成型された複合燃料の粉砕を示す概略斜視図である。It is a schematic perspective view which shows the grinding | pulverization of the composite fuel shape | molded, for example in plate shape in the composite fuel manufacturing method of embodiment of this invention. 本発明の実施例の複合燃料の発熱量の重油灰中水分量依存性を示すグラフである。It is a graph which shows the moisture content dependence in the heavy oil ash of the emitted-heat amount of the composite fuel of the Example of this invention.

12 植物残渣粉末
13 液体充填材
14 微粉炭又は煤粒子
15 第1混合原料
17 液体充填材タンク
21 攪拌タンク
22 アジテータ
31 ハウジング
32 スクリューアジテータ
33 ホッパ
34 排出口
35 複合粒体
35b 板状の複合燃料
36 乾燥熱風循環配管
37 湿度調整配管
38 微粉炭又は煤粒子の調整配管
41、42 平板型
51、52 平行粉砕ロール
12 plant residue powder 13 liquid filler 14 pulverized coal or soot particles 15 first mixed raw material 17 liquid filler tank 21 agitation tank 22 agitator 31 housing 32 screw agitator 33 hopper 34 discharge port 35 composite granule 35b plate-like composite fuel 36 Dry hot air circulation piping 37 Humidity adjustment piping 38 Adjustment piping for pulverized coal or soot particles 41, 42 Flat plate type 51, 52 Parallel grinding rolls

以下に本発明の実施形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

<複合粒体の原料>
複合粒体の原料は、微粉炭又は煤粒子、植物系可燃粒体又は繊維体及び液体充填材である。
<Raw materials for composite particles>
The raw material of the composite granule is pulverized coal or soot particles, plant combustible granule or fiber, and liquid filler.

粒径2mm以下の石炭粒や石炭粉(微粉炭)又は煤粒子を含む微粉炭又は煤粒子を用意する。煤粒子は粒径をサブマイクロメートル(数百nm)から数百μmの炭素を主成分とする粒子である。石炭の粉粒体はその粒径により、少なくとも2種に分級され、例えば、粒径1mm以下とこれを越える粒径に分けておく。微粉炭又は煤粒子は製鉄所、火力発電所からの廃棄物として供給されるものが好ましく利用される。原材料の煤粒子は燃焼後に電気集塵機で回収された重油灰(煤塵)(EP(Electron Particle)灰)であってもよく、EP灰から有価金属を回収した後のEP灰であっもよい。石炭の粉粒体では200メッシュ(目開75μm)以下の微粉炭を大量に含む原料の使用が好ましい。原材料の石炭には、褐炭、亜瀝青炭、瀝青炭等の炭種にかかわらず広範囲の石炭を原料とすることができる。   Prepare pulverized coal or cocoon particles including coal particles having a particle diameter of 2 mm or less, coal powder (pulverized coal), or soot particles. The soot particles are particles mainly composed of carbon having a particle size of submicrometer (several hundred nm) to several hundred μm. The coal granular material is classified into at least two types according to the particle size, and is divided into, for example, a particle size of 1 mm or less and a particle size exceeding this. As the pulverized coal or soot particles, those supplied as waste from steelworks or thermal power plants are preferably used. The soot particles of the raw material may be heavy oil ash (soot dust) (EP (Electron Particle) ash) recovered by an electric dust collector after combustion, or EP ash after recovering valuable metals from EP ash. It is preferable to use a raw material containing a large amount of pulverized coal having a mesh size of 200 mesh (mesh 75 μm) or less. Regardless of the type of coal such as lignite, subbituminous coal, and bituminous coal, a wide range of coal can be used as a raw material.

植物系可燃粒体又は繊維体はバイオマス粉砕物が好ましい。植物系バイオマス粉砕物は、植物残渣廃棄物である各種の食品飲料工場から、例えば、コーヒー抽出糟、茶殻、大豆糟、焼酎搾り糟、柑橘類果皮粉砕物などが各工場から供給される。また、例えば、漢方薬抽出糟などは製薬工場で或る程度粉砕されて供給される。   The plant combustible granule or fiber is preferably a biomass pulverized product. The plant-based biomass pulverized product is supplied from various food and beverage factories that are plant residue wastes, for example, coffee extract mash, tea husk, soybean cake, shochu squeezed mash, citrus peel crushed product, and the like. In addition, for example, herbal medicine extract candy is supplied after being pulverized to some extent in a pharmaceutical factory.

さらに、植物残渣には、木工所から供給されるオガ屑などのバイオマス粉砕物も挙げられる。   Further, the plant residue includes pulverized biomass such as sawdust supplied from the woodworking plant.

さらにまた、製紙工場からの廃棄物として供給される製紙スラッジも植物系可燃粒体として利用できる。製紙工場では再生紙工場も含めて、原料リサイクルが進んでおり、その中で再生紙製造における古紙からパルプ繊維を回収するだけでなく製紙用無機薬品である炭酸カルシウム、クレー、タルクを回収する技術も進んでおり、回収後の残分の製紙スラッジにはパルプ短繊維やインク成分等も含まれているため焼却できる。よって製紙スラッジも植物残渣に含めることができる。   Furthermore, paper sludge supplied as waste from a paper mill can be used as plant combustible granules. Raw material recycling is progressing in paper mills, including recycled paper mills, in which not only pulp fibers are recovered from used paper in recycled paper manufacturing, but also technologies for recovering calcium carbonate, clay and talc, which are inorganic chemicals for paper manufacturing. The remaining papermaking sludge after collection contains pulp staple fibers and ink components, so that it can be incinerated. Thus, paper sludge can also be included in the plant residue.

これら植物残渣を用いて、水分率が20%以下に自然乾燥され、かつ粒径が2mm以下粒状物であれば粉砕せずに、これより大きい場合には粒径が2mm以下の粒状に粉砕されて、植物系可燃粒体が生成される。或いは、長い植物残渣の場合、最大直径(太さ)が2mm以下、最大長さ(繊維長)100mm以下の繊維状又は棒状に粉砕されて、可燃繊維体が生成される。ここでは、説明上、可燃繊維体も含めて可燃粒体と総称する。   Using these plant residues, the moisture content is naturally dried to 20% or less and is not pulverized if the particle size is 2 mm or less, and if it is larger than this, it is pulverized to a particle size of 2 mm or less. Thus, plant combustible particles are produced. Or in the case of a long plant residue, a combustible fiber body is produced | generated by grind | pulverizing in the fiber shape or rod shape whose maximum diameter (thickness) is 2 mm or less and whose maximum length (fiber length) is 100 mm or less. Here, for the sake of explanation, the combustible fiber body and the combustible particle body are collectively referred to.

また、粒径2mm以下の可燃粒体又は繊維長100mm以下繊維太さ2mm以下の可燃繊維体とするのは、これらの範囲外では植物系可燃粒体表面に塗される微粉炭又は煤粒子の付着量が不足するからである。   In addition, combustible granules having a particle size of 2 mm or less or a fiber length of 100 mm or less and a fiber thickness of 2 mm or less are used for pulverized coal or soot particles coated on the surface of the plant combustible granules outside these ranges. This is because the amount of adhesion is insufficient.

液体充填材は粘結材として機能する。液体充填材として、水、廃油などが挙げられる。廃油は自動車整備工場からの廃棄物として供給されるエンジンオイルなどの廃油が好ましく利用される。   The liquid filler functions as a binder. Examples of the liquid filler include water and waste oil. As waste oil, waste oil such as engine oil supplied as waste from an automobile maintenance factory is preferably used.

<原料の調製>
図1は本発明の実施形態の複合燃料の製造手順を示すブロック線図である。
<Preparation of raw materials>
FIG. 1 is a block diagram showing a production procedure of a composite fuel according to an embodiment of the present invention.

<植物残渣>
植物残渣を、例えば、天日干しにして脱水、乾燥する(図1のステップS1)。なお、フィルタリングにより植物残渣から金属片など挟雑物を予め取り除いておく。
<Plant residue>
The plant residue is dehydrated and dried by, for example, sun drying (step S1 in FIG. 1). It should be noted that interstitial materials such as metal pieces are previously removed from the plant residue by filtering.

その後、植物残渣を、粉砕し粉末にする(図1のステップS2)。但し、コーヒー抽出糟など既に所定粒度の粉末となっているものは粉砕工程は不要となる。   Thereafter, the plant residue is pulverized into powder (step S2 in FIG. 1). However, a pulverizing step is not necessary for a powder already having a predetermined particle size such as a coffee extractor.

その後、植物残渣粉末を、JIS標準篩を用いて少なくとも2種類に分級する(図1のステップS3)。   Thereafter, the plant residue powder is classified into at least two types using a JIS standard sieve (step S3 in FIG. 1).

次に、分級された植物残渣粉末をそれぞれ容器に貯留する(図1のステップS4)。   Next, each classified plant residue powder is stored in a container (step S4 in FIG. 1).

<微粉炭又は煤粒子>
製鉄所、石炭火力発電所からの廃棄物として供給される石炭粉粒体を、天日干しにして脱水、乾燥する(図1のステップS21)。なお、フィルタリングにより石炭粉粒体から金属片など挟雑物を予め取り除いておく。同様に、石油火力発電所などから供給された煤粒子の水分調整を行って保存しておく。
<Pulverized coal or soot particles>
The coal powder supplied as waste from the steelworks and coal-fired power plant is dehydrated and dried by sun-drying (step S21 in FIG. 1). In addition, foreign matters such as metal pieces are previously removed from the coal powder by filtering. Similarly, the moisture of the soot particles supplied from an oil-fired power plant is adjusted and stored.

その後、石炭粉粒体を、JIS標準篩を用いて少なくとも2種類に分級する(図1のステップS23)。   Thereafter, the coal powder is classified into at least two types using a JIS standard sieve (step S23 in FIG. 1).

その後、石炭粉粒体から分級された微粉炭及び煤粒子などをそれぞれ容器に貯留する(図1のステップS24)。   Thereafter, pulverized coal and soot particles classified from the coal powder are respectively stored in containers (step S24 in FIG. 1).

<粘結材:液体充填材>
自動車整備工場などからの廃棄物として供給される各種の廃油をろ過する(図1のステップS31)。すなわち、フィルタリングによりそれぞれ廃油から金属片など挟雑物を予め取り除いておく。
<Binder: Liquid filler>
Various types of waste oil supplied as waste from an automobile maintenance factory or the like are filtered (step S31 in FIG. 1). That is, foreign matters such as metal pieces are previously removed from the waste oil by filtering.

その後、分類された廃油ごとに、それぞれ容器に貯留する(図1のステップS34)。   Thereafter, each classified waste oil is stored in a container (step S34 in FIG. 1).

粘結材としては、更に、水も利用でき、さらに、パルプ産業廃棄物である黒液、廃油、廃グリース等の工業廃棄物、および工業糖蜜等を使用することにより、低い成型圧力で高強度、高燃焼効率複合燃料を製造することもできる。   In addition, water can also be used as the caking additive, and by using industrial wastes such as black liquor, waste oil and waste grease, which are pulp industrial waste, and industrial molasses, high strength at low molding pressure A high combustion efficiency composite fuel can also be produced.

<粗混合工程>
図2に示すように、それぞれ計量された分級された植物残渣粉末12の1種類と微粉炭又は煤粒子14の1種類と廃油などの液体充填材13とを、混合し、第1混合原料15を得る(図1のステップS45)。水に代表される粘結材の注入方法は液体噴霧されず、攪拌タンク21内のアジテータ22の分散力が優れているためスプレー無しの棒状一括注液でもよい。
<Rough mixing process>
As shown in FIG. 2, one kind of each classified plant residue powder 12, one kind of pulverized coal or soot particles 14, and a liquid filler 13 such as waste oil are mixed to obtain a first mixed raw material 15. Is obtained (step S45 in FIG. 1). The method of injecting the binding material represented by water is not sprayed with a liquid, and the agitator 22 in the agitation tank 21 is excellent in dispersion power, and may be a rod-like batch injection without spraying.

この工程では、攪拌タンク21内に、植物残渣粉末12、液体充填材13及び微粉炭又は煤粒子14を投入して、アジテータ22で投入物を攪拌させつつ混合する。これにより、植物残渣粉末12の表面全体に比較的効率良く液体充填材13を付着させ、さらに、微粉炭又は煤粒子14も付着させ、第1混合原料15を得る。   In this step, the plant residue powder 12, the liquid filler 13, and the pulverized coal or soot particles 14 are charged into the stirring tank 21, and mixed while stirring the charged material with the agitator 22. Thereby, the liquid filler 13 is made to adhere to the entire surface of the plant residue powder 12 relatively efficiently, and further, the pulverized coal or the soot particles 14 are also attached to obtain the first mixed raw material 15.

なお、この工程では、液体充填材タンク17から液体充填材13を噴霧して他の投入物と同時に混合させたが、植物残渣粉末12の投入後、液体充填材13を先に投入し、その後、微粉炭又は煤粒子14を後から投入し混合してもよい。   In this step, the liquid filler 13 is sprayed from the liquid filler tank 17 and mixed simultaneously with other inputs. However, after the plant residue powder 12 is charged, the liquid filler 13 is charged first, and then Alternatively, pulverized coal or soot particles 14 may be added later and mixed.

また、植物残渣粉末12に液体充填材13を接触させて植物残渣粉末12の表面全体に液体充填材13を付着させる方法としては、攪拌タンク21に植物残渣粉末12を搬送するベルトコンベヤ(図示せず)などの上の載せて搬送しているときに、この植物残渣粉末12に液体充填材13を先に噴霧しておく方法も挙げられる。すなわち、可燃粒体の表面に微粉炭又は煤粒子を被覆する方法としては、含浸法(浸漬法)、塗布法、噴霧法等を適宜使用できる。   As a method for bringing the liquid filler 13 into contact with the plant residue powder 12 and attaching the liquid filler 13 to the entire surface of the plant residue powder 12, a belt conveyor (not shown) that conveys the plant residue powder 12 to the stirring tank 21 is shown. Or the like, when the plant residue powder 12 is sprayed with the liquid filler 13 first. That is, as a method for coating the surface of combustible particles with pulverized coal or soot particles, an impregnation method (immersion method), a coating method, a spray method, or the like can be used as appropriate.

<混合造粒工程>
次に、本発明の混合造粒工程を添付の図面に基づいて具体的に説明する。
<Mixed granulation process>
Next, the mixing granulation process of this invention is demonstrated concretely based on attached drawing.

上記の粗混合工程にて粗混練された第1混合原料15を図3に示すような複合燃料製造装置で調製混合しつつ造粒する(図1のステップS46)。   The first mixed raw material 15 roughly kneaded in the above rough mixing step is granulated while being prepared and mixed by a composite fuel production apparatus as shown in FIG. 3 (step S46 in FIG. 1).

図3に示す複合燃料製造装置は、長手中空シリンダ型のハウジング31と、このハウジング31内にその長手方向に沿って設けられたスクリューアジテータ32と、を備えている。複合燃料製造装置は、図3に示すように、ハウジング31を水平方向から傾斜するように支持台(図示せず)に支持され、高い側のハウジング31の投入始端側に上方に開いたホッパ33を設け、低い側のハウジング31の排出終端側に下方に開いた排出口34が設けられている。排出口34の下方には、得られる造粒物の搬送手段が可動自在に設けられている。   The composite fuel production apparatus shown in FIG. 3 includes a longitudinal hollow cylinder type housing 31 and a screw agitator 32 provided in the housing 31 along the longitudinal direction thereof. As shown in FIG. 3, the composite fuel production apparatus is supported by a support base (not shown) so that the housing 31 is inclined from the horizontal direction, and is opened upward on the charging start end side of the higher housing 31. A discharge port 34 opened downward is provided on the discharge end side of the lower housing 31. Below the discharge port 34, a means for conveying the obtained granulated material is movably provided.

スクリューアジテータ32は、ハウジング31の長手方向に伸長する回転軸32b周りに螺旋状に配列された複数の攪拌幹体32c(歯体)が植設され、回転軸32bがフィーダ用モータ(図示せず)により回転駆動されるように構成されている。スクリューアジテータ32の回転により、ホッパ33からハウジング31内に投入された第1混合原料15がハウジング31の投入始端側から排出終端側へに攪拌幹体32cで圧送しつつ複合粒体35を造粒されるように構成されている。スクリューアジテータ32の回転速度に応じて、その複数の攪拌幹体32c(歯体)の各々の形状を変化させたものを使用したり、攪拌幹体32c(歯体)の螺旋状に配列のピッチを変化させたものを使用することにより、造粒される複合粒体の粒度を調整する。   The screw agitator 32 is provided with a plurality of stirring trunks 32c (tooth bodies) arranged in a spiral manner around a rotation shaft 32b extending in the longitudinal direction of the housing 31, and the rotation shaft 32b is a feeder motor (not shown). ) To be rotationally driven. Due to the rotation of the screw agitator 32, the first mixed raw material 15 charged into the housing 31 from the hopper 33 is granulated from the charging start end side to the discharge end side of the housing 31 by the stirring trunk 32c while the composite granule 35 is granulated. It is configured to be. Depending on the rotational speed of the screw agitator 32, a plurality of stirring trunks 32c (tooth bodies) having different shapes can be used, or the pitch of the stirring trunk bodies 32c (tooth bodies) arranged in a spiral shape. The particle size of the composite granule to be granulated is adjusted by using one having a changed particle size.

更に、図3に示すような複合燃料製造装置には、ハウジング31の投入始端側から排出終端側へ乾燥熱風が循環する配管が施されている。配管36はハウジング31の投入始端側のホッパ33の上端にてその一端吸気口が開放接続され、その他端は排出終端側の排出口34上に吐出口が開放接続され、その途中に気流乾燥器が配置される。   Furthermore, the composite fuel production apparatus as shown in FIG. 3 is provided with a pipe through which dry hot air circulates from the input start end side to the discharge end side of the housing 31. One end of the pipe 36 is openly connected to the upper end of the hopper 33 on the charging start end side of the housing 31, and the other end is openly connected to the discharge port 34 on the discharge end side. Is placed.

この乾燥熱風循環配管での熱風加熱は、加熱ガス発生源(図示せず)からの酸素の少ないガスを吹込むことにより行うことが好ましく、この加熱により複合粒体の乾燥が同時に行われる。上記循環ガスは水蒸気を多く含みかつ酸素の少ない安全な雰囲気で循環されることが好ましい。また熱風加熱温度を80〜100℃の範囲内に限定したのは、80℃未満では複合粒体中に十分な量の水蒸気が保持されず、100℃を越えると圧力を大気圧以上の圧力に上昇させる必要があるからである。   The hot air heating in the dry hot air circulation pipe is preferably performed by blowing a gas with less oxygen from a heating gas generation source (not shown), and the composite particles are simultaneously dried by this heating. The circulating gas is preferably circulated in a safe atmosphere containing a large amount of water vapor and low oxygen. Further, the hot air heating temperature is limited to the range of 80 to 100 ° C. The reason why the sufficient amount of water vapor is not retained in the composite granule is less than 80 ° C. When the temperature exceeds 100 ° C., the pressure is increased to the atmospheric pressure or higher. It is necessary to raise it.

更に、図3に示すような複合燃料製造装置におけるハウジング31の投入始端側のホッパ33近傍には、液体充填材タンク(図示せず)から又は水槽から液体充填材を湿度調整のために噴霧する配管37が設けられている。湿度調整配管37はその吐出口がハウジング31に開放接続され、バルブ操作によりその途中の第1混合原料15に液体充填材が添加される。   Further, in the composite fuel production apparatus as shown in FIG. 3, the liquid filler is sprayed from the liquid filler tank (not shown) or from the water tank in the vicinity of the hopper 33 on the charging start end side of the housing 31 for humidity adjustment. A pipe 37 is provided. The outlet of the humidity adjusting pipe 37 is openly connected to the housing 31, and the liquid filler is added to the first mixed raw material 15 in the middle of the valve operation.

また更に、図3に示すような複合燃料製造装置におけるハウジング31の中間点近傍には、微粉炭又は煤粒子タンク(図示せず)から、分級され乾燥した微粉炭又は煤粒子を湿度調整及び微粉炭又は煤粒子層コーティングのために供給する配管38が設けられている。微粉炭又は煤粒子調整配管38はその吐出口がハウジング31に開放接続され、バルブ操作によりその途中の第1混合原料15に微粉炭又は煤粒子が添加される。   Furthermore, in the vicinity of the intermediate point of the housing 31 in the composite fuel production apparatus as shown in FIG. 3, the pulverized coal or soot particles classified and dried from the pulverized coal or soot particle tank (not shown) are humidity-adjusted and pulverized. A piping 38 is provided for supplying the charcoal or soot particle layer coating. The discharge port of the pulverized coal or soot particle adjusting pipe 38 is openly connected to the housing 31, and the pulverized coal or soot particle is added to the first mixed raw material 15 in the middle by the valve operation.

次に、上記のように構成された複合燃料製造装置の作用について説明する。   Next, the operation of the composite fuel production apparatus configured as described above will be described.

第1混合原料15は予め計量されホッパ33に溜められた後、バルブ操作により一気にハウジング31内へ投入される。粉塵が発生する場合、集塵管(図示せず)の接続により、外部への粉塵漏れを防止できる。   The first mixed raw material 15 is weighed in advance and stored in the hopper 33, and then charged into the housing 31 at once by a valve operation. When dust is generated, external dust leakage can be prevented by connecting a dust collecting tube (not shown).

ホッパ33に投入された第1混合原料15は、所定量ずつ下方に移動し、ハウジング31内を通って排出口34から落下する。第1混合原料15はハウジング31内を通過する際には熱風にさらされ、水分を奪われて乾燥する。このような乾燥移動することにより、第1混合原料15は徐々に乾燥され複合粒体35となる。   The first mixed raw material 15 charged into the hopper 33 moves downward by a predetermined amount, passes through the housing 31 and falls from the discharge port 34. When the first mixed raw material 15 passes through the inside of the housing 31, it is exposed to hot air, deprived of moisture, and dried. By such a drying movement, the first mixed raw material 15 is gradually dried to become composite particles 35.

詳述すれば、一括投入された原第1混合原料15は、スクリューアジテータ32の回転によって発生する高い剪断力と強力な撹拌混合力によって、あたかも粉砕機を通過させたかのような状態に微細化され、均一分散される。植物残渣と微粉炭又は煤粒子の間の液体架橋(水又は廃油)により、植物残渣と微粉炭又は煤粒子が接近し、原料全体の嵩密度が次第に増加する。そして更なる混合継続で、植物残渣と微粉炭又は煤粒子の凝集体同士が粘結材の液体架橋により接合し、造粒の核を形成する。   More specifically, the raw first mixed raw material 15 charged in a batch is refined as if it had passed through a pulverizer by the high shearing force generated by the rotation of the screw agitator 32 and the strong stirring and mixing force. , Uniformly dispersed. Due to the liquid bridge (water or waste oil) between the plant residue and pulverized coal or cocoon particles, the plant residue and pulverized coal or cocoon particles approach, and the bulk density of the whole raw material gradually increases. As the mixture continues further, the aggregates of the plant residue and pulverized coal or cocoon particles are joined together by liquid crosslinking of the caking material to form a granulation nucleus.

そして、造粒の原理として粘結材の架橋内の圧力は負圧であり、粘結材の表面張力と相まって植物残渣と微粉炭又は煤粒子の間に働く付着力となる。   And as a principle of granulation, the pressure in the bridge | crosslinking of a caking additive is a negative pressure, and it becomes the adhesive force which acts between a plant residue and pulverized coal, or a cocoon particle | grain together with the surface tension of an caking additive.

そして、植物残渣と微粉炭又は煤粒子の間にはこのような粘結材架橋に代表される付着力と、重力や機械力に代表される分離力が働き、そのバランスの結果として或るサイズの複合粒体が形成される。アジテータ速度を上げると複合粒体同士の接触機会が増加し粒の成長速度が速まる一方、分離力が強くなり到達できるサイズが小さくなる。逆にアジテータ速度を下げると分離力が弱まり、複合粒体をより大きく成長させることができる。よって造粒の進行度に合わせてアジテータ速度を最適にして、目標サイズの複合粒体を得ることができる。   An adhesion force represented by such binder binding and a separation force represented by gravity and mechanical force act between the plant residue and pulverized coal or cocoon particles, and as a result of the balance, a certain size The composite particles are formed. Increasing the agitator speed increases the chance of contact between the composite grains and increases the speed of grain growth, while increasing the separation force and reducing the reachable size. Conversely, when the agitator speed is lowered, the separating force is weakened, and the composite particles can be grown larger. Therefore, it is possible to optimize the agitator speed in accordance with the degree of progress of granulation and obtain a composite granule having a target size.

一方、液体架橋を形成する粘結材の添加比率は、多い方が複合粒体の成長速度が速くなり、また大きな複合粒体を得ることが可能となる。しかし多すぎると各々の複合粒体のサイズが収束せずに成長を続け、複合粒体表面に押出される粘結材が過多となり、複合粒体が崩壊し、やがて全体が一体化していわゆる「混練」の状態となる。   On the other hand, the larger the addition ratio of the binder forming the liquid bridge, the faster the growth rate of the composite particles, and the larger composite particles can be obtained. However, if the amount is too large, the size of each composite particle will continue to grow without converging, the amount of binder to be extruded on the surface of the composite particle will be excessive, the composite particle will collapse, and eventually the whole will be integrated so-called `` It becomes a state of “kneading”.

複合粒体の形成(造粒)は複合粒体自体が回転運動をすることが本質的に重要な要素であるので、スクリューアジテータ32の攪拌幹体32cとの接触による瞬間的な回転運動だけではなく、その後の慣性による回転運動も必要な場合には、更にはハウジング31を回転させ、材料全体の「転動」を助ける構造を設けてもよい。   Since the formation (granulation) of the composite particles is essentially an important factor for the composite particles themselves to rotate, the instantaneous rotation by contact of the screw agitator 32 with the stirring trunk 32c alone is sufficient. In the case where a subsequent rotational motion is also required, the housing 31 may be further rotated to provide a structure that assists the “rolling” of the entire material.

複合粒体の整粒を撹拌造粒で行う場合、複合粒体の形状は真球形から離れてその表面の凹凸も多く見られる。しかし、複合粒体表面が濡れた状態となっても、熱風乾燥により、造粒された複合粒体同士の固着を防止することができる。また、造粒終了前に乾燥した微粉炭又は煤粒子を投入混合し、表面の粘結材を吸収させることによりこうした固着を防ぐことも可能となる。この際、乾燥した微粉炭又は煤粒子を添加することにより複合粒体表面への「コーティング処理」が可能となる。複合粒体の表面に微粉炭又は煤粒子層を形成し、自然乾燥また粘着が低下しない温度で加熱乾燥すればよい。   When the composite granule is sized by agitation granulation, the shape of the composite granule is far from a true sphere and many irregularities on the surface are observed. However, even if the surfaces of the composite particles are wet, the granulated composite particles can be prevented from sticking together by hot air drying. It is also possible to prevent such sticking by introducing and mixing dry pulverized coal or soot particles before the end of granulation and absorbing the binder on the surface. At this time, by adding dry pulverized coal or soot particles, a “coating process” on the surface of the composite particles can be performed. A pulverized coal or soot particle layer may be formed on the surface of the composite granule and dried by heating at a temperature at which natural drying or adhesion does not decrease.

なお、上記では製造装置のバッチ運転を説明したが、嵩密度増加や単重増加を目的として処理量を重視しつつ、粒内混合度や形状および粒度分布にとらわれない場合には連続運転を選択してもよい。   In addition, the batch operation of the manufacturing apparatus has been described above. However, the continuous operation is selected when the amount of processing is emphasized for the purpose of increasing the bulk density or increasing the unit weight, but not limited by the intragranular mixing degree, shape, and particle size distribution. May be.

<プレス成型工程>
図4に示すように、複合燃料製造装置で得られた複合粒体35を空冷等により室温まで冷却した後に、プレス成型機により所定の形状に成型することができる。
<Press molding process>
As shown in FIG. 4, the composite particles 35 obtained by the composite fuel production apparatus can be cooled to room temperature by air cooling or the like, and then molded into a predetermined shape by a press molding machine.

一対の平板型の一方の平板型41上に複合粒体35を供給し(図4(a))、複合粒体35の上から平板型の他方の平板型42を圧力をかけて押圧し(図4(b))、薄い板状の複合燃料35bに成型できる(図4(c))。   The composite particles 35 are supplied onto one flat plate 41 of a pair of flat plates (FIG. 4A), and the other flat plate 42 of the flat plate is pressed from above the composite particles 35 with pressure ( 4 (b)), it can be formed into a thin plate-like composite fuel 35b (FIG. 4 (c)).

また、所定間隙で離間した外周面が平滑な一対の平行ロールを有するプレス成型機(図示せず)で、平行ロール間に複合粒体35を供給して連続的に薄い板状に成型してもよい。   Further, the composite granule 35 is supplied between the parallel rolls and continuously formed into a thin plate shape by a press molding machine (not shown) having a pair of parallel rolls having a smooth outer peripheral surface separated by a predetermined gap. Also good.

図5に示すように、得られた板状の複合燃料35bを所定堅さまで乾燥させた後、所定間隙で離間しそれぞれが外周面に平行歯群が設けらた一対の平行粉砕ロール51、52により、ベルトコンベアなどで板状の複合燃料35bを平行粉砕ロール間に供給して不連続的に粉砕して粉砕片を生成してもよい。   As shown in FIG. 5, after drying the obtained plate-like composite fuel 35b to a predetermined hardness, the pair of parallel pulverizing rolls 51, 52 are separated by a predetermined gap and each has a parallel tooth group on the outer peripheral surface. Accordingly, the plate-shaped composite fuel 35b may be supplied between parallel pulverizing rolls by a belt conveyor or the like and discontinuously pulverized to generate pulverized pieces.

プレス成型機により強い剪断力で繊維質の植物残渣粉末に与えながら高い圧縮力で板状の複合燃料35bが成型されるので、繊維質の植物残渣粉末が互いに強く絡み合い、密度の高い燃料を得ることができる。この結果、変形し易くなって成型し易くなった粘結材的性質を有する植物残渣粉末間に微粉炭又は煤粒子が圧着されて一体化されるので、板状の複合燃料35bを微粉砕化処理しても、植物残渣粉末及び微粉炭又は煤粒子の単離が起り難い。従って、機械的強度が高く貯蔵性の良好な種々の形状及び寸法の板状の複合燃料35bを製造できる。   The plate-like composite fuel 35b is molded with a high compressive force while giving it to the fibrous plant residue powder with a strong shearing force by a press molding machine, so that the fibrous plant residue powder is strongly entangled with each other to obtain a high-density fuel. be able to. As a result, pulverized coal or soot particles are pressed and integrated between plant residue powders that are easily deformable and easy to mold, so that the plate-like composite fuel 35b is pulverized. Even if it processes, isolation of a plant residue powder and pulverized coal, or a soot particle does not occur easily. Therefore, plate-shaped composite fuel 35b having various shapes and sizes with high mechanical strength and good storage properties can be produced.

石炭火力発電の熱量保証を以下の実験により確認した。   The calorific value of coal-fired power generation was confirmed by the following experiment.

火力発電所から供給された微粉炭と、飲料工場から供給されたコーヒー抽出糟と、自動車整備工場から供給されたエンジンオイル(廃油)と、を用いた。   The pulverized coal supplied from the thermal power plant, the coffee grounds supplied from the beverage factory, and the engine oil (waste oil) supplied from the automobile maintenance factory were used.

微粉炭は、200メッシュ(目開75μm)以下75%、100メッシュ以下90%及び水分20%以下の粉体であった。   The pulverized coal was a powder of 200 mesh (aperture 75 μm) or less 75%, 100 mesh or less 90% and moisture 20% or less.

コーヒー抽出糟は、コーヒーミルで粉砕された、いわゆる粗挽き(18〜20メッシュ)、中挽き(24〜28メッシュ)及び細挽き(30〜32メッシュ)を主に含む水分20%以下の粒体であった。   The coffee extract is a granulated product with a water content of 20% or less, mainly containing so-called coarse grind (18-20 mesh), medium grind (24-28 mesh) and fine grind (30-32 mesh). Met.

上記微粉炭とコーヒー抽出糟(植物残渣:可燃粒体)と廃油とを、1:0.5:0.001(重量部)の配合割合で混合し、試料1として、同1:1:0.001(重量部)の配合割合で混合し、試料2として、同1:1.5:0.001(重量部)の配合割合で混合し、試料3として、上記の複合燃料製造装置で調製しつつ造粒して、複合粒体の燃料を製造した(下記、表1参照)。   The above pulverized coal, coffee extract (plant residue: combustible granule) and waste oil were mixed at a mixing ratio of 1: 0.5: 0.001 (parts by weight), and Sample 1 was 1: 1: 0. .001 (parts by weight) mixed at a mixing ratio of sample 1, sample 2: mixed at a ratio of 1: 1.5: 0.001 (parts by weight), and sample 3 prepared by the above composite fuel production apparatus While granulating, a composite granular fuel was produced (see Table 1 below).

コーヒー抽出糟に代えて、食品飲料工場から供給された茶殻、製薬工場から供給された漢方薬抽出糟、食品飲料工場から供給された大豆糟及び製紙工場から供給された製紙スラッジ(それぞれ水分20%以下)を用いて、それ以外上記試料1〜3と同様にして、下記表2〜5に示す配合割合で、試料4〜15を製造して、それぞれ複合粒体の燃料を製造したところ、すべて熱量保証を満たすことを確認した。   Instead of coffee brewers, tea husk supplied from food and beverage factories, Chinese medicine extract potatoes supplied from pharmaceutical factories, soybean cake supplied from food and beverage factories, and paper sludge supplied from paper factories (each 20% or less moisture) ), Samples 4 to 15 were produced in the same manner as the above samples 1 to 3 at the blending ratios shown in Tables 2 to 5 below, and fuels of composite granules were produced respectively. Confirmed to meet the warranty.

Figure 2011140610
Figure 2011140610

Figure 2011140610
Figure 2011140610

Figure 2011140610
Figure 2011140610

Figure 2011140610
Figure 2011140610

Figure 2011140610
Figure 2011140610

石炭火力発電の熱量保証を以下の実験によりさらに確認した。   The heat quantity guarantee of coal-fired power generation was further confirmed by the following experiment.

石油発電所から供給された煤粒子の2つのロット(湿潤煤粒子:重油灰1(水分46.84wt%)及び重油灰2(水分32.63wt%))を、それぞれ乾燥(水分0wt%)して成分を調べた。その結果を表6に示す。   Two lots of soot particles supplied from an oil power plant (wet soot particles: heavy oil ash 1 (moisture 46.84 wt%) and heavy oil ash 2 (moisture 32.63 wt%)) were each dried (moisture 0 wt%). The ingredients were examined. The results are shown in Table 6.

Figure 2011140610
さらに、原料に微粉炭に代え煤粒子(重油灰)とした以外、上記実施例1と同様に上記コーヒー抽出糟(原料a)及びエンジンオイル(0.001重量部)を用い、下記の表7の配合割合(重量部)で混合し、複合燃料製造装置で調製しつつ造粒して、複合燃料(試料1、2、3)を製造して、熱量分析を行ったところ、原料a割合が試料1に比べ試料3で3倍に増加しても熱量保証を満たすことを確認した。
Figure 2011140610
Further, the above coffee extract mash (raw material a) and engine oil (0.001 part by weight) were used in the same manner as in Example 1 except that the raw material was replaced with pulverized coal instead of pulverized coal (Table 7). Were mixed at a blending ratio (parts by weight) of the above, granulated while preparing with a composite fuel production device to produce a composite fuel (samples 1, 2, 3), and calorimetric analysis was performed. It was confirmed that the heat amount guarantee was satisfied even when the sample 3 increased 3 times compared to the sample 1.

Figure 2011140610
さらにまた、試料1、2、3,の複合燃料の発熱量の重油灰中の水分量を代えたものを調製し、それぞれに関する発熱量を測定し発熱量の水分量依存について調べた。試料1については0%から14.7%,30.0%,39.2%へ、試料2については0%から29.1%へ、試料3については0%から30.0%へ変化させた。その結果を表8に示す。
Figure 2011140610
Furthermore, samples of 1, 2 and 3 were prepared by changing the calorific value of the combined fuel in the amount of water in the heavy oil ash, and the calorific value of each was measured to examine the dependency of the calorific value on the amount of water. The sample 1 was changed from 0% to 14.7%, 30.0%, and 39.2%, the sample 2 was changed from 0% to 29.1%, and the sample 3 was changed from 0% to 30.0%. The results are shown in Table 8.

Figure 2011140610
上記実験(乾燥(水分0wt%)をも含む)の試料1、2、3の複合燃料○、□、△の発熱量の重油灰中水分量依存を図に示す。バイオマスなどの可燃粒体の配合割合と微粉炭又は煤粒子の水分量調節とを行えば、所望の発熱量を達成し得る複合燃料が製造できる事が分かった。
Figure 2011140610
The figure shows the dependence of the calorific value of the composite fuels ◯, □, and △ of samples 1, 2, and 3 in the above experiment (including drying (including 0 wt% moisture)) on the moisture content in heavy oil ash. It was found that a composite fuel capable of achieving a desired calorific value can be produced by adjusting the blending ratio of combustible particles such as biomass and adjusting the water content of pulverized coal or soot particles.

以上により、本発明に係る複合燃料製造方法について、可燃粒体として、コーヒー抽出糟、漢方薬抽出糟、茶殻、大豆糟、及び製紙スラッジを用いた実施形態について説明したが、本発明はこれに限定されず、可燃粒体として、焼酎搾り糟、柑橘類果皮粉砕物、オガ屑及び木屑の粉砕物からなる群より選ばれた1種以上の粉末原料を用いて、当業者が容易になしえる追加・削除・変更・改良等は、本発明に含まれる。   As described above, the composite fuel manufacturing method according to the present invention has been described with respect to the embodiment using the coffee extract cake, the Chinese medicine extract cake, the tea shell, the soybean cake, and the papermaking sludge as the combustible particles, but the present invention is not limited thereto. In addition, as combustible granules, one or more powder raw materials selected from the group consisting of shochu squeezed rice cake, citrus peel pulverized material, sawdust and wood pulverized material, can be easily added by those skilled in the art. Deletion / change / improvement are included in the present invention.

Claims (5)

粒径2mm以下の可燃粒体又は繊維長100mm以下繊維太さ2mm以下の可燃繊維体に液体充填材を付着させる工程と、
前記液体充填材の付着した可燃粒体又は繊維体に粒径2mm以下の微粉炭又は煤粒子を付着させ混合しつつ熱風加熱して複合粒体を造粒する造粒混合工程と、を含むことを特徴とする複合燃料の製造方法。
A step of attaching a liquid filler to a combustible granule having a particle size of 2 mm or less or a fiber length of 100 mm or less and a fiber thickness of 2 mm or less;
A granulation mixing step of granulating a composite granule by heating with hot air while adhering and mixing pulverized coal or soot particles having a particle size of 2 mm or less to the combustible granule or fiber body to which the liquid filler is adhered. A method for producing a composite fuel characterized by the above.
前記可燃粒体又は繊維体が、コーヒー抽出糟、茶殻、大豆糟、漢方薬抽出糟、焼酎搾り糟、柑橘類果皮粉砕物、オガ屑及び製紙スラッジの粉砕物からなる群より選ばれた1種以上の粉末原料であることを特徴とする請求項1に記載の複合燃料の製造方法。   The combustible granule or fiber body is at least one selected from the group consisting of coffee extract cake, tea husk, soybean cake, Chinese medicine extract cake, shochu squeezed rice cake, citrus peel pulverized product, sawdust and pulverized paper sludge It is a powder raw material, The manufacturing method of the composite fuel of Claim 1 characterized by the above-mentioned. 前記可燃粒体又は繊維体の表面に微粉炭又は煤粒子付着させて表面に微粉炭又は煤粒子の層を形成することを特徴とする請求項1または2に記載の複合燃料の製造方法。   The method for producing a composite fuel according to claim 1, wherein a layer of pulverized coal or soot particles is formed on the surface of the combustible particles or fiber body to adhere to the pulverized coal or soot particles. 前記混合工程で得られた前記複合粒体をプレス成型機により成型する工程を含むことを特徴とする請求項1〜3のいずれか1に記載の複合燃料の製造方法。   The method for producing a composite fuel according to any one of claims 1 to 3, further comprising a step of molding the composite particles obtained in the mixing step with a press molding machine. 前記複合粒体をプレス成型機により板状に成型する工程を含むことを特徴とする請求項4に記載の複合燃料の製造方法。   The method for producing a composite fuel according to claim 4, comprising a step of forming the composite particles into a plate shape by a press molding machine.
JP2010017254A 2009-12-08 2010-01-28 Method for producing composite fuel Pending JP2011140610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010017254A JP2011140610A (en) 2009-12-08 2010-01-28 Method for producing composite fuel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009278349 2009-12-08
JP2009278349 2009-12-08
JP2010017254A JP2011140610A (en) 2009-12-08 2010-01-28 Method for producing composite fuel

Publications (1)

Publication Number Publication Date
JP2011140610A true JP2011140610A (en) 2011-07-21

Family

ID=44456696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010017254A Pending JP2011140610A (en) 2009-12-08 2010-01-28 Method for producing composite fuel

Country Status (1)

Country Link
JP (1) JP2011140610A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098098A (en) * 2012-11-14 2014-05-29 Daio Paper Corp Solid fuel, method for producing the same and method for producing mixed fuel
CN104910992A (en) * 2015-05-11 2015-09-16 杭州金培科技有限公司 Biomass particle forming system
WO2018079706A1 (en) * 2016-10-27 2018-05-03 宇部興産株式会社 Method for producing coal briquette fuel and coal briquette fuel
CN110835568A (en) * 2019-10-21 2020-02-25 杭州电子科技大学 Preparation method of sludge derived fuel for hazardous waste disposal
KR20210042505A (en) * 2019-10-10 2021-04-20 주식회사 가이아 Bio pellets using waste coffee grounds and manufacturing apparatus thereof and manufacturing method using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098098A (en) * 2012-11-14 2014-05-29 Daio Paper Corp Solid fuel, method for producing the same and method for producing mixed fuel
CN104910992A (en) * 2015-05-11 2015-09-16 杭州金培科技有限公司 Biomass particle forming system
WO2018079706A1 (en) * 2016-10-27 2018-05-03 宇部興産株式会社 Method for producing coal briquette fuel and coal briquette fuel
JPWO2018079706A1 (en) * 2016-10-27 2019-09-19 宇部興産株式会社 Coal molded fuel manufacturing method and coal molded fuel
JP7003930B2 (en) 2016-10-27 2022-01-21 宇部興産株式会社 Manufacturing method of coal molded fuel and coal molded fuel
KR20210042505A (en) * 2019-10-10 2021-04-20 주식회사 가이아 Bio pellets using waste coffee grounds and manufacturing apparatus thereof and manufacturing method using the same
KR102306814B1 (en) * 2019-10-10 2021-09-29 주식회사 가이아 Bio pellets using waste coffee grounds and manufacturing apparatus thereof and manufacturing method using the same
CN110835568A (en) * 2019-10-21 2020-02-25 杭州电子科技大学 Preparation method of sludge derived fuel for hazardous waste disposal
CN110835568B (en) * 2019-10-21 2021-05-04 杭州电子科技大学 Preparation method of sludge derived fuel for hazardous waste disposal

Similar Documents

Publication Publication Date Title
US20090205546A1 (en) Densified fuel pellets
JP2019502013A (en) Biofuel
KR20120024631A (en) Pellets and briquettes from compacted biomass
CN103380342A (en) Methods of drying biomass and carbonaceous materials
JP2009102468A (en) Fuel pellet
CN103450962A (en) Production technique of pure cedar biomass granular fuel
CN115103895A (en) Production method of solid biomass fuel
JP2011140610A (en) Method for producing composite fuel
JP6161242B2 (en) Manufacturing method of mixed fuel
CA2686853A1 (en) Apparatus and method for making fuel using forest residue
CA2653577C (en) Densified fuel pellets
JP2004292787A (en) Method for producing plant pellet, apparatus for the same, and method for producing plant mixed fuel
KR101042619B1 (en) Method for producing compressed charcoal fuel using food waste
JP6243982B2 (en) Method for producing molded product for mixed fuel
US20100146848A1 (en) Fuel formed of cellulosic and biosolid materials
KR102118253B1 (en) System for forming bio solid type fuel using spent coffee bean
JP6283724B2 (en) Manufacturing method of mixed fuel
JP6283727B2 (en) Manufacturing method of mixed fuel
Bhosale et al. Densification of Biomass-Briquetting
JP6283725B2 (en) Method for producing molded product for mixed fuel
JP6283721B2 (en) Manufacturing method of mixed fuel
JP6283726B2 (en) Manufacturing method of mixed fuel
JP6283723B2 (en) Manufacturing method of mixed fuel
JP6283722B2 (en) Manufacturing method of mixed fuel
WO2023099900A1 (en) Process for producing solid biomass fuel