CN1025070C - 用于扩散炉的部件 - Google Patents

用于扩散炉的部件 Download PDF

Info

Publication number
CN1025070C
CN1025070C CN89103903A CN89103903A CN1025070C CN 1025070 C CN1025070 C CN 1025070C CN 89103903 A CN89103903 A CN 89103903A CN 89103903 A CN89103903 A CN 89103903A CN 1025070 C CN1025070 C CN 1025070C
Authority
CN
China
Prior art keywords
parts
pipe
matrix
weight
still less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN89103903A
Other languages
English (en)
Other versions
CN1039893A (zh
Inventor
布赖恩·D·弗斯特
弗兰克·芬兹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Abrasives Inc
Original Assignee
Norton Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norton Co filed Critical Norton Co
Publication of CN1039893A publication Critical patent/CN1039893A/zh
Application granted granted Critical
Publication of CN1025070C publication Critical patent/CN1025070C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/06Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion material in the gaseous state
    • C30B31/10Reaction chambers; Selection of materials therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Products (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

用于半导体扩散炉的部件,由淀积在予定形状的结构增强件上不可渗透的高纯碳化硅或氮化硅基体所构成,结构增强件是碳化硅、碳或者涂覆碳化硅的碳。高纯度基体防止不需要的气体成分污染炉子气氛、结构增强件提供强度并减轻重量。

Description

本发明涉及加热炉及其部件。更具体地说,本发明涉及用于半导体扩散炉的碳化硅部件。
在制造半导体器件例如二极管和晶体管的整个生产工艺过程中,包括氧化、薄膜淀积和薄硅片的掺杂的多个高温处理工艺过程是关键的工艺过程,其中间多次对硅片表面进行的空腔或图形蚀刻步骤,从而形成晶体管和其它半导体器件。这些半导体器件被单独制造或构成集成电路阵列。对硅片所进的氧化步骤及各种掺杂和涂覆操作都涉及到在炉内从400到1350℃温度范围加热及冷却循环。这些关键的热处理步骤一般在特殊的电热膛式炉中进行。把硅片放置在由石英、碳化硅包含有碳化硅的硅或多晶硅制成的舟内,或夹具或定位器内,然后把它们放入膛式炉的处理管内,在予定时间/温度/气氛周期内对硅片进行处理。小心地控制气氛,一般把气体送入扩散炉处理管的颈缩端。在这些工艺步骤中,典型的情况是装有硅片的舟被支撑在支架上。这些部件和处理管必须用具有优异的耐热冲击能力的材料制做,以便允许快速加热至400℃至1350℃的温度和从这样的温度快速冷却至室温。构制这些部件和炉子其它部分的材料还必须具有高的机械强度,具有经过多次加热及冷却循环之后保持其形状的能力,而且这种材料必须不发生放气,亦即在高温操作下不会把任何不需要的杂质引入处理气氛中,这些部件必须不会引入任何如同杂质的灰尘。在半导体器件中,清洁度和杂质的控制对获得最终所期望半导体器件的电特性来说是极为重要的。此外,本发明的组合部件不同于石英,在远远超过正常处理温度时,可以保持其机械强度。
这些要求条件严重地限制了能够成功地用来制造扩散炉部分或部件的材料数量。众所周知,炉子部件一般包括外部的炉子衬管、处理管和支架,外部的炉子衬管被装入加热元件和处理管之间的环形空间,处理管被装入炉子衬管中并具有颈缩端用来引入所需气氛,支架或做为一个轮式载体,或做为一个支托,把硅片支托或舟放置其上。针对逐渐形成淀积的工艺过程,有时在处理管内装有“内”衬管,这种内部的衬管可以是根据所需特性特制的和/或在过量淀积后无需更换处理管就可以更换的。另一种可供选择的炉子构造可以是这样的,最外层的管是处理管,它含有一个内管也是衬管。因此有外部的衬管或外边的衬管和内部的衬管。这里所说的衬管,无论何时其含义都包括外衬管和内衬管,除非对两者之一有明确指示。已有的处理管,支架和舟由石英玻璃制成,而衬管由高铝红柱石或氧化铝组成。然而,在处理温度下随着时间的推移,硅石部件将失去其机械强度,并逐渐由玻璃态变为结 晶态。此外,在材料受到频繁的加热和冷却的情况下,石英部件极易产生极度形变,而且经受不住氢氟酸的频繁清洗,而这是通常保持必要的超高纯炉子环境所要求的。在近来改进的工艺中,炉子衬管即围绕并支承处理管的管子已用碳化硅制造,从而代替原先的高铝红柱石和氧化铝材料,并与石英处理管或内管配合使用。碳化硅与其它材料相比具有高导热性和高强度,并对来自加热元件及相关材料的钠和其它金属离子起到阻挡作用。但是,由于碳化硅是多孔的和可渗透的,因此不能为许多半导体制造工艺所需的控制气氛和高纯环境提供保证。由于其厚度和密度,碳化硅炉子衬管也使系统的热容量显著增大,这导致某些处理工艺的长时间加热及冷却时间令人不能满意地增长。美国专利3951587披露了关于扩散炉的进一步改进。炉子部件由纯度至少为99%的碳化硅制成,并包含有纯度至少为99.9%的硅。由于这种材料所具有的高强度,不渗透性和纯度,它可以用做处理管而不再需要单独的衬管。这节省了空间并改善了整体纯度和可靠性,但仍存在热容量问题。这种材料还可以用于薄片舟和支架以及其它部件,并在大多数操作中极为成功。但是,在某些操作中游离硅造成了问题。
本发明的主要任务是提供扩散炉部件,即衬管和/或处理管、支架和舟,它们具有良好的抗氧化能力、耐热冲击能力,高强度,多次加热及冷却循环后保持其形状的能力,不渗透性,极少的表面积、壁厚和热量的明显减少。
本发明提供扩散炉部件,它们是坚固的,不透气的,具有高的纯度,不含游离硅,壁厚和热容量有明显减小。现有技术中采用的石英和包含有碳化硅的硅部件的主要缺点在于,虽然这些材料可能不具有连续孔隙因而具有物理的不渗透性,但石英和硅可以使离子以相当快的速率化学地扩散透过部件的壁。而本发明的碳化硅和氮化硅基体则不存在这种问题。采用以下组合物可以获得这些优点,即以碳化硅或氮化硅为基体,以碳化硅织物碳或石墨织物作为内部结构加强件,其包括碳/转变为SiC的碳组合物。织物最好是以编织物的形式,但也可使用非编织物的形式。可以采用涂有石墨的碳化硅织物来制造成基体内的滑动,由此产生较大的断裂韧性。
利用传统技术,首先把织物成形为所需的最终形状,该织物具有开放结构,允许渗透,通过化学汽相渗透和淀积来渗透,由基体组成。为此,可以采用临时粘合剂,例如,热固性液态酚醛聚合物,或者利用溶剂把热塑软化。在最终渗透和涂覆之前把树脂烧蚀。
在成形和烧蚀之后,在一个适宜的高温反应室内对织物予件进行渗透和涂覆。通过甲代三氯硅(methyhtrichlorosilane)的氢还原来完成碳化硅的渗透和涂覆。通过四氯化硅和氨的氢还原来完成氮化硅(Si3N4的渗透和涂覆。这些化学汽相淀积工艺中的每一个都在高温反应室中完成。在适当的基片上进行汽相淀积的技术是该领域中共知的。基本的工艺是反应气体在1100℃至1400℃温度范围内的氢还原,从而使涂层基本上是以一个分子挨着一个分子的方式淀积在受热基片上。这种工艺是众所周知的,并且D.P.Stinton等人在“化学汽相淀积技术制造的新型陶瓷”一文中已有论述,该文发表在《陶瓷公报》,第67卷、第2号、1988年、第350-355页,并被包括在这里提供的参考文件中。
图1是处理管的正视图。
图2是轮式支架的俯视图。
图3是沿图2中3-3的剖面图。
图4是舟的俯视图。
图5是沿图4中5-5的剖面图。
图6是部分装配的炉子透视图,包括处理管、支架、舟,位于后者之上的硅片。
图7是衬管的正视图,可以是外部的衬管或内部的衬管。
在半导体器件生产中使用的扩散炉部件的最关键的特性或特征就是化学纯度,或者至少不发生任何不需要的杂质的放气,而这些杂质可能是制造部件所用材料含有的。当然,纯度对于本发明来说,象对现有技术的扩散炉部件一样重要。然而,对于本发明来说问题有所减少,因为不必过分关心装入所有部件材料的纯度,只要(a)碳化硅或氮化硅的CVD涂层是纯的,(b)结构加强件上的CVD涂层有效地阻挡了结构加强件所含的任何不需要的杂质。含有1%(按重量)或更少的不需要的杂质的涂层或基体材料,都可以成功地用于某些半导体器件的处理工艺中。一般地说,基体中不需要的杂质含量最好为大约0.1%或更低的数量级,更好的数量级是0.01%或更低。
并非基体材料中的所有杂质都是一定不希望有的,存在应避免的情况是与例如对硅片进行处理有关。在大多数情况下,处理气氛中存在的钠、铁、钒、铜、硼和/或钙对产品是极为不利的,如同镍、铬和镁这些元素的存在对产品有害一样。另一方面,在许多情形中,处理气氛中存在的大量的铝相对地无害。因此,对于通用的扩散炉部件而言,所用杂质的含量应尽可能地低,但是根据所做的处理可以有例外。
对根据本发明商业用的部件碳化硅基体所做分析如下:
Fe    22ppm
Al    <10ppm
B    <10ppm
Ni    1ppm
Cu    6ppm
Na    12ppm
Cr    1ppm
Ca    20ppm
Mg    6ppm
已知这些元素中除铝之外,在部件的予定使用中都是有害的,因此只对基体中的这些元素进行了分析。杂质总量稍少于0.0088%或者大约0.01%。如果必要,可以采用比制造上述被分析的基体所采用的更纯的原材料和设备,来制造不需要杂质含量更低的基体。
为了对比,对整个组合物即基体和增强件所做的分析如下:
Fe    72ppm
Al    146ppm
B    50ppm
Ni    3ppm
Cu    98ppm
V    6ppm
Na    36ppm
Ca    64ppm
杂质总量为475ppm,占组合物的0.05%左右,这是基体自身杂质总量的5倍左右。正如以上指出那样,增强件中的杂质即0.04%被不可透的基体所裹住,因此不会对处理工艺产生损害。正如基体自身的纯度那样,组合物的整体纯度应为99%(重量)或者更高,更好的是99.9%或更高,最好是99.99%。目前,高于99.99%的组合物整体纯度水平还不能达到,因为具有这样的纯度级的基体材料还不能得到。然而,随着高温织物技术的进展,高纯材料将很可能得到。
一种适合用于本发明的碳化硅织物是平坦的编织物Nicalon(商标品),由日本的Nippon    Car-bon公司制造,由密执安州中部的Dow.Corniny公司供给。标准的织物结构是每英寸长包含14股丝线。标准的每股丝线重量是每米210克,这些股丝线由高达500根的连续的细丝制成,细丝平均直径为13微米。其它织物例如“Harness    Satin”或者编带形状也可以使用。
为了制造壁厚为2毫米左右的图7中所示的衬管36,切下一段织物(标准宽度1米)满足制造炉衬所需的长度和直径。一个宽约20毫米的重迭接缝将遍布炉子衬管长度。然后把这块织物缠绕在直径合适的芯轴上,用适宜的临时有机粘合剂涂覆和浸渍。常常需要在重迭接缝处加以额外的支承使其保持平坦,这可通过用一股碳化硅或另一股丝线在重迭接缝处缝合来完成,或者沿炉子衬管整个长度缠绕多次。
接着把炉子衬管上的临时粘合剂烧蚀,采用化学汽相淀积方法,通过在加热反应室中的甲代三氯硅的氢还原或其它常规技术渗透和涂覆碳化硅来完成。作为选择,可以类似地淀积氮化硅。渗透应足够以便使织物基本完全覆盖,许多织物被涂覆所密封。典型产品由于表面上的图形,表示出织物的形迹。典型的涂层厚度应在25至250微米的范围内。通过控制馈入气体和淀积时间可以得到任何适合的厚度。
图1中的处理管28可以同样地形成。管的优选形式包括一个颈缩部位2,其收尾处为一球状接合点4或者直管连接用于供气。该部分可以通过将织物在芯轴上碾压成形为直的颈缩部位来制成。该部分也可以通过缠绕多股线或者在芯轴上形成编带管被制成。其次把此形状用临时粘合剂涂覆和浸渍,再把该部分放入CVD反应器之前在200℃左右的温度下把粘合剂烧蚀。
图2的支架30具有图3所示的截面,同样地由单独地或分别地制备的织物部件成形,包括端部12和14以及放置如图4所示的舟的凹下部10。滚轮6分别地制成并在化学汽相淀积步骤之后安 装。为了避免机械磨损和扩散炉的污染,也可以在外端支撑支架,即悬臂式的,取消滚轮6。
为了制造图4中的舟16,其截面如图5所示,把一层或二层的一段织物浸入适合的临时粘合剂中,利用芯轴压制成形为所需形状,同时加热固化树脂。在最终的涂覆步骤之前,利用砂轮切割方法切出沟槽18,用以装载硅片34。
图6示出了处理管28、支架30和舟16之间配合使用的情况,舟用沟槽18承载了部分硅片。支架30可以安放在滚轮6上,或者更好地是按上述那样悬挂,而不与处理管28接触。
结果,图6中的零件28使用石英处理管,图6的整个部件最好装入图7的炉子衬管36中,而炉子衬管被置于和支撑电热炉中,把这些零件与炉子气氛隔开。
在某些情形下,可以期望某些部件用本发明的方法制造,而其它部件用不同的方法和不同的材料制造。
尽管织物是优选的结构增强件,也可以使用细丝缠绕或者非编织的滚压粘合纤维,对于复杂形状来说,也可以使用纤维胎或类似的构造。
可以对特定的CVI和CVD方法作改动,只要不渗透和用碳化硅或氮化硅完成浓密浸渗和涂覆,而且涂层中钠、铁、硼、镍、铜、铬、钙、镁等杂质总量至少小于1%即可。实际的工业成品中,这些不需要的杂质含量降到0.01%(按重量)左右或者更低。正如该领域所熟知的,杂质含量越低越好。
如上所述,本发明的重要优点之一是部件的热容量比现有技术中的扩散炉部件的低的多,现有技术中采用的是由碳化硅、包含碳化硅的硅或多晶硅制成的厚壁部件。本发明的典型产品具有1至5毫米数量级的壁厚,如果是大部件最好是1至3毫米。长度为9-10英尺(2.7-3米)、直径为10-12英寸(25.4-30.5厘米)的炉子衬管或处理管并不罕见。

Claims (12)

1、一种对于扩散炉的部件,所述的部件是一种不渗透的基体和被基体涂包在内的结构增强件,所说的基体是碳化硅或氮化硅,所说的结构增强件是碳化硅、碳或者涂覆碳化硅的碳。
2、如权利要求1所述的部件,其中部件的壁厚至少是1毫米,所述基体中的杂质含量是1%或更少(按重量)。
3、如权利要求2所述的部件,其中所述基体中的杂质含量是0.1%或更少(按重量)。
4、如权利要求3所述的部件,其中所述基体中的杂质含量是0.01%或更少(按重量)。
5、如权利要求2的部件,其中部件的厚度是1毫米左右至3毫米左右,整个组合物所含杂质元素钠、铁、钒、铜、镍、硼、铬、钙和/或镁的总量是1%或更少(按重量)。
6、如权利要求5所述的部件,其中整个组合物所含杂质总量是0.1%左右或更少(按重量)。
7、如权利要求6所述的部件,其中整个组合物所含杂质总量是0.05%左右或更少(按重量)。
8、如权利要求1、2、3、4、5、6、或7所述的部件,其中部件是处理管。
9、如权利要求1、2、3、4、5、6、或7所述的部件,其中部件是围绕处理管的衬管。
10、如权利要求1、2、3、4、5、6、或7所述的部件,其中部件是支架。
11、如权利要求1、2、3、4、5、6、或7所述的部件,其中部件是舟。
12、用于半导体扩散炉的装置,包括处理管,允许其在处理管内横向移动的一定尺寸和结构的支架,至少一个放在支架上的舟,其中所述的处理管和/或为此的衬管、支架和舟都是如权利要求1、2、3、4、5、6、或7所述的部件,由所述的组合物制成。
CN89103903A 1988-04-29 1989-04-29 用于扩散炉的部件 Expired - Fee Related CN1025070C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US18823888A 1988-04-29 1988-04-29
US188,238 1988-04-29

Publications (2)

Publication Number Publication Date
CN1039893A CN1039893A (zh) 1990-02-21
CN1025070C true CN1025070C (zh) 1994-06-15

Family

ID=22692311

Family Applications (1)

Application Number Title Priority Date Filing Date
CN89103903A Expired - Fee Related CN1025070C (zh) 1988-04-29 1989-04-29 用于扩散炉的部件

Country Status (6)

Country Link
EP (1) EP0339573B1 (zh)
KR (1) KR900017158A (zh)
CN (1) CN1025070C (zh)
AT (1) ATE113574T1 (zh)
DE (1) DE68919113T2 (zh)
ES (1) ES2065934T3 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114477733B (zh) * 2021-12-24 2023-08-29 西南科技大学 一种水化烧结制备花岗岩基玻璃固化体的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2524378A1 (de) * 1975-06-02 1976-12-16 Siemens Ag Vorrichtung zur aufnahme von zu dotierendem halbleitermaterial, wobei die dotierung im reaktor durchgefuehrt wird
JPS60138914A (ja) * 1983-12-26 1985-07-23 Toshiba Ceramics Co Ltd 半導体拡散炉管の製造方法
JPS60255699A (ja) * 1984-05-30 1985-12-17 Sumitomo Electric Ind Ltd 半導体Si単結晶製造用部材及びその製造法
US4580524A (en) * 1984-09-07 1986-04-08 The United States Of America As Represented By The United States Department Of Energy Process for the preparation of fiber-reinforced ceramic composites by chemical vapor deposition

Also Published As

Publication number Publication date
ES2065934T3 (es) 1995-03-01
DE68919113D1 (de) 1994-12-08
CN1039893A (zh) 1990-02-21
ATE113574T1 (de) 1994-11-15
EP0339573A2 (en) 1989-11-02
KR900017158A (ko) 1990-11-15
EP0339573A3 (en) 1991-01-16
EP0339573B1 (en) 1994-11-02
DE68919113T2 (de) 1995-03-09

Similar Documents

Publication Publication Date Title
CA1332698C (en) High purity diffusion furnace components
EP0812239B1 (en) High purity composite useful as furnace components
Cooke Inorganic fibers—a literature review
US5858486A (en) High purity carbon/carbon composite useful as a crucible susceptor
JP2642573B2 (ja) SiC質焼結体
RU2171794C2 (ru) Изолирующее покрытие для керамического волокнистого материала и способ его нанесения
US6455160B1 (en) High purity C/C composite and manufacturing method thereof
EP0340802B1 (en) Silicon carbide diffusion tube for semi-conductor
CN1173556A (zh) 提拉单晶硅的装置
JP4514846B2 (ja) 高純度炭素繊維強化炭素複合材料とその製造方法
US5283089A (en) Non-porous diffusion furnace components
CN115515914A (zh) 一种包含特定界面相的陶瓷基体复合材料的制造方法
CN1025070C (zh) 用于扩散炉的部件
EP0781739A1 (en) Jig for heat treatment and process for fabricating the jig
JPH062637B2 (ja) 単結晶引上装置
EP0427294A1 (en) Silicon carbide member
US6432538B1 (en) Carbon fiber reinforced carbon composite and useful as components for pulling single crystal apparatus
JPH1072292A (ja) シリコン単結晶引き上げ装置用の保温筒
JPH0817745A (ja) ヒータ
PT85704B (pt) Processo para a producao de produtos compositos de caramica e de ceramica-metal incorporando materiais de enchimento
US20030233977A1 (en) Method for forming semiconductor processing components
US4670320A (en) Alumina formed body and method for its manufacture
JP3069216B2 (ja) 半導体用部材
JP3378608B2 (ja) 半導体製造用治具のための炭化珪素質基材の製造方法
JPH1072291A (ja) シリコン単結晶引き上げ装置用のルツボ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee