CN102506268B - 一种金属构件表面耐磨防腐改性的方法 - Google Patents

一种金属构件表面耐磨防腐改性的方法 Download PDF

Info

Publication number
CN102506268B
CN102506268B CN 201110287042 CN201110287042A CN102506268B CN 102506268 B CN102506268 B CN 102506268B CN 201110287042 CN201110287042 CN 201110287042 CN 201110287042 A CN201110287042 A CN 201110287042A CN 102506268 B CN102506268 B CN 102506268B
Authority
CN
China
Prior art keywords
foamed ceramics
ceramics
metal component
component surface
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201110287042
Other languages
English (en)
Other versions
CN102506268A (zh
Inventor
张劲松
曹小明
杨振明
田冲
金鹏
全锋厚
马得举
付超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LIAONING ZHUOYI TECHNOLOGY CO LTD
LIAONING ZHUOYI NEW MATERIAL CO Ltd
Original Assignee
LIAONING ZHUOYI TECHNOLOGY CO LTD
LIAONING ZHUOYI NEW MATERIAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LIAONING ZHUOYI TECHNOLOGY CO LTD, LIAONING ZHUOYI NEW MATERIAL CO Ltd filed Critical LIAONING ZHUOYI TECHNOLOGY CO LTD
Priority to CN 201110287042 priority Critical patent/CN102506268B/zh
Publication of CN102506268A publication Critical patent/CN102506268A/zh
Application granted granted Critical
Publication of CN102506268B publication Critical patent/CN102506268B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明涉及金属构件表面耐磨防腐保护层的制备技术,具体地说是一种金属构件表面耐磨防腐改性的方法,解决现有技术中阀门、泵体等由于严重的磨损和腐蚀导致使用寿命短等问题。首先,将泡沫陶瓷制备成所需形状和尺寸的构件,并通过机械配合、连接、焊接、粘接或镶嵌方式固定到金属结构件表面;然后,利用常压灌注、离心灌注、真空吸注或注射成型方法将高分子混合浇注料注入到泡沫陶瓷网孔内,经固化、硫化或凝固后,获得泡沫陶瓷/高分子双连续相复合材料保护层,并同时实现保护层与金属构件表面的牢固结合。利用本发明对火力发电厂脱硫系统中的钢制管道内壁面进行保护后,管道使用寿命比现有用内衬橡胶管保护的管道提高5倍以上。

Description

一种金属构件表面耐磨防腐改性的方法
技术领域
本发明涉及金属构件表面耐磨防腐保护层的制备技术,具体地说是一种利用泡沫陶瓷/高分子双连续相复合材料对金属构件(内、外)表面进行耐磨防腐改性的方法。
背景技术
金属材料是现代工业应用最为广泛的结构材料。在使用过程中,金属结构件常常承受介质颗粒的冲蚀磨损和腐蚀作用,如在火力发电厂、矿山和石油化工企业的用于传输泥浆、粉尘物料、腐蚀性气体、液体的金属管道、阀门和和泵体等。磨损和腐蚀是降低材料寿命、增加生产成本的两个重要原因,我国每年由于磨损和腐蚀造成的直接损失约占全国国民经济生产总值的2%-4%左右。
例如,在火力发电厂中,为了降低SO2的排放,需要对煤炭燃烧过程产生的烟气进行脱硫处理。在脱硫处理过程中,用于传输石灰石料浆的管道存在着严重磨损现象,直管使用寿命大约是一年左右,弯头使用寿命仅仅二个月。以一台800MW的火力发电机组为例,一年需要更换的脱硫管道为500米左右、数十个弯头和三通,大约花费100万元,如果考虑到人员费用和更换过程对生产造成的影响,所需费用会更高。因此,提高金属材料的磨耐防腐性能是降低生产成本避免安全隐患的主要途径。
目前,国内现有的金属耐磨管主要有:陶瓷内衬管、橡胶内衬管、玻璃钢内衬管、高铬铸钢(铁)管、铸石钢管等。在实际应用过程中,工况条件较为恶劣,传输介质往往同时存在固态颗粒、液体并呈现一定的酸性或碱性。因此,冲刷、磨损、腐蚀会同时作用于工件表面,使现有的耐磨管道普遍存在磨损快、寿命短的问题,缩短了更换周期,相应地提高了企业运行成本。例如,橡胶内衬和玻璃钢内衬的金属管道在尖硬颗粒冲刷的环境下,使用寿命只有三个月左右;内壁镶嵌陶瓷片的管道常常出现陶瓷片剥落的现象,整体增强的效果较差;铸石内衬管存在着夹杂、气孔、裂纹等缺陷限制了它的应用范围,高铬铸钢(铁)管的成本较高。
阀门(球阀、蝶阀等)、泵体(泥浆泵、渣浆泵等)是传输泥浆、粉尘物料、腐蚀性气体、液体的重要部件,广泛应用在电力、矿山、化工、石油等行业,年产值在上千亿元以上,同样面临着严重的磨损与腐蚀问题。例如,选煤厂使用的阀门一般寿命为90天,有机硅回收料系统使用的球阀使用寿命为11天,云南某锡矿用于在5-6个压力下传输料浆的球阀使用寿命仅仅为几个小时,泥浆泵的活塞缸套的使用寿命平均为140小时。
阀门和泵体由于严重的磨损和腐蚀导致的使用寿命短,带来不利因素在于:1.增加了企业的生产成本;2.频繁的维修与更换,降低了整套设备连续运行周期,增加了生产安全隐患、提高了工人的劳动强度;3.浪费了大量稀有资源,如铬、镍、钼等。
目前,阀门和泵体采用的耐磨防腐方法主要采用了耐磨材料如高铬铸铁、硬质合金等制作耐磨层;采用表面处理工艺如等离子体喷涂、堆焊、渗氮等方法在耐磨层表面形成陶瓷层或提高耐磨层的硬度等方法来提高阀门和泵体的使用寿命,尽管取得了良好的效果,但仍不能很好地满足用户的要求,寿命仍有待大幅度提高。
在此背景下,研发新的金属构件耐磨防腐技术,可促进我国电力、矿山、石油、化工、冶金、建筑等基础产业的技术进步,产生重大的经济和社会效益。
发明内容
本发明的目的在于提供一种金属构件表面耐磨防腐改性的方法,解决现有技术中阀门、泵体等由于严重的磨损和腐蚀导致使用寿命短等问题。
本发明的技术方案是:
一种金属构件表面耐磨防腐改性的方法,利用泡沫陶瓷/高分子双连续相复合材料作为金属构件的保护层,置于金属构件表面,并与金属构件牢固结合。
所述的金属构件表面耐磨防腐改性的方法,高分子材料与泡沫陶瓷复合形成双连续相复合材料的过程和双连续相复合材料与金属构件的牢固结合过程在同一步骤完成。
所述的金属构件表面耐磨防腐改性的方法,首先,利用喷砂对需要防护的工件表面进行毛化处理,或者利用机加工方法对需要防护的工件表面加工出的螺纹槽或环形槽;然后,将泡沫陶瓷制备成所需形状和尺寸的构件,并通过机械配合、连接、焊接、粘接或镶嵌方式固定到金属结构件表面;接着,利用常压灌注、离心灌注、真空吸注或注射成型方法将高分子混合浇注料注入到泡沫陶瓷网孔内,经固化、硫化或凝固后,获得泡沫陶瓷/高分子双连续相复合材料保护层,并同时实现保护层与金属构件表面的牢固结合。
所述的金属构件表面耐磨防腐改性的方法,泡沫陶瓷是泡沫碳化硅、泡沫氮化硅、泡沫氧化铝、泡沫氧化锆及其它泡沫陶瓷或泡沫玻璃,泡沫陶瓷由常规烧结、反应烧结或化学气相沉积方法获得,泡沫陶瓷网孔的平均尺寸为:0.1mm-6mm,泡沫陶瓷的体积分数为:5%-80%,陶瓷平均晶粒尺寸为:10nm-300μm。
所述的金属构件表面耐磨防腐改性的方法,构成泡沫陶瓷骨架的陶瓷筋是致密的或多孔的。
所述的金属构件表面耐磨防腐改性的方法,高分子混合浇注料,是将液态高分子材料、陶瓷微粉、固化剂、稀释剂按照重量百分比例为70wt%-30wt%∶0wt%-20wt%∶2wt%-10wt%∶28wt%-40wt%配制成需要的混合浇注料,搅拌5-30min,混合均匀;高分子材料为树脂、橡胶、尼龙、聚乙烯、聚氯乙烯或聚丙烯。
所述的金属构件表面耐磨防腐改性的方法,树脂是酚醛树脂或环氧树脂,橡胶是天然橡胶或合成橡胶,尼龙以是聚酰胺、聚癸二酸癸二胺、聚十一酰胺、聚十二酰胺、聚己内酰胺、聚己二酸己二胺、聚辛酰胺或聚9-氨基壬酸;
固化剂为二硫化四甲基秋兰姆、硫酸、硫磺、对甲苯磺酸、有机酸、酸酐、三氟化硼或聚酰氨;
稀释剂为工业酒精、丙酮、石油醚或二甲苯。
所述的金属构件表面耐磨防腐改性的方法,泡沫陶瓷件是整体的或者分体组合的;在分体组合时,各单元件间无明显间隙和凸起;在以整体和分体组合方式使用时,泡沫陶瓷与金属构件之间有不超过5mm的间隙。
所述的金属构件表面耐磨防腐改性的方法,在获得双连续相复合材料保护层时,泡沫陶瓷网孔内填加陶瓷微粉。
所述的金属构件表面耐磨防腐改性的方法,陶瓷粉是SiC、SiO2或Al2O3,粒度为:200nm-2mm,加入为泡沫陶瓷重量的0wt%-50wt%,填加的方法为:将陶瓷粉灌入到泡沫陶瓷网孔内,通过机械震荡的方法将陶瓷粉振实。
本发明具有如下有益效果:
1.提高工件的耐磨性能
陶瓷材料具有高强度、高模量、高硬度、抗氧化、耐腐蚀、耐磨、高导热率、低热膨胀系数等性能。将陶瓷材料制备成泡沫陶瓷,既能保持陶瓷的耐磨优势,同时又能发挥三维网络的整体增强特性,是一种具有整体增强功能的结构材料。将高分子材料灌注到泡沫陶瓷网孔中获得陶瓷/高分子复合材料,在复合材料内,泡沫陶瓷与高分子基体之间形成相互贯通的三维网络结构,构成了双连续相结构,进而使复合材料具有优良的耐磨损、冲蚀的性能。
2.提高工件耐腐蚀能力,消除因腐蚀导致工件失效所产生的安全隐患、延长工件的使用寿命、降低生产成本。
目前,发电厂、油田、化工厂、制药厂等大量使用管道传输高温气体、液体、油气等,由于存在酸碱盐等腐蚀性介质,导致工件如钢管、阀门合泵体等普遍存在着腐蚀现象,缩短了工件的使用周期、增加了维护和更换的费用,同时存在着难以预测的安全隐患,制约了行业的快速发展。
在泡沫陶瓷/高分子双连续相复合材料中,高分子材料具有良好的抗腐蚀效果。其原因在于固化后的高分子性能稳定,例如树脂含有稳定的苯环、醚键,很难与腐蚀性介质发生化学反应。因此,表现出很高的化学稳定性和优良的抗腐蚀性能。
利用高分子的抗腐蚀性能,将泡沫陶瓷/高分子双连续相复合材料作为工件的抗腐蚀隔离层,例如钢管、阀门合泵体的内衬层,可以提高工件的耐腐蚀能力,达到延长工件的使用寿命、降低生产成本的目的。
3.采用了整体镶嵌技术,不存在剥落现象
泡沫陶瓷可以制备成与工件配套的尺寸和形状,利用直接镶嵌或卡装的方法覆盖在工件的表面。例如将泡沫碳化硅陶瓷制成与钢管尺寸配套的直管、弯头,直接镶入到钢管内。这一工艺的最大优点是充分发挥泡沫陶瓷的整体增强作用,避免了像陶瓷拼接内衬管由于树脂粘接强度较低而产生的小块剥落,进而引起大面积剥落导致的耐磨层失效的现象。
4.成本低、重量轻、安装方便
采用反应烧结工艺或氧化气氛烧结工艺制造出的泡沫陶瓷,能够充分利用烧结炉的有效空间,可以实现批量化生产;利用离心技术在泡沫陶瓷网孔内灌注高分子的方法简单,质量稳定。因此,泡沫陶瓷/高分子双连续相复合材料能够连续化生产,可以实现低成本制造。
例如:泡沫碳化硅陶瓷/树脂双连续相复合材料的密度为1.5-2.2g/cm3,具有轻量化的特点,作为内衬管镶嵌到标准钢管、弯头和三通内,不改变标准钢管、弯头和三通的连接方式,并且具备一定的抗冲击性,可以方便地在现场安装。
总之,本发明提出了一种金属构件表面耐磨防腐改性方法。在该方法中,通过选择合适的网孔尺度和体积分数的泡沫陶瓷、高分子混合浇注料和灌注方式等,可以获得在确定工作环境中具有最佳耐磨防腐效果复合耐磨材料,实现提高工件寿命,降低生产成本、消除安全隐患的目的,进而获得良好的社会效益和经济效益。工作于磨损、腐蚀以及磨损和腐蚀同时存在的环境中的金属构件均可采用本发明提供的保护方法,以获得提高设备和工件的使用寿命、提高工作效率、降低生产成本、消除安全隐患的使用效果,从而实现良好的社会效益和经济效益。例如,广泛应用在火力发电厂、矿山和石油化工与制药企业、港口及城市排污系统等场合的各种金属管道、阀门、泵以及搅拌混合机械等,这些金属构件和装备经常被用于泥浆、粉尘物料、腐蚀性气体或液体的输送和固/液料的混合,而这些物料对金属构件和装备都存在不同程度的磨损和腐蚀,迫使这些金属构件或装备不得不频繁更换或维修,既造成人力和物力的浪费,又降低系统的工作效率,大大增加系统的运行和维护成本。
附图说明
图1为泡沫陶瓷/高分子双连续相复合材料制备工艺流程图。
图2为泡沫碳化硅陶瓷管。
图3为钢弯头结构示意图。
图4为耐磨抗蚀碳化硅泡沫陶瓷双连续相复合弯头结构示意图。
图5为内部镶嵌耐磨抗腐双连续相复合材料的复合钢弯头结构示意图。图中,1钢弯头;2紧固螺栓;3耐磨抗蚀碳化硅泡沫陶瓷双连续相复合弯头。
具体实施方式
下面通过实施例详述本发明。
泡沫陶瓷/高分子双连续相复合材料是一类具有优异的抗磨损、抗酸碱介质腐蚀能力的材料,作为金属构件的保护层,置于金属构件表面,并与金属构件牢固结合;高分子材料与泡沫陶瓷复合形成双连续相复合材料的过程和双连续相复合材料与金属构件的牢固结合过程在同一步骤完成。
将泡沫陶瓷制备成所需形状和尺寸的构件并通过机械配合或连接、焊接、粘接或镶嵌等方式固定到金属结构件(内、外)表面,然后利用常压灌注、离心灌注、真空吸注或注射成型等方法将高分子材料(树脂、橡胶、尼龙、以及聚乙烯、聚氯乙烯、聚丙烯等)注入到泡沫陶瓷网孔内,经固化、硫化或凝固后获得泡沫陶瓷/高分子双连续相复合材料保护层,并同时实现保护层与金属构件表面的牢固结合。
如图1所示,本发明泡沫陶瓷/高分子双连续相复合材料制备工艺流程如下:
工件表面毛化处理后,经工件表面涂敷高分子处理;泡沫陶瓷工件制备后,经泡沫陶瓷预热并镶嵌于工件表面;高分子混合浇注料配制、灌注工具准备后,经灌注、固化工件、机加工修整,获得泡沫陶瓷/高分子双连续相复合材料。具体制备过程如下:
(1)被防护工件的表面处理
利用喷砂或机加工等方法对需要防护的工件表面进行毛化处理。例如:喷砂处理使内表面毛化或加工出合适的螺纹槽,用于提高双连续相复合材料与工件表面的结合强度。
(2)泡沫陶瓷管制备
所述泡沫陶瓷可以是泡沫碳化硅、泡沫氮化硅、泡沫氧化铝、泡沫氧化锆及其它泡沫陶瓷或泡沫玻璃等,由常规烧结、反应烧结、化学气相沉积等方法获得。泡沫陶瓷网孔的平均尺寸为:0.1mm-6mm;泡沫陶瓷的体积分数为:5%-80%;陶瓷平均晶粒尺寸在10nm-300μm;构成泡沫陶瓷骨架的陶瓷筋既可以是致密的,也可以是多孔的。
利用模具制备出需要的尺寸和形状泡沫碳化硅陶瓷,碳化硅泡沫陶瓷制备参见专利:
1.一种高强度碳化硅泡沫陶瓷及其制备方法(专利号ZL00110479.9),以热解后能保持高残碳率的高分子材料为原料,以聚胺酯泡沫塑料为骨架,经挂浆、固化、热解、渗硅处理,获得致密泡沫碳化硅陶瓷块。
所述泡沫陶瓷网孔的平均尺寸为:0.5mm-5mm;泡沫陶瓷的体积分数为:5%-70%,平均晶粒尺寸在10nm-300μm,泡沫陶瓷筋的相对密度大于98%。
2.-种双尺度碳化硅泡沫陶瓷材料及其制备方法(申请号200910248558.0),碳化硅泡沫陶瓷具有三维连通网络结构,宏观上具有毫米级尺度相互连通的网孔,孔径范围为0.5mm-5mm;陶瓷骨架筋内部具有微米级尺度相互连通的网孔,孔径范围为5~100μm。所述碳化硅泡沫陶瓷以多边型封闭环为基本单元,各基本单元相互连接形成三维连通网络,泡沫陶瓷的体积分数为:5%-70%,碳化硅平均晶粒尺寸在10nm-300μm。
利用上述两个专利制备出所需尺寸和形状的泡沫碳化硅陶瓷块。首先,切割出相应尺寸的聚氨脂泡沫,浸挂碳化硅料浆并挤出多余料浆后,放入模具中加温固化定型,取出后重复浸挂碳化硅料浆直至达到需要的体积分数,然后经过热解、修型、反应烧结后获得泡沫碳化硅陶瓷。
其它泡沫陶瓷(泡沫氧化铝、泡沫氧化锆等)陶瓷块的制备方法,在成型方面与泡沫碳化硅陶瓷成型方法一样,同样采用料浆浸挂的方法制备,制备过程如下:
第一步,料浆配制
按重量百分比计,将陶瓷微粉A(wt%)30-50、稳定剂B(wt%)2-10、烧结助剂C(wt%)2-10、溶剂D(wt%)66-30混合后,经机械搅拌后球磨,过滤,得料浆;其中:
陶瓷微粉A:陶瓷微粉为氮化硅、氧化铝、氧化锆或玻璃微粉等,粒度为15nm-30μm;
稳定剂B:氧化镁、氧化铈或稀土等,粒度为10nm-10μm;
烧结助剂C:氧化钛或氧化钇等,粒度为10nm-10μm;
溶剂D:硅溶胶、硅酸乙脂或水玻璃等。
第二步,浸挂
将聚胺脂泡沫剪裁成所需形状和尺寸,均匀地浸入料浆中、拿出后挤去多余料浆、采用气吹或离心的方式除去多余料浆,加热半固化,重复多次,至达到所需要的体积分数,得到泡沫陶瓷前驱体。
其中,半固化是在100-250℃温度下热固化,时间10分钟-2小时。
第三步,热解
将泡沫陶瓷前驱体在氩气、氮气或其它惰性气体的保护下热解,生成泡沫陶瓷骨架;其中,升温速率每分钟1-5℃,升温至800-1200℃,保温0.5-2小时。
第四步,烧结成型
在空气气氛中,对泡沫陶瓷骨架烧结成型,升温速率为每分钟5-15℃,烧结温度为:1400℃-1750℃,保温时间为0.5-8小时,得泡沫陶瓷材料。
所述泡沫陶瓷以多边型封闭环为基本单元,各基本单元相互连接形成三维连通网络,泡沫陶瓷网孔的平均尺寸为:0.5mm-5mm;泡沫陶瓷的体积分数为:5%-70%,平均晶粒尺寸在10nm-300μm。
其宏观上可以具有毫米级尺度相互连通的网孔,孔径范围为0.5mm-5mm;陶瓷骨架筋内部可以具有微米级尺度相互连通的网孔,孔径范围为5~100μm。
本发明中,在泡沫陶瓷网孔内可以填加陶瓷粉,加入方法为:将陶瓷粉灌入泡沫陶瓷网孔中,通过机械振动的方法将陶瓷粉振实。陶瓷粉是SiC、SiO2或Al2O3,粒度为:200nm-2mm,加入量为泡沫陶瓷重量的0wt%-50wt%,填加的方法为:将陶瓷粉灌入到泡沫陶瓷网孔内,通过机械震荡的方法将陶瓷粉振实。
请参见中国发明专利申请(申请号201110253244.7)。
(3)高分子混合浇注料配制
将液态高分子材料、陶瓷微粉、固化剂、稀释剂按照重量百分比例为70wt%-30wt%∶0wt%-20wt%∶2wt%-10wt%∶28wt%-40wt%配制成需要的混合浇注料,搅拌5-30min,混合均匀。
高分子材料为树脂、橡胶、尼龙、聚乙烯、聚氯乙烯或聚丙烯等;树脂可以是酚醛树脂或环氧树脂,如氨酚醛、硼酚醛、钡酚醛类树脂、缩水甘油基型环氧树脂或环氧化烯烃等;橡胶可以是天然橡胶或合成橡胶,如丁苯胶、丁钠胶、顺丁胶、丁基橡胶、乙丙胶、氯丁胶、丁睛胶、聚氨酯橡胶或丙烯酸酯橡胶等;尼龙可以是聚酰胺(尼龙)、聚癸二酸癸二胺(尼龙1010)、聚十一酰胺(尼龙11)、聚十二酰胺(尼龙12)、聚己内酰胺(尼龙6)、聚己二酸己二胺(尼龙66)、聚辛酰胺(尼龙8)或聚9-氨基壬酸(尼龙9)等。
陶瓷微粉为碳化硅、氧化铝或氧化锆等,粒度为15nm-30μm;
固化剂为二硫化四甲基秋兰姆TMTD、硫酸、硫磺、对甲苯磺酸、有机酸、酸酐、三氟化硼或聚酰氨等。
稀释剂为工业酒精、丙酮、石油醚或二甲苯等。
(4)复合
方法1——常压灌注
将泡沫陶瓷放入烘箱内或利用热风机加热至50℃-100℃,同时将需要防护的工件同时加热到50℃-100℃。
利用工具,例如圆棒、扁铲等,将高分子混合浇注料由内向外均匀涂敷到泡沫陶瓷上,并挤压到泡沫陶瓷网孔内,将网孔中的气体赶出,直至高分子混合浇注料均匀灌满泡沫陶瓷网孔。
同时,在经过表面毛化处理过的工件表面上均匀刷上一层高分子混合浇注料,厚度为0.1-1mm。
将网孔中灌满了高分子混合浇注料的泡沫陶瓷粘贴、镶嵌到工件表面,静置2-72h固化。
方法2——真空吸注
将泡沫陶瓷镶嵌到工件上,组合成一体放入真空室内,开真空泵抽真空至2000Pa-0.1Pa。
将带有阀门的进料管置于泡沫陶瓷骨架上方,待真空度达到要求的数值后,打开进料阀将高分子混合浇注料送入泡沫陶瓷骨架内,充满后,开放气阀取出工件,除去多余的高分子混合浇注料,静置2-72h固化。
方法3——离心灌注
将陶瓷管直接镶嵌到工件表面,然后卡装在能够旋转的设备上,如车床上。将配制好的高分子混合浇注料浇注到泡沫陶瓷内,启动旋转设备,转速控制在10-500转/分钟,利用离心力使高分子混合浇注料均匀灌注到泡沫陶瓷网孔中,经过2-24h小时,待高分子固化后取下。
方法4——注射成型
将泡沫陶瓷镶嵌到工件上,组合成一体放入模具中,模具表面均匀涂抹脱模剂如甘油或硬脂酸锌等。将高分子混合浇注料加压注射到模具中,直至高分子混合浇注料充满模具,例如将聚乙烯、聚氯乙烯或聚丙烯等加热到150℃-220℃,使其处于良好的流动状态,利用加压装置将其注射到镶嵌泡沫陶瓷的模具中,静置2-72h固化。固化后,脱模取出双连续相复合材料。
本发明中,泡沫陶瓷件既可以是整体的,也可以是分体组合的。在分体组合时,各单元件间无明显间隙和凸起。在以整体和分体组合方式使用时,泡沫陶瓷与金属构件之间可有不超过5mm的间隙。
(5)机加工修整
利用砂布磨轮或砂纸等将多余高分子形成的飞边、毛刺等磨掉,即可获得泡沫陶瓷/高分子双连续相复合耐磨材料。
实施例1:金属直管内表面的耐磨防腐改性
①钢管内表面毛化处理
选择外径内径长度为200mm的45#钢管,首先利用喷砂的方法,将钢管内表面粗糙化处理,然后在钢管内表面车出间距10mm、深0.5mm的环形浅槽,表面毛化的意义在于改善界面结合质量、提高界面结合强度。
②泡沫碳化硅陶瓷管制备
按照专利:一种高强度碳化硅泡沫陶瓷及其制备方法(ZL00110479.9)制备出碳化硅泡沫陶瓷管,网孔的平均尺寸为:2.0mm,体积分数为:50%,尺寸为:外径内径
Figure BDA0000094209810000104
长度为100mm二段。
③高分子混合浇注料制备
将环氧树脂、Al2O3微粉(粒度为300nm)、固化剂对甲苯磺酸、稀释剂丙酮按确定比例(表1)配制成料浆,搅拌均匀。
表1高分子混合浇注料
Figure BDA0000094209810000105
④预热
将钢管放入烘箱内加热至80℃。
⑤灌注树脂
将配制好的树脂高分子混合浇注料由内向外均匀灌注到泡沫碳化硅陶瓷管的网孔中,反复碾压直至树脂从泡沫碳化硅陶瓷管内壁被均匀挤出到外壁。由烘箱内取出钢管,将树脂均匀涂到钢管内壁,厚度大约0.3-0.5mm左右。然后将泡沫陶瓷镶入钢管内,刮掉多余树脂。放在通风处降温1h,然后置于阴凉处固化48h。
⑥修整
利用布砂轮将局部多余的树脂除掉,即可获得泡沫碳化硅陶瓷/树脂双连续相复合材料耐磨管。
实际应用结果表明,本实施例应用于火力发电厂的脱硫管道,其使用寿命比现有的橡胶内衬管提高5倍以上,充分显示出本发明对提高金属构件使用寿命、降低生产成本、消除安全隐患的重要作用。
实施例2:金属直管内表面的耐磨防腐改性
与实施例1的不同之处在于树脂高分子混合浇注料的制备。
将环氧树脂、SiC微粉(粒度为200nm)、固化剂聚酰氨、稀释剂丙酮按确定比例(表2)配制成料浆,搅拌均匀。
表2高分子混合浇注料
Figure BDA0000094209810000111
实际应用结果表明,本实施例应用于火力发电厂的脱硫管道,其使用寿命比现有的橡胶内衬管提高5倍以上,充分显示出本发明对提高金属构件使用寿命、降低生产成本、消除安全隐患的重要作用。
实施例3:金属直管内表面的耐磨防腐改性
与实施例1的不同之处在于高分子混合浇注料的制备。
将氯丁胶、固化剂、稀释剂按确定比例(表3)配制成料浆,搅拌均匀。
表3高分子混合浇注料
Figure BDA0000094209810000112
实际应用结果表明,本实施例应用于火力发电厂的脱硫管道,其使用寿命比现有的橡胶内衬管提高5倍以上,充分显示出本发明对提高金属构件使用寿命、降低生产成本、消除安全隐患的重要作用。
实施例4:金属直管内表面的耐磨防腐改性
与实施例1的不同之处在于泡沫碳化硅陶瓷管的制备。按照专利:一种高强度碳化硅泡沫陶瓷及其制备方法(ZL00110479.9)制备出碳化硅泡沫陶瓷管,网孔的平均尺寸为:1.0mm,体积分数为:70%。
实际应用结果表明,本实施例应用于火力发电厂的脱硫管道,其使用寿命比现有的橡胶内衬管提高5倍以上,充分显示出本发明对提高金属构件使用寿命、降低生产成本、消除安全隐患的重要作用。
实施例5:金属直管内表面的耐磨防腐改性
与实施例1的不同之处在于,高分子材料选用聚乙稀并采用注射成型的方法制备。首先将泡沫陶瓷镶嵌到碳钢管中,然后再泡沫陶瓷内壁插入表面光滑的不锈钢管。不锈钢管外表面涂有硬脂酸锌脱模剂,上下两个端头用法兰封住,其中上法兰留有注射孔。将聚乙稀加热到150℃,使其处于良好的流动状态,利用加压装置将其注射到镶嵌泡沫陶瓷的模具中,静置24h。固化后,去掉上下法兰和中心镶嵌的不锈钢管,即可获得内壁镶嵌双连续相复合材料的复合直管。
实际应用结果表明,本实施例应用于火力发电厂的脱硫管道,其使用寿命比现有的橡胶内衬管提高5倍以上,充分显示出本发明对提高金属构件使用寿命、降低生产成本、消除安全隐患的重要作用。
实施例6:金属弯头内表面的耐磨防腐改性
①金属弯头内表面毛化处理
选择外径
Figure BDA0000094209810000121
内径
Figure BDA0000094209810000122
角度为90°的45#碳钢弯头,利用喷砂的方法,将碳钢弯头内表面粗糙化处理。
②碳化硅泡沫陶瓷制备
按照专利:一种高强度碳化硅泡沫陶瓷及其制备方法(ZL00110479.9)制备出碳化硅泡沫陶瓷弯头,网孔的平均尺寸为:1.0mm,体积分数为:60%,外观尺寸为:外径内径
Figure BDA0000094209810000124
角度为45°的虾米段三段(图2)。
③高分子混合浇注料制备
将氨酚醛树脂、SiC微粉(W7)、对甲苯磺酸、工业酒精按确定比例(表4)配制成料浆,搅拌均匀。
表4高分子混合浇注料
④预热
将碳钢管放入烘箱内加热至60℃。
⑤灌注树脂
将配制好的树脂高分子混合浇注料由内向外灌注进泡沫碳化硅陶瓷管的网孔中,直至树脂从泡沫碳化硅陶瓷管内壁被均匀挤出到外壁。由烘箱内取出碳钢弯头,将树脂均匀涂到钢弯头内壁,厚度大约0.3-0.5mm左右。然后将三块泡沫陶瓷管镶入钢弯头内,去掉多余树脂。放在通风处降温1h,然后置于阴凉处固化12h。
⑥修整
利用布砂轮将局部多余的树脂除掉,即可获得镶嵌双连续相复合材料并具有耐磨防腐功能的耐磨弯头。
实际应用结果表明,本实施例应用于火力发电厂的脱硫管道,其使用寿命比现有的橡胶内衬管提高5倍以上,充分显示出本发明对提高金属构件使用寿命、降低生产成本、消除安全隐患的重要作用。
实施例7:金属弯头内表面的耐磨防腐改性
与实施例6的不同之处在于树脂高分子混合浇注料的制备。
将环氧树脂、固化剂、工业酒精按确定比例(表5)配制成料浆,搅拌均匀。
表5高分子混合浇注料
Figure BDA0000094209810000131
实际应用结果表明,本实施例应用于火力发电厂的脱硫管道,其使用寿命比现有的橡胶内衬管提高5倍以上,充分显示出本发明对提高金属构件使用寿命、降低生产成本、消除安全隐患的重要作用。
实施例8:金属弯头内表面的耐磨防腐改性
与实施例6的不同之处在于泡沫陶瓷的制备。泡沫陶瓷为氧化铝泡沫陶瓷,网孔尺寸为2.0mm,体积分数为50%。
实际应用结果表明,本实施例应用于火力发电厂的脱硫管道,其使用寿命比现有的橡胶内衬管提高5倍以上,充分显示出本发明对提高金属构件使用寿命、降低生产成本、消除安全隐患的重要作用。
实施例9:金属弯头内表面的耐磨防腐改性
与实施例6的不同之处在于高分子材料的制备。高分子材料选用尼龙66,灌注温度选用120℃。
实际应用结果表明,本实施例应用于火力发电厂的脱硫管道,其使用寿命比现有的橡胶内衬管提高5倍以上,充分显示出本发明对提高金属构件使用寿命、降低生产成本、消除安全隐患的重要作用。
实施例10:金属弯头内表面的耐磨防腐改性
与实施例6的不同之处在于泡沫碳化硅陶瓷弯头的制备。按照专利:一种高强度碳化硅泡沫陶瓷及其制备方法(ZL00110479.9)制备出碳化硅泡沫陶瓷弯头,网孔的平均尺寸为:1.5mm,体积分数为:50%。
除掉泡沫碳化硅陶瓷弯头表面的残余硅。在采用可控熔渗反应烧结过程中,制备出泡沫碳化硅陶瓷骨架表面存在一层10-30μm厚的残余硅。用水与氢氧化钠配制成40%浓度的碱溶液,在热水浴中加热至90℃,然后将泡沫碳化硅陶瓷管放入到碱溶液中处理0.5h,取出后用清水冲洗干净,烘干。
实际应用结果表明,本实施例应用于火力发电厂的脱硫管道,其使用寿命比现有的橡胶内衬管提高5倍以上,充分显示出本发明对提高金属构件使用寿命、降低生产成本、消除安全隐患的重要作用。
实施例11:金属弯头内表面的耐磨防腐改性
与实施例6的不同之处在于,高分子材料选用聚丙乙稀并采用注射成型的方法制备。首先将泡沫陶瓷镶嵌到碳钢弯头中,然后再泡沫陶瓷内壁插入表面光滑的不锈钢弯管。不锈钢弯管外表面涂有硬脂酸锌脱模剂,上下两个端头用法兰封住,其中上法兰留有注射孔。将聚丙乙稀加热到200℃,使其处于良好的流动状态,利用加压装置将其注射到镶嵌泡沫陶瓷中,静置24h。固化后,去掉上下法兰和中心镶嵌的不锈钢弯管,即可获得内壁镶嵌双连续相复合材料的弯头。
实际应用结果表明,本实施例应用于火力发电厂的脱硫管道,其使用寿命比现有的橡胶内衬管提高5倍以上,充分显示出本发明对提高金属构件使用寿命、降低生产成本、消除安全隐患的重要作用。
实施例12:金属弯头内表面的耐磨防腐改性
①碳钢弯头内表面毛化处理
选择外径
Figure BDA0000094209810000141
内径
Figure BDA0000094209810000142
角度为90°的45#钢弯头,利用线切割等方法沿轴向将钢弯头切割成对称的两个半弯头。在半弯头的结合面处焊接5对中间带有螺栓孔的紧固块。采用喷砂的方法,将两个半弯头内表面进行粗糙化处理(图3)。
②泡沫碳化硅陶瓷弯头的制备
按照专利:一种高强度碳化硅泡沫陶瓷及其制备方法(ZL00110479.9)制备出泡沫碳化硅陶瓷弯头,网孔的平均尺寸为:1.0mm,体积分数为:60%,外观尺寸为:外径
Figure BDA0000094209810000143
内径
Figure BDA0000094209810000144
角度为90°(图4)。
③树脂高分子混合浇注料制备
将氨酚醛树脂、SiC微粉(W7)、对甲苯磺酸、工业酒精按确定比例(表6)配制成料浆,搅拌均匀。
表6高分子混合浇注料
Figure BDA0000094209810000151
④预热
将两个钢弯头放入烘箱内加热至60℃。
⑤灌注树脂
将配制好的树脂高分子混合浇注料灌注进泡沫碳化硅陶瓷弯头的网孔中,直至树脂从泡沫碳化硅陶瓷弯头内壁被均匀挤出到外壁。由烘箱内取出钢管,将树脂均匀涂到碳钢弯头内壁,厚度大约0.3-0.5mm左右。然后将将两块泡沫陶瓷弯头镶嵌到碳钢弯头内,去掉多余树脂。利用螺栓将两个半钢弯头紧固在一起后,放在通风处降温1h,然后置于阴凉处固化48h。
⑥修整
利用布砂轮将局部多余的树脂除掉,即可获得镶嵌泡沫陶瓷/树脂复合材料内置管并具有耐磨防腐功能的复合钢弯头(图5),钢弯头1外侧装有紧固螺栓2,耐磨抗蚀碳化硅泡沫陶瓷双连续相复合弯头3设置于钢弯头1内侧。
实际应用结果表明,本实施例应用于火力发电厂的脱硫管道,其使用寿命比现有的橡胶内衬管提高5倍以上,充分显示出本发明对提高金属构件使用寿命、降低生产成本、消除安全隐患的重要作用。
实施例13:金属三通内表面的耐磨防腐改性
①碳钢三通内表面毛化处理
选择外径
Figure BDA0000094209810000152
内径碳钢三通,利用喷砂的方法,将三通内表面粗糙化处理。
②泡沫碳化硅陶瓷管制备
按照专利:一种高强度碳化硅泡沫陶瓷及其制备方法(ZL00110479.9)制备出碳化硅泡沫陶瓷三通,骑缝处用碳化硅料浆封住,整体烧结。网孔的平均尺寸为:1.5mm,体积分数为:60%,外观尺寸为:外径内径
③高分子混合浇注料制备
将氨酚醛树脂、SiC微粉(W7)、对甲苯磺酸、工业酒精按确定比例(表7)配制成料浆,搅拌均匀。
表7高分子混合浇注料
Figure BDA0000094209810000161
④预热
将碳钢三通放入烘箱内加热至60℃。
⑤灌注树脂
由烘箱内取出碳钢三通,将配制好的树脂高分子混合浇注料均匀涂到碳钢三通内壁,厚度大约0.3-0.5mm左右,同时将树脂高分子混合浇注料灌入泡沫碳化硅陶瓷管的网孔中,直至泡沫碳化硅陶瓷网孔中均匀灌满树脂。然后将泡沫陶瓷管镶嵌进三通内,去掉多余树脂。放在通风处降温1h,然后置于阴凉处固化48h。
⑥修整
利用布砂轮将局部多余的树脂除掉,即可获得内壁镶嵌泡沫碳化硅陶瓷/树脂双连续相复合材料三通。
实际应用结果表明,本实施例应用于火力发电厂的脱硫管道,其使用寿命比现有的橡胶内衬管提高5倍以上,充分显示出本发明对提高金属构件使用寿命、降低生产成本、消除安全隐患的重要作用。
实施例14:金属弯头内表面的耐磨防腐改性
与实施例11的不同之处在于泡沫陶瓷三通的制备,请参见中国发明专利申请(申请号201110253244.7),制备过程如下:
第一步,料浆配制
按重量百分比计,将氮化硅陶瓷微粉(粒度为10μm)45wt%、稳定剂氧化镁(粒度为5μm)5wt%、烧结助剂氧化钛(粒度为5μm)5wt%、溶剂硅溶胶15wt%混合后,经机械搅拌后球磨,过滤,得料浆。
第二步,浸挂
将聚胺脂泡沫剪裁成所需形状和尺寸,均匀地浸入料浆中、拿出后挤去多余料浆、采用气吹或离心的方式除去多余料浆,加热半固化,重复多次,至达到泡沫陶瓷所需要的体积分数50%,得到泡沫陶瓷前驱体。
其中,半固化是在200℃温度下热固化,时间30分钟。
第三步,热解
将泡沫陶瓷前驱体在氮气保护下热解,生成泡沫陶瓷骨架;其中,升温速率每分钟2℃,升温至1000℃,保温1小时。
第四步,烧结成型
在空气气氛中,对泡沫陶瓷骨架烧结成型,升温速率为每分钟10℃,烧结温度为:1600℃,保温时间为3小时,得泡沫陶瓷材料。
所述泡沫陶瓷为氮化硅泡沫陶瓷,泡沫陶瓷以多边型封闭环为基本单元,各基本单元相互连接形成三维连通网络,泡沫陶瓷网孔的平均尺寸为:1.5mm;泡沫陶瓷的体积分数为:40%,平均晶粒尺寸在100nm。
其宏观上可以具有毫米级尺度相互连通的网孔,网孔的平均尺寸为:3.0mm;陶瓷骨架筋内部可以具有微米级尺度相互连通的网孔,网孔的平均尺寸为:60μm。
实际应用结果表明,本实施例应用于火力发电厂的脱硫管道,其使用寿命比现有的橡胶内衬管提高5倍以上,充分显示出本发明对提高金属构件使用寿命、降低生产成本、消除安全隐患的重要作用。
实施例15
与实施例14不同之处在于:
在泡沫玻璃陶瓷材料网孔内添加粒度为20μm的碳化硅微粉,添加重量为泡沫陶瓷的30%,加入方法为:将陶瓷粉灌入泡沫陶瓷网孔中,通过机械振动的方法将陶瓷粉振实,使碳化硅微粉填充于泡沫玻璃陶瓷材料的微米级孔中,以进一步提高复合耐磨材料的刚度和耐磨性。
实施例结果表明,本发明在高性能低成本泡沫陶瓷制备新技术的基础上,进一步研究出利用泡沫陶瓷/高分子双连续相复合材料对金属构件(内、外)表面进行耐磨防腐改性的新方法。该方法以泡沫陶瓷/高分子双连续相复合材料为金属构件的表面保护层。该保护层具有优异的耐冲刷、耐磨蚀和耐酸碱腐蚀的性能,可使金属构件的使用寿命得到大幅度提高。该方法可应用于工作在磨损、腐蚀(特别是同时存在磨损、腐蚀)环境中的各种金属构件,例如:在电力、矿山、石油、化工、冶金、建筑等行业得到广泛使用的、用于输送泥浆、粉尘物料、腐蚀性气体、腐蚀性液体等介质的各种金属管道、阀门、泵等的耐磨防腐处理。利用本发明对火力发电厂脱硫系统中的钢制管道(直管、弯头、三通、四通、五通等)内壁面进行保护后,管道使用寿命比现有用内衬橡胶管保护的管道提高5倍以上,而成本仅提高1倍左右。

Claims (5)

1.一种金属构件表面耐磨防腐改性的方法,其特征在于,利用泡沫陶瓷/高分子双连续相复合材料作为金属构件的保护层,置于金属构件表面,并与金属构件牢固结合;
高分子材料与泡沫陶瓷复合形成双连续相复合材料的过程和双连续相复合材料与金属构件的牢固结合过程在同一步骤完成;
首先,利用喷砂对需要防护的金属构件表面进行毛化处理,或者利用机加工方法对需要防护的金属构件表面加工出螺纹槽或环形槽;然后,将泡沫陶瓷制备成所需形状和尺寸的构件,并通过焊接、粘接或镶嵌方式固定到金属构件表面;接着,利用常压灌注、离心灌注、真空吸注或注射成型方法将高分子混合浇注料注入到泡沫陶瓷网孔内,经固化或硫化后,获得泡沫陶瓷/高分子双连续相复合材料保护层,并同时实现保护层与金属构件表面的牢固结合;
泡沫陶瓷是泡沫碳化硅、泡沫氮化硅、泡沫氧化铝、泡沫氧化锆或泡沫玻璃,泡沫陶瓷由常规烧结、反应烧结或化学气相沉积方法获得,泡沫陶瓷网孔的平均尺寸为:0.1mm-6mm,泡沫陶瓷的体积分数为:5%-80%,陶瓷平均晶粒尺寸为:10nm-300μm;其中,
碳化硅泡沫陶瓷具有三维连通网络结构,宏观上具有毫米级尺度相互连通的网孔,孔径范围为0.5mm-5mm;陶瓷骨架筋内部具有微米级尺度相互连通的网孔,孔径范围为5-100μm;所述碳化硅泡沫陶瓷以多边型封闭环为基本单元,各基本单元相互连接形成三维连通网络,泡沫陶瓷的体积分数为:5%-70%,碳化硅平均晶粒尺寸在10nm-300μm;
泡沫氧化铝或泡沫氧化锆以多边型封闭环为基本单元,各基本单元相互连接形成三维连通网络,泡沫陶瓷网孔的平均尺寸为:0.5mm-5mm;泡沫陶瓷的体积分数为:5%-70%,平均晶粒尺寸在10nm-300μm;其宏观上具有毫米级尺度相互连通的网孔,孔径范围为0.5mm-5mm;陶瓷骨架筋内部具有微米级尺度相互连通的网孔,孔径范围为5-100μm;
高分子混合浇注料,是将液态高分子材料、陶瓷微粉、固化剂、稀释剂按照重量百分比例为70wt%-30wt%:0wt%-20wt%:2wt%-10wt%:28wt%-40wt%配制成需要的混合浇注料,搅拌5-30min,混合均匀;高分子材料为树脂、橡胶、尼龙、聚乙烯、聚氯乙烯或聚丙烯;其中,
树脂是酚醛树脂或环氧树脂,橡胶是天然橡胶或合成橡胶,尼龙是聚酰胺、聚癸二酸癸二胺、聚十一酰胺、聚十二酰胺、聚己内酰胺、聚己二酸己二胺、聚辛酰胺或聚9-氨基壬酸;
陶瓷微粉为碳化硅、氧化铝或氧化锆,粒度为15nm-30μm;
固化剂为二硫化四甲基秋兰姆、硫酸、硫磺、对甲苯磺酸、有机酸、酸酐、三氟化硼或聚酰氨;
稀释剂为工业酒精、丙酮、石油醚或二甲苯。
2.按照权利要求1所述的金属构件表面耐磨防腐改性的方法,其特征在于,构成泡沫陶瓷骨架的陶瓷筋是致密的或多孔的。
3.按照权利要求1所述的金属构件表面耐磨防腐改性的方法,其特征在于,泡沫陶瓷件是整体的或者分体组合的;在分体组合时,各单元件间无明显间隙和凸起;在以整体和分体组合方式使用时,泡沫陶瓷与金属构件之间有不超过5mm的间隙。
4.按照权利要求1所述的金属构件表面耐磨防腐改性的方法,其特征在于,在获得双连续相复合材料保护层时,泡沫陶瓷网孔内填加陶瓷微粉。
5.按照权利要求4所述的金属构件表面耐磨防腐改性的方法,其特征在于,陶瓷粉是SiC、SiO2或Al2O3,粒度为:200nm-2mm,加入为泡沫陶瓷重量的0wt%-50wt%,填加的方法为:将陶瓷粉灌入到泡沫陶瓷网孔内,通过机械震荡的方法将陶瓷粉振实。
CN 201110287042 2011-09-26 2011-09-26 一种金属构件表面耐磨防腐改性的方法 Active CN102506268B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110287042 CN102506268B (zh) 2011-09-26 2011-09-26 一种金属构件表面耐磨防腐改性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110287042 CN102506268B (zh) 2011-09-26 2011-09-26 一种金属构件表面耐磨防腐改性的方法

Publications (2)

Publication Number Publication Date
CN102506268A CN102506268A (zh) 2012-06-20
CN102506268B true CN102506268B (zh) 2013-11-06

Family

ID=46218380

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110287042 Active CN102506268B (zh) 2011-09-26 2011-09-26 一种金属构件表面耐磨防腐改性的方法

Country Status (1)

Country Link
CN (1) CN102506268B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103527807B (zh) * 2013-10-29 2016-01-06 方正阀门集团有限公司 陶瓷复合涂层型耐腐蚀阀门及其陶瓷复合涂层在耐腐蚀阀门中的涂覆工艺
CA2955986C (en) * 2014-07-23 2022-06-14 George Kim Protective composite surfaces
CN104261204A (zh) * 2014-09-05 2015-01-07 常熟市方园纺织器材厂 防滑耐磨纱盘
CN105711080A (zh) * 2014-12-01 2016-06-29 中国航空工业集团公司第六三一研究所 一种架空架高器件骨架填充型加固方法
CN106321991B (zh) * 2015-07-07 2019-02-19 中国科学院金属研究所 一种具有双陶瓷衬层的耐磨耐蚀管道或管件及其制备方法
CN106917918B (zh) * 2015-12-28 2019-05-14 中国科学院金属研究所 具有碳化硅陶瓷耐磨、蚀衬层的管道或管件及其制备方法
CN107160651A (zh) * 2017-06-02 2017-09-15 太仓市勤红防腐设备有限公司 阻氧型环氧粉末防腐钢管的制备方法
CN107825070A (zh) * 2017-10-20 2018-03-23 中交广州航道局有限公司 疏浚管及其加工方法
CN107893849B (zh) * 2017-12-20 2023-09-12 山东天瑞重工有限公司 水压凿岩机活塞及其制作方法
CN108148398A (zh) * 2017-12-23 2018-06-12 季梅 一种耐磨陶瓷材料及其制备方法和应用
CN109439184B (zh) * 2018-11-05 2020-11-03 中北大学 一种金属表面防腐涂层及其制备和涂覆方法
CN109989063B (zh) * 2019-03-14 2020-10-27 西安交通大学 一种合金表面微织构的制备方法
CN110939798B (zh) * 2019-11-25 2022-01-07 襄阳慧通电力科技有限公司 一种复合型防腐、耐磨、耐高温管的制备方法
CN113549279B (zh) * 2021-07-29 2023-01-31 三联泵业股份有限公司 一种耐磨防腐内衬材料及具有其的耐磨防腐泵
CN115094209A (zh) * 2022-06-02 2022-09-23 烟台杰瑞石油装备技术有限公司 耐磨表面的制备方法及结构、管道、连接阀、作业设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5632320A (en) * 1995-08-16 1997-05-27 Northrop Grumman Corporation Methods and apparatus for making ceramic matrix composite lined automotive parts and fiber reinforced ceramic matrix composite automotive parts
CN1178878A (zh) * 1997-10-07 1998-04-15 华东理工大学 陶瓷树脂内衬复合钢管及制造方法
CN1325832A (zh) * 2000-05-31 2001-12-12 中国科学院金属研究所 一种高强度碳化硅泡沫陶瓷及其制备方法
CN1896171A (zh) * 2006-04-05 2007-01-17 中国科学院金属研究所 泡沫碳化硅/金属双连续相复合摩擦材料及其构件和制备
CN1986490A (zh) * 2005-12-23 2007-06-27 中国科学院金属研究所 一种高强高韧SiC/Al泡沫材料及其制备方法
CN101166701A (zh) * 2005-04-27 2008-04-23 京瓷株式会社 滑动构件用多孔质陶瓷及其制造方法以及机械密封环

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5632320A (en) * 1995-08-16 1997-05-27 Northrop Grumman Corporation Methods and apparatus for making ceramic matrix composite lined automotive parts and fiber reinforced ceramic matrix composite automotive parts
CN1178878A (zh) * 1997-10-07 1998-04-15 华东理工大学 陶瓷树脂内衬复合钢管及制造方法
CN1325832A (zh) * 2000-05-31 2001-12-12 中国科学院金属研究所 一种高强度碳化硅泡沫陶瓷及其制备方法
CN101166701A (zh) * 2005-04-27 2008-04-23 京瓷株式会社 滑动构件用多孔质陶瓷及其制造方法以及机械密封环
CN1986490A (zh) * 2005-12-23 2007-06-27 中国科学院金属研究所 一种高强高韧SiC/Al泡沫材料及其制备方法
CN1896171A (zh) * 2006-04-05 2007-01-17 中国科学院金属研究所 泡沫碳化硅/金属双连续相复合摩擦材料及其构件和制备

Also Published As

Publication number Publication date
CN102506268A (zh) 2012-06-20

Similar Documents

Publication Publication Date Title
CN102506268B (zh) 一种金属构件表面耐磨防腐改性的方法
CN102408677B (zh) SiC/环氧树脂复合材料以及使用其制造泵构件的方法
CN102040901A (zh) 一种聚合物耐磨涂层材料
CN102898156B (zh) 一种钢包渣线镁碳砖及其制备方法
CN101148363A (zh) 大骨料渗透浇注料及其制备方法
CN1759957A (zh) 一种双金属复合耐磨管的制造工艺
CN101905310B (zh) 球墨铸铁基刹车盘制备工艺
CN109251042A (zh) 用于连铸长水口的柔性自膨胀耐温密封元件及其制备方法
CN202263929U (zh) 金属连续铸造复合渣线长水口
CN107602146A (zh) 一种陶瓷预制体的制备方法
CN202017828U (zh) 多元抗磨耐腐蚀复合管道
CN102235365A (zh) 耐磨抽砂泵及其铸造方法
CN100414116C (zh) 金属基陶瓷表层泵用复合叶轮的生产方法
CN108546128B (zh) 一种碳化硅陶瓷无压烧结工艺
CN113754450A (zh) Corex炉出铁口高稳定性炮泥制备方法
WO2017035917A1 (zh) 一种氧化铝陶瓷复合衬板及其制备方法
CN106917918B (zh) 具有碳化硅陶瓷耐磨、蚀衬层的管道或管件及其制备方法
CN106321991B (zh) 一种具有双陶瓷衬层的耐磨耐蚀管道或管件及其制备方法
CN112679212A (zh) 一种渣浆泵用氮化物结合碳化硅耐磨陶瓷件的制备方法
CN1404945A (zh) 三元复合钢管的制备方法
CN101468899A (zh) 用于整体混铁车防溅罩的浇注料
CN104693683A (zh) 陶瓷防腐材料及其使用方法
CN102503462B (zh) 金属连续铸造复合渣线长水口及其制备方法
CN103880388B (zh) 一种耐高温防磨涂料其制造方法
CN202242166U (zh) 耐磨防粘复合型混合机衬板

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant