WO2017035917A1 - 一种氧化铝陶瓷复合衬板及其制备方法 - Google Patents

一种氧化铝陶瓷复合衬板及其制备方法 Download PDF

Info

Publication number
WO2017035917A1
WO2017035917A1 PCT/CN2015/091830 CN2015091830W WO2017035917A1 WO 2017035917 A1 WO2017035917 A1 WO 2017035917A1 CN 2015091830 W CN2015091830 W CN 2015091830W WO 2017035917 A1 WO2017035917 A1 WO 2017035917A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
powder
composite liner
ceramic composite
sintering
Prior art date
Application number
PCT/CN2015/091830
Other languages
English (en)
French (fr)
Inventor
钱兵
孙书刚
Original Assignee
南通高欣耐磨科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通高欣耐磨科技股份有限公司 filed Critical 南通高欣耐磨科技股份有限公司
Publication of WO2017035917A1 publication Critical patent/WO2017035917A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products

Definitions

  • the invention belongs to the technical field of composite materials, and particularly relates to an alumina ceramic composite liner and a preparation method thereof.
  • the wear-resistant lining As a core component of the heavy medium cyclone, the wear-resistant lining is adhered to the inner wall of the heavy medium cyclone with wear-resistant glue.
  • the mixture of raw coal, heavy medium and water produces friction and wear with the inner wall.
  • the wear lining plate When the lining plate is worn to a certain extent or is broken, the wear lining plate fails, causing the fitting to fail. In severe cases, the whole machine needs to be replaced.
  • the wear-resistant linings commonly used in heavy medium cyclones in the prior art are corundum, cast iron and polyurethane. Polyurethane is applied to heavy medium cyclones with a diameter of more than ⁇ 500 mm, which may cause serious scratches; cast iron is used for diameters above ⁇ 1000 mm.
  • the heavy medium cyclone also has a short service life, which cannot meet the requirements of continuous production on site; although the corundum wear-resistant lining can effectively improve the short life of the heavy medium cyclone, it is also the most widely used in the prior art.
  • the lining plate is ground, but when the diameter of the heavy medium cyclone exceeds ⁇ 1300mm, it still shows certain deficiencies, which makes the development of large-scale cyclone cyclone large-scale.
  • the silicon carbide material that has received much attention, due to its low density, high hardness, low thermal expansion coefficient, good thermal conductivity, good oxidation resistance, corrosion resistance, etc., and good high temperature strength and thermal shock resistance, It is widely used as an abrasive, wear-resistant material, electric heating element, structural parts in mechanical engineering, and seals in chemical engineering. At present, it has been adopted in many industries such as petroleum industry, chemical industry, machinery industry and metallurgical industry. In the mining industry, due to the bonding characteristics of its molecular structure, there are avascular weaknesses that are difficult to process, poor toughness, and brittleness, which seriously affects its application potential as a structural material, limiting the silicon carbide material in high impact areas such as mining. Applications, currently, have only a small number of applications in the fine grinding grade.
  • the existing liners commonly used in metallurgy, mining, coal, electric power and other fields are mainly high-molecular polyethylene liners, nylon liners and stainless steel liners. These linings have poor wear resistance, high friction coefficient, and no impact resistance. Materials often occur in their use parts (such as belt conveyor head funnel, mixing batching ore tank, train dumper room, and car receiving ore tank). Bonding, not resistant to impact, easy to fall off and other influencing phenomena, increased maintenance costs, reduced use efficiency, and easily lead to maintenance and shutdown. Moreover, the above-mentioned nylon liner and high-molecular polyethylene liner are only suitable for the smooth running of materials or artificial skating rinks or places where the bulk density is small and there is no drop, and the use range is too small.
  • the present invention provides a high wear resistance, non-bonding and impact resistance, and also has the characteristics of low porosity, good wear resistance, good toughness, easy processing and production, and long service life. Ceramic composite liner and preparation method thereof.
  • An alumina ceramic composite liner according to the present invention comprises the following parts by mass:
  • alumina powder 60-90 parts of alumina powder, 50-70 parts of ceramic powder, 5-10 parts of silica powder, 6-12 parts of magnesium oxide powder, calcium oxide powder 5-8 parts, 2-8 parts of cerium oxide, 15-25 parts of carbon fiber, 5-10 parts of quartz sand, 8-10 parts of plastic powder, 1-2 parts of acetone, 1-3 parts of triethylene dimethylsilane, sticky Mix 0.5-1 parts.
  • the plastic powder has a particle size of 400 to 500 mesh and a molecular weight of 2 to 3 million.
  • the quartz sand has a purity of 85 to 95% and a particle size of 450 to 550 mesh.
  • the binder is PVB-98.
  • the alumina powder has a particle size of 1-3 ⁇ m
  • the silica powder has a particle size of 1-2 ⁇ m
  • the magnesium oxide powder has a particle size of 2-3 ⁇ m.
  • the invention also discloses a preparation method of an alumina ceramic composite liner, comprising the following steps:
  • the sintering process is: heating up to 400 ° C at a heating rate of 60 ⁇ 100 ° C / h, then heating to 1250 ° C at a heating rate of 80 ⁇ 120 ° C / h, holding 1.5 h, then The temperature is raised to 1350-1500 ° C at a heating rate of 100-120 ° C / h, and the temperature is kept for 2.5 h. Finally, the kiln is naturally cooled to 200 ° C in the kiln.
  • the sintering is performed by vacuum sintering, and the degree of sintering vacuum is 3 ⁇ 10 -1 Pa and below.
  • the invention has the advantages that the alumina ceramic composite liner of the invention has high wear resistance, no adhesion and impact resistance, and has the characteristics of low porosity, good wear resistance, good toughness, easy processing and production, and long service life.
  • the method of the invention utilizes cerium oxide and aluminum oxide as sintering auxiliaries of silicon carbide, and uses carbon fiber as a toughening phase, which is prepared by mixing, mixing with carbon fiber, forming and sintering, can effectively reduce preparation cost, has simple process and low production cost. Low, low porosity, wear resistance, good toughness and long service life.
  • An alumina ceramic composite liner comprising the following parts by mass:
  • alumina powder 60 parts of alumina powder, 50 parts of ceramic powder, 5 parts of silica powder, 6 parts of magnesium oxide powder, 5 parts of calcium oxide powder, 2 parts of cerium oxide, 15 parts of carbon fiber, 5 parts of quartz sand, 8 parts of plastic powder, acetone 1 A portion of triethylene dimethylsilane and 0.5 part of a binder.
  • the plastic powder has a particle size of 400 mesh and a molecular weight of 2.5 million.
  • the quartz sand has a purity of 85% and a particle size of 450 mesh.
  • the binder is PVB-98.
  • the alumina powder has a particle size of 1 ⁇ m
  • the silica powder has a particle size of 1 ⁇ m
  • the magnesium oxide powder has a particle size of 2 ⁇ m.
  • the preparation method of the above alumina ceramic composite liner comprises the following steps:
  • the sintering process is: raising the temperature to 400 ° C at a heating rate of 60 ° C / h, then raising the temperature to 1250 ° C at a heating rate of 80 ° C / h, holding for 1.5 h, then at 100 ° C / The heating rate of h is raised to 1350 ° C, and the temperature is kept for 2.5 h. Finally, the furnace is naturally cooled to 200 ° C in the kiln, and the sintering is performed by vacuum sintering, and the sintering vacuum is 3 ⁇ 10-1 Pa and below.
  • An alumina ceramic composite liner comprising the following parts by mass:
  • alumina powder 70 parts of ceramic powder, 10 parts of silica powder, 12 parts of magnesium oxide powder, 8 parts of calcium oxide powder, 8 parts of cerium oxide, 25 parts of carbon fiber, 10 parts of quartz sand, 10 parts of plastic powder, acetone 2 Parts, 3 parts of triethylene dimethyl silane, 1 part of binder.
  • the plastic powder has a particle size of 500 mesh and a molecular weight of 3 million.
  • the quartz sand has a purity of 95% and a particle size of 550 mesh.
  • the binder is PVB-98.
  • the alumina powder has a particle size of 3 ⁇ m
  • the silica powder has a particle size of 2 ⁇ m
  • the magnesium oxide powder has a particle size of 3 ⁇ m.
  • the preparation method of the above alumina ceramic composite liner comprises the following steps:
  • alumina powder Take 90 parts of alumina powder, 70 parts of ceramic powder, 10 parts of silica powder, 12 parts of magnesium oxide powder, 8 parts of calcium oxide powder, 8 parts of cerium oxide, 25 parts of carbon fiber and 10 parts of quartz sand. 10 parts of plastic powder, 2 parts of acetone, 3 parts of triethylene dimethyl silane, 1 part of binder, and mixed evenly;
  • the sintering process is: raising the temperature to 400 ° C at a heating rate of 100 ° C / h, then heating to 1250 ° C at a heating rate of 120 ° C / h, holding 1.5 h, then 120 ° C / The heating rate of h is raised to 1500 ° C, and the temperature is kept for 2.5 h. Finally, the furnace is naturally cooled to 200 ° C in the kiln, and the sintering is performed by vacuum sintering, and the degree of sintering vacuum is 3. ⁇ 10-1Pa and below.
  • An alumina ceramic composite liner comprising the following parts by mass:
  • alumina powder 75 parts of alumina powder, 60 parts of ceramic powder, 7 parts of silica powder, 9 parts of magnesium oxide powder, 6 parts of calcium oxide powder, 5 parts of cerium oxide, 20 parts of carbon fiber, 7 parts of quartz sand, 9 parts of plastic powder, acetone 1.5 Parts, 2 parts of triethylene dimethyl silane, 0.7 parts of binder.
  • the plastic powder has a particle size of 450 mesh and a molecular weight of 2.7 million.
  • the quartz sand has a purity of 90% and a particle size of 500 mesh.
  • the binder is PVB-98.
  • the alumina powder has a particle size of 2 ⁇ m
  • the silica powder has a particle size of 1.5 ⁇ m
  • the magnesium oxide powder has a particle size of 2.5 ⁇ m.
  • a method for preparing an alumina ceramic composite liner comprises the following steps:
  • the sintering process is: heating up to 400 ° C at a heating rate of 80 ° C / h, then heating to 1250 ° C at a heating rate of 100 ° C / h, holding 1.5 h, then 110 ° C The heating rate of /h is raised to 1400 ° C, and the temperature is kept for 2.5 h.
  • the kiln is naturally cooled to 200 ° C in the kiln, and the sintering is performed by vacuum sintering, and the degree of sintering vacuum is 3 ⁇ 10 -1 Pa and below.
  • the alumina ceramic composite liner of the invention has the characteristics of high wear resistance, non-bonding and impact resistance; and has the characteristics of low porosity, good wear resistance, good toughness, easy processing and production, and long service life.
  • the method of the invention utilizes cerium oxide and aluminum oxide as sintering auxiliaries of silicon carbide, and uses carbon fiber as a toughening phase, which is prepared by mixing, mixing with carbon fiber, forming and sintering, can effectively reduce preparation cost, has simple process and low production cost. Low, low porosity, wear resistance, good toughness and long service life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种氧化铝陶瓷复合衬板及其制备方法,该复合衬板原料包括如下质量份数的组分:氧化铝粉60-90份,陶瓷粉50-70份,氧化硅粉5-10份,氧化镁粉6-12份,氧化钙粉5-8份,氧化钇2-8份,碳纤维15-25份,石英砂5-10份,塑胶粉8-10份,丙酮1-2份,三乙烯二甲基硅烷1-3份,粘合剂0.5-1份。其制备方法是将各组分混合均匀后进行搅拌,搅拌后进行压模、烧结、冷却即可。

Description

一种氧化铝陶瓷复合衬板及其制备方法 技术领域
本发明属于复合材料技术领域,具体涉及一种氧化铝陶瓷复合衬板及其制备方法。
背景技术
耐磨衬板作为重介质旋流器的核心部件,用耐磨胶粘贴于重介质旋流器内壁。旋流器工作时,原煤、重介质和水的混合物与内壁产生摩擦磨损,当衬板被磨损一定程度或碎裂时耐磨衬板失效,致使该配件失效,严重时需更换整机。现有技术中常应用于重介质旋流器的耐磨衬板为刚玉、铸铁和聚氨酯等,聚氨酯应用于直径Φ500mm以上的重介质旋流器会出现严重划伤现象;铸铁应用于直径Φ1000mm以上的重介质旋流器时也存在使用寿命短的问题,不能满足现场连续生产的需求;虽然刚玉耐磨衬板能有效改善重介质旋流器寿命短的问题,也是现有技术应用最广泛的耐磨衬板,但当重介质旋流器直径超过Φ1300mm时还是表现出一定的不足,使重介质旋流器大型化发展受到一定的限制。对于倍受人们关注的碳化硅材料而言,由于其密度低、硬度高、热膨胀系数低、导热性好、抗氧化性好、耐腐蚀等特点,且有良好的高温强度和抗热震性,被广泛用作磨料、耐磨材料、电热元件以及机械工程中的结构件和化学工程中的密封件等。目前,已在石油工业、化学工业、机械工业和冶金工业等众多行业所采用。在矿业领域,由于其分子结构的键合特点,存在难加工、韧性差、脆性大的致命弱点,严重影响了其作为结构材料的应用潜力,限制了碳化硅材料在矿业等高冲击领域中的应用,目前,仅仅在微细磨矿分级中有少量的应用。
现有常用于冶金、矿山、煤炭、电力等领域的衬板主要是高分子聚乙烯衬板、尼龙衬板及不锈钢衬板等。这些衬板耐磨性差、摩擦系数高、不具备抗冲击性,常在其使用部位(如皮带机头部漏斗、混匀配料矿槽、火车翻车机室及汽车受料矿槽等)发生物料粘结,不抗冲击,极易脱落等影响现象,增加了维修成本,降低了使用功效,极易造成检修停产等情况。且上述尼龙衬板、高分子聚乙烯衬板仅适用于物料平稳运行或人工滑冰场或散料密度小且无落差的地方,使用范围太小。
发明内容
发明目的:本发明针对不足,提出一种耐磨度高、不粘结且抗冲击;还具有气孔率低、耐磨性号、韧性好、易于加工生产的特点,且使用寿命长的氧化铝陶瓷复合衬板及其制备方法。
技术方案:本发明所述的一种氧化铝陶瓷复合衬板,包括如下质量份数的组分:
氧化铝粉60-90份,陶瓷粉50-70份,氧化硅粉5-10份,氧化镁粉6-12份,氧化钙粉 5-8份,氧化钇2-8份,碳纤维15-25份,石英砂5-10份,塑胶粉8-10份,丙酮1-2份,三乙烯二甲基硅烷1-3份,粘合剂0.5-1份。
进一步的,所述塑胶粉的粒度为400~500目,分子量为250-300万。
进一步的,所述石英砂的纯度为85~95%,粒度为450~550目。
进一步的,所述粘合剂为PVB-98。
进一步的,所述氧化铝粉的颗粒大小为1-3μm,氧化硅粉的颗粒大小为1-2μm,氧化镁粉的颗粒大小为2-3μm。
本发明还公开了一种氧化铝陶瓷复合衬板的制备方法,包括如下步骤:
(1)按质量份取氧化铝粉60-90份,陶瓷粉50-70份,氧化硅粉5-10份,氧化镁粉6-12份,氧化钙粉5-8份,氧化钇2-8份,碳纤维15-25份,石英砂5-10份,塑胶粉8-10份,丙酮1-2份,三乙烯二甲基硅烷1-3份,粘合剂0.5-1份,并将其混合均匀;
(2)用搅拌机在转速为3500~4500转/分钟,温度低于20℃的条件下将混合料搅拌10~15分钟;
(3)用压机上模将混匀的混合料在压力为15~25兆帕的条件下冷压25~35分钟;
(4)在窑炉内进行烧结,烧结工艺为:以60~100℃/h的升温速度升温到400℃,然后以80~120℃/h的升温速度升温到1250℃,保温1.5h,然后以100~120℃/h的升温速度升温到1350~1500℃,保温2.5h,最后在窑炉内自然降温至200℃出窑。
进一步的,所述烧结采用真空烧结,烧结真空度为3×10-1Pa及以下。
有益效果:本发明的氧化铝陶瓷复合衬板具有耐磨度高、不粘结且抗冲击;还具有气孔率低、耐磨性号、韧性好、易于加工生产的特点,且使用寿命长的特点。本发明方法利用氧化钇、氧化铝作为碳化硅的烧结助剂,以碳纤维作为增韧相,经混料、与碳纤维混合、成型和烧结制成,可有效降低制备成本,具有工艺简单、生产成本低,产品气孔率低、耐磨性号、韧性好、使用寿命长的特点。
具体实施方式
下面结合具体实施例对本发明作进一步说明:
实施例1
一种氧化铝陶瓷复合衬板,包括如下质量份数的组分:
氧化铝粉60份,陶瓷粉50份,氧化硅粉5份,氧化镁粉6份,氧化钙粉5份,氧化钇2份,碳纤维15份,石英砂5份,塑胶粉8份,丙酮1份,三乙烯二甲基硅烷1份,粘合剂0.5份。
进一步的,所述塑胶粉的粒度为400目,分子量为250万。
进一步的,所述石英砂的纯度为85%,粒度为450目。
进一步的,所述粘合剂为PVB-98。
进一步的,所述氧化铝粉的颗粒大小为1μm,氧化硅粉的颗粒大小为1μm,氧化镁粉的颗粒大小为2μm。
上述一种氧化铝陶瓷复合衬板的制备方法,包括如下步骤:
(1)按质量份取氧化铝粉60份,陶瓷粉50份,氧化硅粉5份,氧化镁粉6份,氧化钙粉5份,氧化钇2份,碳纤维15份,石英砂5份,塑胶粉8份,丙酮1份,三乙烯二甲基硅烷1份,粘合剂0.5份,并将其混合均匀;
(2)用搅拌机在转速为3500转/分钟,温度低于20℃的条件下将混合料搅拌10分钟;
(3)用压机上模将混匀的混合料在压力为15兆帕的条件下冷压25分钟;
(4)在窑炉内进行烧结,烧结工艺为:以60℃/h的升温速度升温到400℃,然后以80℃/h的升温速度升温到1250℃,保温1.5h,然后以100℃/h的升温速度升温到1350℃,保温2.5h,最后在窑炉内自然降温至200℃出窑,所述烧结采用真空烧结,烧结真空度为3×10-1Pa及以下。
实施例2
一种氧化铝陶瓷复合衬板,包括如下质量份数的组分:
氧化铝粉90份,陶瓷粉70份,氧化硅粉10份,氧化镁粉12份,氧化钙粉8份,氧化钇8份,碳纤维25份,石英砂10份,塑胶粉10份,丙酮2份,三乙烯二甲基硅烷3份,粘合剂1份。
进一步的,所述塑胶粉的粒度为500目,分子量为300万。
进一步的,所述石英砂的纯度为95%,粒度为550目。
进一步的,所述粘合剂为PVB-98。
进一步的,所述氧化铝粉的颗粒大小为3μm,氧化硅粉的颗粒大小为2μm,氧化镁粉的颗粒大小为3μm。
上述一种氧化铝陶瓷复合衬板的制备方法,包括如下步骤:
(1)按质量份取氧化铝粉90份,陶瓷粉70份,氧化硅粉10份,氧化镁粉12份,氧化钙粉8份,氧化钇8份,碳纤维25份,石英砂10份,塑胶粉10份,丙酮2份,三乙烯二甲基硅烷3份,粘合剂1份,并将其混合均匀;
(2)用搅拌机在转速为4500转/分钟,温度低于20℃的条件下将混合料搅拌15分钟;
(3)用压机上模将混匀的混合料在压力为25兆帕的条件下冷压35分钟;
(4)在窑炉内进行烧结,烧结工艺为:以100℃/h的升温速度升温到400℃,然后以120℃/h的升温速度升温到1250℃,保温1.5h,然后以120℃/h的升温速度升温到1500℃,保温2.5h,最后在窑炉内自然降温至200℃出窑,所述烧结采用真空烧结,烧结真空度为3 ×10-1Pa及以下。
实施例3
一种氧化铝陶瓷复合衬板,包括如下质量份数的组分:
氧化铝粉75份,陶瓷粉60份,氧化硅粉7份,氧化镁粉9份,氧化钙粉6份,氧化钇5份,碳纤维20份,石英砂7份,塑胶粉9份,丙酮1.5份,三乙烯二甲基硅烷2份,粘合剂0.7份。
进一步的,所述塑胶粉的粒度为450目,分子量为270万。
进一步的,所述石英砂的纯度为90%,粒度为500目。
进一步的,所述粘合剂为PVB-98。
进一步的,所述氧化铝粉的颗粒大小为2μm,氧化硅粉的颗粒大小为1.5μm,氧化镁粉的颗粒大小为2.5μm。
一种氧化铝陶瓷复合衬板的制备方法,包括如下步骤:
(1)按质量份取氧化铝粉75份,陶瓷粉60份,氧化硅粉7份,氧化镁粉9份,氧化钙粉6份,氧化钇5份,碳纤维20份,石英砂7份,塑胶粉9份,丙酮1.5份,三乙烯二甲基硅烷2份,粘合剂0.7份,并将其混合均匀;
(2)用搅拌机在转速为4000转/分钟,温度低于20℃的条件下将混合料搅拌12分钟;
(3)用压机上模将混匀的混合料在压力为20兆帕的条件下冷压30分钟;
(4)在窑炉内进行烧结,烧结工艺为:以:80℃/h的升温速度升温到400℃,然后以100℃/h的升温速度升温到1250℃,保温1.5h,然后以110℃/h的升温速度升温到1400℃,保温2.5h,最后在窑炉内自然降温至200℃出窑,所述烧结采用真空烧结,烧结真空度为3×10-1Pa及以下。
本发明的氧化铝陶瓷复合衬板具有耐磨度高、不粘结且抗冲击;还具有气孔率低、耐磨性号、韧性好、易于加工生产的特点,且使用寿命长的特点。本发明方法利用氧化钇、氧化铝作为碳化硅的烧结助剂,以碳纤维作为增韧相,经混料、与碳纤维混合、成型和烧结制成,可有效降低制备成本,具有工艺简单、生产成本低,产品气孔率低、耐磨性号、韧性好、使用寿命长的特点。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (7)

  1. 一种氧化铝陶瓷复合衬板,其特征在于:包括如下质量份数的组分:
    氧化铝粉60-90份,陶瓷粉50-70份,氧化硅粉5-10份,氧化镁粉6-12份,氧化钙粉5-8份,氧化钇2-8份,碳纤维15-25份,石英砂5-10份,塑胶粉8-10份,丙酮1-2份,三乙烯二甲基硅烷1-3份,粘合剂0.5-1份。
  2. 根据权利要求1所述的一种氧化铝陶瓷复合衬板,其特征在于:所述塑胶粉的粒度为400~500目,分子量为250-300万。
  3. 根据权利要求1所述的一种氧化铝陶瓷复合衬板,其特征在于:所述石英砂的纯度为85~95%,粒度为450~550目。
  4. 根据权利要求1所述的一种氧化铝陶瓷复合衬板,其特征在于:所述粘合剂为PVB-98。
  5. 根据权利要求1所述的一种氧化铝陶瓷复合衬板,其特征在于:所述氧化铝粉的颗粒大小为1-3μm,氧化硅粉的颗粒大小为1-2μm,氧化镁粉的颗粒大小为2-3μm。
  6. 根据权利要求1-5任一一项所述的一种氧化铝陶瓷复合衬板的制备方法,其特征在于:包括如下步骤:
    (1)按质量份取氧化铝粉60-90份,陶瓷粉50-70份,氧化硅粉5-10份,氧化镁粉6-12份,氧化钙粉5-8份,氧化钇2-8份,碳纤维15-25份,石英砂5-10份,塑胶粉8-10份,丙酮1-2份,三乙烯二甲基硅烷1-3份,粘合剂0.5-1份,并将其混合均匀;
    (2)用搅拌机在转速为3500~4500转/分钟,温度低于20℃的条件下将混合料搅拌10~15分钟;
    (3)用压机上模将混匀的混合料在压力为15~25兆帕的条件下冷压25~35分钟;
    (4)在窑炉内进行烧结,烧结工艺为:以60~100℃/h的升温速度升温到400℃,然后以80~120℃/h的升温速度升温到1250℃,保温1.5h,然后以100~120℃/h的升温速度升温到1350~1500℃,保温2.5h,最后在窑炉内自然降温至200℃出窑。
  7. 根据权利要求6所述的一种氧化铝陶瓷复合衬板的制备方法,其特征在于:所述述烧结采用真空烧结;烧结真空度为3×10-1Pa及以下。
PCT/CN2015/091830 2015-08-28 2015-10-13 一种氧化铝陶瓷复合衬板及其制备方法 WO2017035917A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510538155.5A CN105130409A (zh) 2015-08-28 2015-08-28 一种氧化铝陶瓷复合衬板及其制备方法
CN201510538155.5 2015-08-28

Publications (1)

Publication Number Publication Date
WO2017035917A1 true WO2017035917A1 (zh) 2017-03-09

Family

ID=54716057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091830 WO2017035917A1 (zh) 2015-08-28 2015-10-13 一种氧化铝陶瓷复合衬板及其制备方法

Country Status (2)

Country Link
CN (1) CN105130409A (zh)
WO (1) WO2017035917A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115490503A (zh) * 2022-10-25 2022-12-20 娄底市海天特种陶瓷有限公司 一种陶瓷复合材料及熔断器瓷管

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105819839B (zh) * 2016-04-02 2018-06-15 山东天汇研磨耐磨技术开发有限公司 一种水泥球磨机用耐磨陶瓷衬板及其制备方法
CN105819838B (zh) * 2016-04-02 2018-07-13 山东天汇研磨耐磨技术开发有限公司 一种水泥球磨机用耐磨陶瓷衬板及其制备方法
CN110606734A (zh) * 2019-10-30 2019-12-24 成都先进金属材料产业技术研究院有限公司 夹杂物棒的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1821165A (zh) * 2006-02-28 2006-08-23 武东生 氧化铝陶瓷复合衬板及制备方法
CN102219481A (zh) * 2011-04-14 2011-10-19 武东生 一种氧化铝陶瓷复合衬板及其制备方法
CN102701592A (zh) * 2012-06-19 2012-10-03 郑州九环科贸有限公司 一种微晶陶瓷衬板及其制备方法
CN103922775A (zh) * 2014-04-01 2014-07-16 天地科技股份有限公司唐山分公司 旋流器耐磨陶瓷衬板及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0115204D0 (en) * 2001-06-21 2001-08-15 Zellwerk Gmbh Ceramic materials, method for their production and use thereof
CN103951394B (zh) * 2014-04-23 2015-09-16 济南大学 一种高温抗热震氧化铝陶瓷承烧板及其制备工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1821165A (zh) * 2006-02-28 2006-08-23 武东生 氧化铝陶瓷复合衬板及制备方法
CN102219481A (zh) * 2011-04-14 2011-10-19 武东生 一种氧化铝陶瓷复合衬板及其制备方法
CN102701592A (zh) * 2012-06-19 2012-10-03 郑州九环科贸有限公司 一种微晶陶瓷衬板及其制备方法
CN103922775A (zh) * 2014-04-01 2014-07-16 天地科技股份有限公司唐山分公司 旋流器耐磨陶瓷衬板及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115490503A (zh) * 2022-10-25 2022-12-20 娄底市海天特种陶瓷有限公司 一种陶瓷复合材料及熔断器瓷管
CN115490503B (zh) * 2022-10-25 2023-05-12 娄底市海天特种陶瓷有限公司 一种陶瓷复合材料及熔断器瓷管

Also Published As

Publication number Publication date
CN105130409A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
CN107698266B (zh) 热风炉管道密封料及其制备方法
CN104692745B (zh) 一种高强高耐磨水泥基材料及其制备方法
WO2017035917A1 (zh) 一种氧化铝陶瓷复合衬板及其制备方法
CN108218408B (zh) 一种Al4SiC4结合Al2O3-SiC复合材料的制备方法
CN101723685B (zh) 镁铝尖晶石炮泥
CN103601520B (zh) 鱼雷罐用Al2O3-SiC-C耐火砖及其制备方法
CN101239829A (zh) 高性能耐火耐磨复合材料
CN109836136A (zh) 一种低碳铝镁碳砖及其制备方法
US20050245387A1 (en) Yttira containing high-density chrome based refractory composites
CN113121240A (zh) 一种高耐磨氮化物结合碳化硅复合陶瓷过流件的制备方法
CN102674868A (zh) 一种转炉出钢挡渣用镁碳质滑板及其生产方法
CN109851333B (zh) 高炉主铁沟用纳米溶胶结合耐磨板及其制备方法与应用
CN105777084B (zh) 一种水泥球磨机用陶瓷研磨球及其制备方法
CN104478455A (zh) 一种具有非氧化物增强增韧结构的低碳镁碳砖及其制备方法
CN113754450A (zh) Corex炉出铁口高稳定性炮泥制备方法
CN103922775B (zh) 旋流器耐磨陶瓷衬板及其制备方法
CN106086718A (zh) 一种离合器铁基复合摩擦材料及其制备方法
CN106191719A (zh) 一种高性能陶瓷制动复合材料及其制备方法
CN102603335B (zh) 高温高强炭质胶泥
CN110615670A (zh) 高性能镁质滑板砖及其制备方法
CN207413635U (zh) 一种以碳化硅陶瓷材料为内衬的旋风器
CN103073316B (zh) 一种高炉主铁沟喷补料及其制备方法
CN101955360B (zh) 一种高炉高铝压入料及其应用
CN105382243B (zh) 耐磨磨盘的制备方法
CN102219481A (zh) 一种氧化铝陶瓷复合衬板及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15902724

Country of ref document: EP

Kind code of ref document: A1