CN102503550B - 制备氧化锌纳米线薄膜的方法 - Google Patents

制备氧化锌纳米线薄膜的方法 Download PDF

Info

Publication number
CN102503550B
CN102503550B CN 201110347772 CN201110347772A CN102503550B CN 102503550 B CN102503550 B CN 102503550B CN 201110347772 CN201110347772 CN 201110347772 CN 201110347772 A CN201110347772 A CN 201110347772A CN 102503550 B CN102503550 B CN 102503550B
Authority
CN
China
Prior art keywords
zinc oxide
oxide nanowire
nanowire film
aminopropyl triethoxysilane
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201110347772
Other languages
English (en)
Other versions
CN102503550A (zh
Inventor
张亚非
戴振清
徐东
魏浩
魏良明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN 201110347772 priority Critical patent/CN102503550B/zh
Publication of CN102503550A publication Critical patent/CN102503550A/zh
Application granted granted Critical
Publication of CN102503550B publication Critical patent/CN102503550B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明涉及一种制备氧化锌纳米线薄膜的方法。一种制备氧化锌纳米线薄膜的方法,包括以下工序:a)用3-氨丙基三乙氧基硅烷对氧化锌纳米线进行表面修饰,得到经过表面修饰的氧化锌纳米线;b)将所述经过表面修饰的氧化锌纳米线置于水中,进行超声分散,得到均匀的悬浊液;c)将经过亲水性处理的带有二氧化硅层的硅片,置于所述悬浊液中,静置,得到所述氧化锌纳米线薄膜。本发明解决了现有的制备氧化锌纳米线薄膜的方法工艺复杂、成本高、操作难度大、效率低的技术问题。

Description

制备氧化锌纳米线薄膜的方法
技术领域
本发明涉及一种制备氧化锌纳米线薄膜的方法。 
背景技术
一维纳米结构由于其优越的特性,在光学和电子器件制备方面具有明显优势,因此受到广泛的关注和深入研究。其中,氧化锌纳米线具有卓越的半导体特性、光学特性和压电特性,可以用于制备场效应晶体管、紫外光探测器、气敏传感器、太阳能电池、纳米发电机、纳米激光器和场发射器件等。 
当前,绝大部分氧化锌纳米线器件都是由单根纳米线构建的。基于单根纳米线的器件存在一个最大的障碍,就是缺乏有效的工艺来实现纳米线的精确定位,并且器件需一个一个的制备,过程非常耗时。因此,对于基于单根纳米线的器件,在大规模生产方面将面临巨大的挑战。对于纳米线薄膜,其相对简单的制备工艺和低成本,使其在大规模器件制备方面显示出光明的应用前景。而且,相对于单根纳米线器件,基于薄膜的器件可以实现大电流输运,以及高可靠性和可重复性。 
经过对现有技术的检索发现,Ko S H、Park I、Pan H等人,在ZnO nanowire network transistor fabrication on a polymer substrate by low-temperature,all-inorganic nanoparticle solution process.Applied Physics Letters,2008,92(15):154102(Ko S H、Park I、Pan H等,利用低温全无机纳米粒子工艺制备以聚合物为基底的氧化锌纳米线网络晶体管,应用物理快报,2008,92(15):154102)中公开了利用水热法,在制备器件的基底上直接得到纳米线薄膜,但纳米线并非平铺在基底上,而是与基底成一定角度,并且纳米线结晶度差,造成器件性能较差。Unalan H E、Zhang Y、Hiralal P等人,在Zinc oxide nanowire networks for macroelectronic devices.Applied Physics Letters,2009,94(16):163501(Unalan H E、Zhang Y、Hiralal P等,基于氧化锌纳米线网络的宏观电子器件,应用物理快报,2009,94(16):163501)中公开了利用接触印刷技术制备得纳米线薄膜,在此方法中纳米线生长和薄膜制备是分开的,这样有利于使用高质量的纳米线来制备薄膜。但是该方法存在两个缺陷:一是要求纳米线必需固定在某一基底上,才能凭借接触印刷技术将纳米线转移到另一用于制备器件的基底上面。二是该方法操作难度大,要求在固定有纳米线的基底上施加一很均匀的压力,并且最后需在毫无切向力的条件下将其从制备器件的基底上面提起来。因此,有必要发展一种工艺简单、成本低廉、操作方便、高效的制备高质量氧化锌纳米线薄膜的方法,这将是规模化制造纳米线器件的关键。 
发明内容
本发明的目的在于提出一种制备氧化锌纳米线薄膜的方法,以解决现有的制备方法工艺复杂、成本高、操作难度大、效率低、得到的氧化锌纳米线薄膜质量差的技术问题。 
本发明通过以下技术方案解决上述技术问题,达到本发明的目的。 
一种制备氧化锌纳米线薄膜的方法,包括以下工序: 
a)用3-氨丙基三乙氧基硅烷对氧化锌纳米线进行表面修饰,得到经过表面修饰的氧化锌纳米线; 
b)将所述经过表面修饰的氧化锌纳米线置于水中,进行超声分散,得到均匀的悬浊液; 
c)将经过亲水性处理的带有二氧化硅层的硅片,置于所述悬浊液中,静置,得到所述氧化锌纳米线薄膜。 
经所述3-氨丙基三乙氧基硅烷表面修饰的氧化锌纳米线,表面存在氨基功能团,在水中所述氨基功能团带正电,而所述经过亲水性处理后的带有二氧化硅层的硅片在水中带负电。依靠两者之间的静电相互吸引,实现了氧化锌纳米线在带有二氧化硅层的硅片表面的自组装,得到了所述氧化锌纳米线的薄膜。 
在本发明具体实施时,优选地,所述工序a)包括以下步骤: 
a1)将所述3-氨丙基三乙氧基硅烷加入水中,得到3-氨丙基三乙氧基硅烷的水溶液;进一步,所述3-氨丙基三乙氧基硅烷与所述水的体积比为0.0125~0.025∶1; 
a2)调节所述3-氨丙基三乙氧基硅烷的水溶液的pH值;进一步,所述水溶液的pH值调节至4~7; 
a3)向所述3-氨丙基三乙氧基硅烷的水溶液中加入所述氧化锌纳米线,进行超声处理以促进化学反应进行,进一步,所述氧化锌纳米线与所述3-氨丙基三乙氧基硅烷的水溶液的质量体积比为1~2mg/mL;所述超声处理的超声波的频率为40~80kHz、功率密度为60~100W/m2、时间为2~4h; 
a4)离心分离得到所述经过表面修饰的氧化锌纳米线,进一步,所述离心的转速为1000~15000rpm,时间为20~30min,次数为4~6次。 
在本发明具体实施时,优选地,所述亲水性处理,包括以下步骤: 
i)配制硫酸溶液和双氧水溶液的混合溶液,进一步,所述硫酸溶液的浓度为98wt%,所述双氧水溶液的浓度为30wt%,所述硫酸溶液与所述双氧水溶液的体积比为2~3∶1。 
ii)将经过清洗的所述带有二氧化硅层的硅片置于所述混合溶液中,在一定温度下煮一段时间,进一步,所述一定温度是80~100℃,所述一段时间是2~4h; 
iii)将所述带有二氧化硅层的硅片取出,用水清洗,并吹干,优选地,用氮气吹干。 
在本发明具体实施时,优选地,所述步骤b)中,所述经过表面修饰的氧化锌纳米线与所述水的质量体积比为0.2~0.5mg/mL。 
在本发明具体实施时,优选地,所述步骤b)中,所述超声处理的超声波的频率为40~80kHz、功率密度为60~100W/m2、时间为1~3h。 
在本发明具体实施时,优选地,所述步骤c)中,所述静置所用的时间为2~24h。 
在本发明具体实施时,各个工序、步骤所用的水,均优选为去离子水。 
本发明的方法简单、成本低、方便、高效,通过电镜观察,本发明实现了氧化锌纳米线在带有二氧化硅层的硅片表面的均匀分布,得到的氧化锌纳米线薄膜面积大,适宜大规模制备氧化锌纳米线薄膜器件。现有技术的技术原理限制了通过其得到的薄膜面积的增加;本发明中能够得到的薄膜,原理上面积不受限制。 
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以使本领域的技术人员充分地了解本发明的目的、特征和效果。 
附图说明
图1是本发明实施例1的氧化锌纳米线薄膜的扫描电镜图片。 
图2是本发明实施例2的氧化锌纳米线薄膜的扫描电镜图片。 
图3是本发明实施例3的氧化锌纳米线薄膜的扫描电镜图片。 
具体实施方式
一种制备氧化锌纳米线薄膜的方法,包括以下工序: 
1)、带有二氧化硅层的硅片的清洗 
首先,将带有二氧化硅层的硅片放入丙酮中,进行超声清洗,取出用氮气吹干; 
接着,将带有二氧化硅层的硅片放入乙醇中,进行超声清洗,取出用氮气吹干; 
最后,将带有二氧化硅层的硅片放入去离子水中,进行超声清洗,取出用氮气吹干; 
2)、带有二氧化硅层的硅片表面的亲水性处理 
首先,配制硫酸溶液和双氧水溶液的混合溶液,硫酸溶液的浓度为98wt%,双氧水溶液的浓度为30wt%,硫酸溶液与双氧水溶液的体积比为2~3∶1; 
接着,将经过清洗的带有二氧化硅层的硅片置于混合溶液中,在一定温度下煮一段时间,所述一定温度是80~100℃,所述一段时间是2~4h; 
最后,将带有二氧化硅层的硅片取出,用去离子水清洗,并用氮气吹干; 
3)、氧化锌纳米线的表面修饰 
用3-氨丙基三乙氧基硅烷对氧化锌纳米线进行表面修饰,得到经过表面修饰的氧化锌纳米线,具体而言,按下述步骤进行。 
首先,将3-氨丙基三乙氧基硅烷加入去离子水中,得到3-氨丙基三乙氧基硅烷的水溶液;3-氨丙基三乙氧基硅烷与去离子水的体积比为0.0125~0.025∶1; 
接着,调节3-氨丙基三乙氧基硅烷的水溶液的pH值;3-氨丙基三乙氧基硅烷的水溶液的pH值调节后为4~7; 
再接着,向3-氨丙基三乙氧基硅烷的水溶液中加入氧化锌纳米线,进行超声处理;氧化锌纳米线与3-氨丙基三乙氧基硅烷的水溶液质量体积比为1~3mg/mL,超声处理的时间为2~4h,功率密度60~100W/m2,超声波的频率为40~80kHz。 
最后,离心分离得到经过表面修饰的氧化锌纳米线。离心的转速为10000~15000rpm,时间为20~30min,次数为4~6次; 
4)、悬浊液的制备 
将经过表面修饰的氧化锌纳米线置于去离子水中,进行超声分散,得到均匀的悬浊液;经过表面修饰的氧化锌纳米线与去离子水的质量体积比为0.2~0.5mg/mL。超声处理的时间为1~3h,功率密度60~100W/m2,超声波的频率为40~80kHz。 
5)、氧化锌纳米线的自组装 
将经过亲水性处理的带有二氧化硅层的硅片,置于均匀的悬浊液中,静置,得到氧化锌纳米线薄膜。静置所用的时间为2~24h。 
在本具体实施方式中,带有二氧化硅层的硅片为本领域常用的带有二氧化硅层的硅片。在以下实施例中,氧化锌纳米线是市售的、本领域常用的氧化锌纳米线,其相关参数并无限制。 
在以下实施例中,进行SEM表征采用的设备和相关参数为:德国蔡司公司的型号为Ultra 55的扫描电子显微镜,测试时加速电压为5kV。 
实施例1 
将规格为3时的带有二氧化硅层的硅片放入50毫升丙酮中,在超声波的频率为60KHz、功率密度为80W/m2的条件下进行超声清洗10分钟,取出用氮气吹干;接着,将带有二氧化硅层的硅片放入50毫升乙醇中,在超声波的频率为60KHz、超声波的功率密度为80W/m2的条件下进行超声清洗10分钟,取出用氮气吹干;最后将带有二氧化硅层的硅片放入100毫升去离子水中,在超声波的频率为60KHz、超声波的功率密度为80W/m2的条件下进行超声清洗10分钟,取出用氮气吹干。 
用浓度为30wt%的硫酸溶液和浓度为98wt%的双氧水溶液的配制混合溶液,硫酸溶液与双氧水溶液的体积比为7∶3,将清洗好的带有二氧化硅层的硅片放入该 混合溶液中,在90℃条件下煮3小时,煮完之后将带有二氧化硅层的硅片取出并用去离子水反复清洗,并用氮气吹干。 
在40毫升去离子水中加入0.5毫升3-氨丙基三乙氧基硅烷,得到3-氨丙基三乙氧基硅烷的水溶液,利用浓度为5wt%的稀硝酸将3-氨丙基三乙氧基硅烷的水溶液的pH值调至4。将50mg氧化锌纳米线放入3-氨丙基三乙氧基硅烷的水溶液中,并在超声波的频率为60KHz、超声波的功率密度为80W/m2的条件下超声处理3小时,最后在转速12000rpm和时间25分钟的条件下进行5次离心处理,将经过表面修饰的氧化锌纳米线分离出来。 
将经过3-氨丙基三乙氧基硅烷修饰的氧化锌纳米线,放入100ml的去离子水中并在超声波的频率为60KHz、超声波的功率密度为80W/m2的条件下超声分散2小时,得到均匀的悬浊液。 
然后将亲水性处理后的带有二氧化硅层的硅片放入悬浊液中静置12小时,得到氧化锌纳米线薄膜。 
图1是得到的氧化锌纳米线薄膜的扫描电镜图片。 
实施例2 
将规格为3时的带有二氧化硅层的硅片放入50毫升丙酮中,在超声波的频率为60KHz、超声波的功率密度为80W/m2的条件下进行超声清洗10分钟,取出用氮气吹干;接着,将带有二氧化硅层的硅片放入50毫升乙醇中,在超声波的频率为60KHz、超声波的功率密度为80W/m2的条件下进行超声清洗10分钟,取出用氮气吹干;最后将带有二氧化硅层的硅片放入100毫升去离子水中,在超声波的频率为60KHz、超声波的功率密度为80W/m2的条件下进行超声清洗10分钟,取出用氮气吹干。 
用浓度为30wt%的硫酸溶液和浓度为98wt%的双氧水溶液配制混合溶液,硫酸溶液与双氧水溶液的体积比为7∶3,将清洗好的带有二氧化硅层的硅片放入该混合溶液中,在90℃条件下煮3小时,煮完之后将带有二氧化硅层的硅片取出并用去离子水反复清洗,并用氮气吹干。 
在40毫升去离子水中加入0.7毫升3-氨丙基三乙氧基硅烷,得到3-氨丙基三乙氧基硅烷的水溶液,利用浓度为5wt%的稀硝酸将3-氨丙基三乙氧基硅烷的水溶液的pH值调至6。将80mg氧化锌纳米线放入3-氨丙基三乙氧基硅烷的水溶液中,并在超声波的频率为60KHz、超声波的功率密度为80W/m2的条件下处理3小时,最后在转速12000rpm和时间25分钟的条件下进行5次离心处理,将经过表面修饰的氧化锌纳米线分离出来。 
将经过表面修饰的的氧化锌纳米线,放入300ml的去离子水中并在超声波的频率为60KHz、超声波的功率密度为80W/m2的条件下超声分散2小时,得到均匀 的悬浊液。 
然后将亲水性处理后的带有二氧化硅层的硅片放入悬浊液中静置2小时,得到氧化锌纳米线薄膜。 
图2是得到的氧化锌纳米线薄膜的扫描电镜图片。 
实施例3 
将规格为3时的带有二氧化硅层的硅片放入50毫升丙酮中,在超声波的频率为60KHz、超声波的功率密度为80W/m2的条件下进行超声清洗10分钟,取出用氮气吹干;接着,将带有二氧化硅层的硅片放入50毫升乙醇中,在超声波的频率为60KHz、超声波的功率密度为80W/m2的条件下进行超声清洗10分钟,取出用氮气吹干;最后将带有二氧化硅层的硅片放入100毫升去离子水中,在超声波的频率为60KHz、超声波的功率密度为80W/m2的条件下进行超声清洗10分钟,取出用氮气吹干。 
用浓度为30wt%硫酸溶液和浓度为98wt%的双氧水溶液配制混合溶液,硫酸溶液与双氧水溶液的体积比为7∶3,将清洗好的带有二氧化硅层的硅片放入该混合溶液中,在90℃条件下煮3小时,煮完之后将带有二氧化硅层的硅片取出并用去离子水反复清洗,并用氮气吹干。 
在40毫升去离子水中加入1.0毫升3-氨丙基三乙氧基硅烷,得到3-氨丙基三乙氧基硅烷的水溶液,利用浓度为5wt%的稀硝酸将3-氨丙基三乙氧基硅烷的水溶液的pH值调至7。将100mg氧化锌纳米线放入其中,并在超声波的频率为60KHz、超声波的功率密度为80W/m2的条件下超声处理3小时,最后在转速12000rpm和时间25分钟的条件下进行5次离心处理,将经过表面修饰的氧化锌纳米线分离出来。 
将经过表面修饰的氧化锌纳米线,放入500ml的去离子水中并在超声波的频率为60KHz、超声波的功率密度为80W/m2的条件下超声分散2小时,得到均匀的悬浊液。 
然后将亲水性处理后的带有二氧化硅层的硅片放入悬浊液中静置24小时,得到氧化锌纳米线薄膜。 
图3是得到的氧化锌纳米线薄膜的扫描电镜图片。 
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。 

Claims (9)

1.一种制备氧化锌纳米线薄膜的方法,其特征在于,包括以下工序:
a)用3-氨丙基三乙氧基硅烷对氧化锌纳米线进行表面修饰,得到经过表面修饰的氧化锌纳米线;
b)将所述经过表面修饰的氧化锌纳米线置于水中,进行超声分散,得到均匀的悬浊液;
c)将经过亲水性处理的带有二氧化硅层的硅片,置于所述悬浊液中,静置,得到所述氧化锌纳米线薄膜。
2.如权利要求1所述的制备氧化锌纳米线薄膜的方法,其特征在于,所述工序a)包括以下步骤:
a1)将所述3-氨丙基三乙氧基硅烷加入水中,得到3-氨丙基三乙氧基硅烷的水溶液;
a2)调节所述3-氨丙基三乙氧基硅烷的水溶液的pH值,水溶液的pH值调节后为4~7;
a3)向所述3-氨丙基三乙氧基硅烷的水溶液中加入所述氧化锌纳米线,进行超声处理;
a4)离心分离得到所述经过表面修饰的氧化锌纳米线。
3.如权利要求1所述的制备氧化锌纳米线薄膜的方法,其特征在于,所述步骤c)中的亲水性处理,包括以下步骤:
ⅰ)配制硫酸溶液和双氧水溶液的混合溶液;
ⅱ)将经过清洗的所述带有二氧化硅层的硅片置于所述混合溶液中,在一定温度下煮一段时间;
ⅲ)将所述带有二氧化硅层的硅片取出,用水清洗,并吹干。
4.如权利要求2所述的制备氧化锌纳米线薄膜的方法,其特征在于:在所述步骤a1)中,所述3-氨丙基三乙氧基硅烷与所述水的体积比为0.0125~0.025:1。
5.如权利要求2所述的制备氧化锌纳米线薄膜的方法,其特征在于:在所述步骤a3)中,所述氧化锌纳米线与所述3-氨丙基三乙氧基硅烷的水溶液的质量体积比为1~3mg/mL。
6.如权利要求2所述的制备氧化锌纳米线薄膜的方法,其特征在于,在所述步骤a4)中,所述离心的转速为10000~15000rpm,时间为20~30min,次数为4~6次。
7.如权利要求1所述的制备氧化锌纳米线薄膜的方法,其特征在于,所述步骤b)中,所述经过表面修饰的氧化锌纳米线与所述水的质量体积比为0.2~0.5mg/mL。
8.如权利要求1所述的制备氧化锌纳米线薄膜的方法,其特征在于,所述步骤c)中,所述静置所用的时间为2~24h。
9.如权利要求3所述的制备氧化锌纳米线薄膜的方法,其特征在于,所述步骤ⅰ)中,所述硫酸溶液的浓度为98wt%,所述双氧水溶液的浓度为30wt%,所述硫酸溶液与所述双氧水溶液的体积比为2~3:1;所述步骤ⅱ)中,所述一定温度是80~100℃,所述一段时间是2~4h。
CN 201110347772 2011-11-07 2011-11-07 制备氧化锌纳米线薄膜的方法 Expired - Fee Related CN102503550B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110347772 CN102503550B (zh) 2011-11-07 2011-11-07 制备氧化锌纳米线薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110347772 CN102503550B (zh) 2011-11-07 2011-11-07 制备氧化锌纳米线薄膜的方法

Publications (2)

Publication Number Publication Date
CN102503550A CN102503550A (zh) 2012-06-20
CN102503550B true CN102503550B (zh) 2013-05-08

Family

ID=46215701

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110347772 Expired - Fee Related CN102503550B (zh) 2011-11-07 2011-11-07 制备氧化锌纳米线薄膜的方法

Country Status (1)

Country Link
CN (1) CN102503550B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608230A (zh) * 2018-12-28 2019-04-12 东南大学 一种用于提升混凝土耐蚀性能的改性纳米氧化铝材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1396300A (zh) * 2002-07-17 2003-02-12 清华大学 物理气相沉积制备大面积氧化锌纳米线膜层的方法
KR20070072726A (ko) * 2006-01-02 2007-07-05 삼성전자주식회사 산화아연 나노와이어의 제조방법 및 그로부터 제조된나노와이어
CN101286453A (zh) * 2008-05-22 2008-10-15 上海大学 在半导体硅基底上催化生长ZnO纳米线的方法
CN101608305A (zh) * 2009-05-20 2009-12-23 兰州大学 一种制备ZnO纳米线阵列的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101445877B1 (ko) * 2008-03-24 2014-09-29 삼성전자주식회사 산화아연 나노와이어의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1396300A (zh) * 2002-07-17 2003-02-12 清华大学 物理气相沉积制备大面积氧化锌纳米线膜层的方法
KR20070072726A (ko) * 2006-01-02 2007-07-05 삼성전자주식회사 산화아연 나노와이어의 제조방법 및 그로부터 제조된나노와이어
CN101286453A (zh) * 2008-05-22 2008-10-15 上海大学 在半导体硅基底上催化生长ZnO纳米线的方法
CN101608305A (zh) * 2009-05-20 2009-12-23 兰州大学 一种制备ZnO纳米线阵列的方法

Also Published As

Publication number Publication date
CN102503550A (zh) 2012-06-20

Similar Documents

Publication Publication Date Title
CN102126724A (zh) 光滑表面硅纳米线阵列的制备方法
CN101937946B (zh) 一种太阳电池硅片的表面织构方法
JP2017504179A (ja) 結晶シリコン太陽電池の表面テクスチャ構造及びその製造方法
CN102556949A (zh) 一种尺寸可控的硅微/纳米线阵列的制备方法
CN102140037A (zh) 实现氧化锌纳米线自组装的方法
CN109881250A (zh) 一种单晶硅倒金字塔阵列结构绒面及其制备方法和应用
CN103337449B (zh) 硅纳米线阵列的移植及其简单器件制备的方法
CN104576813A (zh) 一种光电材料表面的纳米结构绒面及其制备方法
CN102556953A (zh) 一种双面硅纳米线阵列的制备方法
CN109455756B (zh) 一种SnS量子点/石墨烯忆阻器的制备方法
CN102503550B (zh) 制备氧化锌纳米线薄膜的方法
CN105336816A (zh) 溶液法制备MoO3/硅纳米线阵列异质结太阳能电池的方法
CN104037320B (zh) 一种大面积氧化锌纳微发电机的制造方法
CN103482622A (zh) 一种稳定性强且电导率高的单层石墨烯薄膜的制备方法
CN106044783B (zh) 一种二氧化硅纳米线的制备方法
CN107302040A (zh) 基于湿法刻蚀硅表面镶嵌Ag纳米线陷光结构的制备方法
CN106521635A (zh) 一种硅表面纳米金字塔绒面的全溶液制备方法
CN108314993B (zh) 一种大面积柔性疏水多孔硅膜的制备方法
CN208548341U (zh) 石墨烯晶体管电路装置
CN105870253A (zh) 一种WS2/Si异质结太阳能电池制备方法
CN109004054B (zh) 一种硫化钼薄膜异质结太阳能电池及其制造方法
CN107240623B (zh) 表面等离激元和界面场协同增强型单晶硅电池的制备方法
CN107344730A (zh) 一种氧化锌纳米柱阵列的制备方法
CN108117041A (zh) 基于浓硼掺杂硅的可动微纳结构的制备方法
CN111261729B (zh) 一种掺杂用硅浆料、制备方法及硅片的掺杂方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130508

Termination date: 20151107

EXPY Termination of patent right or utility model