CN102490408A - Temperable three-silver low radiation coated glass and production technology thereof - Google Patents

Temperable three-silver low radiation coated glass and production technology thereof Download PDF

Info

Publication number
CN102490408A
CN102490408A CN2011103816681A CN201110381668A CN102490408A CN 102490408 A CN102490408 A CN 102490408A CN 2011103816681 A CN2011103816681 A CN 2011103816681A CN 201110381668 A CN201110381668 A CN 201110381668A CN 102490408 A CN102490408 A CN 102490408A
Authority
CN
China
Prior art keywords
layer
dielectric
silver
coated glass
block protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011103816681A
Other languages
Chinese (zh)
Inventor
林嘉宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN2011103816681A priority Critical patent/CN102490408A/en
Publication of CN102490408A publication Critical patent/CN102490408A/en
Pending legal-status Critical Current

Links

Images

Abstract

The invention relates to temperable three-silver low radiation coated glass. The coated glass which comprises a glass body and a coating film is characterized in that: the glass body is a substrate; and the film structure of the coating film comprises, from inside to outside, a first dielectric combination layer, a first block protection layer, a first dielectric layer, a first silver layer, a second block protection layer, a first interval dielectric combination layer, a third block protection layer, a second dielectric layer, a second silver layer, a fourth block protection layer, a second interval dielectric combination layer, a fifth block protection layer, a third dielectric layer, a third silver layer, a sixth block protection layer and a second dielectric combination layer. The temperable three-silver low radiation coated glass disclosed in the invention adopts the unique film structure and a unique production technology, so a problem that middle and low radiation coated glass in the prior art cannot be well tempered is solved, and the coated glass which has the advantages of high visible light transmissivity, good photo-thermal ratio and optical stability, and good thermal insulation can satisfy various requirements of subsequent processing.

Description

But tempering three-silver low radiation coated glass and production technology thereof
Technical field
The present invention relates to a kind of automobile-used and for building coated glass, but specifically be a kind of tempering three-silver low radiation coated glass and production technology thereof.
Background technology
Low radiation coated glass (claiming LOW-E glass again) is that to plate the film that multiple layer metal or other compounds form at glass surface be product, and low radiation coated glass is a kind ofly can let outdoor solar energy, visible light transmissive as simple glass; Again can be as ir reflector; Especially the centering far infrared has very high reflectivity, and the coated glass of new generation that can object secondary radiation heat reflection be gone back is used to control light; Regulate, improve environment, help energy savings and heat.Three-silver low radiation glass is as the high-end product in the low radiation coated glass; By nearly three layers silver layer and multiple layer metal oxidation or nitride compound are formed; Have higher visible light transmissivity, very high infrared reflection rate, can obtain splendid heat insulation and preservation effect.But in traditional three-silver low radiation glass processing, can only adopt the first tempering processing mode of plated film again, cause traditional three-silver low radiation can not be generalized to vehicle glass, can not large tracts of land be generalized to the residential houses glass.Because the traditional processing mode can not realize the curved arc coating film on glass, and modern architecture and windshield extensively adopt curved tempering and hot bending glass, then traditional off-line low radiation coated glass can not bend follow-up hot-working processing such as tempering and hot bending.And conventional glass processing mode efficient is low, and the plated film charging ratio of safety glass has only about 75% usually, just can only bring into play 75% of plated film line production capacity; Safety glass needs artificial loading, unloading sheet, needs the enough operative employees of configuration, has increased the labor wage expenditure; The speed of artificial loading, unloading sheet has restricted the plated film walking speed again simultaneously, thereby causes plated film line operational efficiency lower, and various sticking patch quantity are many in the filming process; The sticking patch lamp that occurs in the sticking patch that occurs of plated film and hollow operation for example, transportation and installation process all will be included the production order once more in and arrange production; From cutting to plated film; The sticking patch cycle is long, and particularly plated film is many because of the plated film product category, needs usually to wait for the long period.The glass cost of transportation of conventional industries is also high; Because of must synthesizing double glazing, uses the off-line low radiation coated glass; The double glazing of 6mm low emissivity glass+12mm air layer+6mm low emissivity glass for example, its volume is the twice of monolithic glass, the transportation of double glazing has increased the transportation expenditure.For these reasons, but to develop a kind of novel tempering three-silver low radiation glass imperative.
Summary of the invention
Technical purpose of the present invention is to overcome the problem that exists in the prior art; Low radiation coated glass to traditional improves; Solve that the traditional low emissivity glass silver thickness and the number of plies increase that the back visible light transmissive is lower, appearance color presents interference colour, color select limited, can't following process etc. problem, but provide a kind of visible light transmissivity high, have the tempering three-silver low radiation coated glass and a production technology thereof of good light ratio of specific heat and optical stability.
Technical scheme of the present invention is:
But a kind of tempering three-silver low radiation coated glass comprises glass body and plated film, it is characterized in that, is substrate with said glass substrate, and said plated film film layer structure from inside to outside is:
First dielectric combination layer, first block protective layer, first dielectric layer, first silver layer, second block protective layer, first be dielectric combination layer, the 3rd block protective layer, second dielectric layer, second silver layer, the 4th block protective layer, the second interval dielectric combination layer, the 5th block protective layer, the 3rd dielectric layer, the 3rd silver layer, the 6th block protective layer, second dielectric combination layer at interval.
Further technical scheme also comprises:
Said first dielectric combination layer, second dielectric combination layer are the silicon base compound material.
As preferably, said silicon base compound material is Si 3N 4, SiO 2Or SiOxNy.
Said first dielectric layer, second dielectric layer, the 3rd dielectric layer are the metallic zinc compound-material.
As preferably, said metallic zinc compound-material is a kind of among ZnO, the AZO.
Said first at interval dielectric combination layer, second at interval dielectric combination layer be SSTOx, CrNx, CdO, MnO 2, InSbO, TxO, SnO 2, ZnO, ZnSnOx, ZnSnPbOx, ZrO2, AZO, Si 3N 4, SiO2, SiOxNy, BiO 2, Al 2O 3, Nb 2O 5, Ta 2O 5, In 2O 3, MoO 3One or more formations in the material.
Said the first, second, third, fourth, the 5th, the 6th block protective layer is metal, metal oxide or metal nitride materials, as preferably, can select a kind of among Ti, NiCr, Ni, Cr, Nb, Zr, NiCrOx, NiCrNx, the CrNx for use.
But a kind of production technology of tempering three-silver low radiation coated glass adopts the vacuum magnetic-control sputtering plated film, it is characterized in that, may further comprise the steps:
Step 1, with behind the glass substrate cleaning-drying, place the vacuum sputtering district, be carried out at vacuum transition;
Step 2, be substrate with said glass substrate; Dielectric combination layer, the 5th block protective layer, the 3rd layer of dielectric layer, the 3rd silver layer, the 6th block protective layer, second dielectric make up layer formation product at interval to deposit first dielectric combination layer, first block protective layer, first dielectric layer, first silver layer, second block protective layer, second wall dielectric combination layer, the 3rd block protective layer, second dielectric layer, second silver layer, the 4th block protective layer, second successively.
Further, said first, second, third dielectric layer, first, second dielectric combination layer, first, second interval dielectric combination layer all adopt the mode of dual rotary negative electrode, intermediate frequency reaction magnetocontrol sputtering in argon oxygen, argon nitrogen or argon oxygen nitrogen atmosphere, to deposit; Said first, second silver layer, first to the 6th block protective layer all adopt the mode of planar cathode, d.c. sputtering to be deposited in argon oxygen, argon nitrogen or the straight argon atmosphere and deposit.
But the beneficial effect of tempering three-silver low radiation coated glass provided by the present invention and production technology thereof is:
1, traditional with the low radiation coated glass of Ag as the infrared external reflection rete; The basic reason that can not carry out subsequent heat treatment is that the Ag layer is easy to be destroyed in heating process, as rete face resistance significantly raise, face vaporific, the rete face that comes off that is white in color is the retaining layer; The Ag layer is oxidized, and fuzzy vaporific, the full plate pin hole shape small particles of face sheet etc. are the ruined phenomenon of Ag layer, and sometimes even the mistake function that can remove infrared external reflection, therefore traditional three-silver low radiation coated glass can not carry out subsequent heat treatment.The present invention is not destroyed in heat treatment process with protection Ag layer through before and after silver layer, increasing block protective layer and increasing resistant to elevated temperatures dielectric layer at the glass bottom, satisfies the demand of strange land processing;
2, the present invention adopts the matting layer of metallic zinc oxide as the Ag layer, and the Ag layer is grown better, and film forming is more even, smooth, reduces the influence to membrane uniformity of Ag layer island structure, can protect the Ag layer better;
3, the high hardness material that employing of the present invention and glass material are close is as the dielectric layer combination layer; Not only can between glass substrate and function Ag layer, play good bonding effect; And can offset the internal stress of composite film, particularly scratch resistance, wear-resisting and anticorrosive aspect effect more obvious;
4, glass rete of the present invention rete crystallization once more in the tempering process makes that the light transmittance of rete is higher, radiance is lower;
But tempering three-silver low radiation coated glass of the present invention have very high visible light transmissivity, extremely low radiance, good photo-thermal than and optical stability, weatherability; Have splendid ultraviolet blocking effect, and can design multiple color, satisfy different clients' demand; Can extensively be generalized to vehicle glass and building glass market; And can obtain splendid heat insulation and preservation effect, and can realize strange land processing, satisfy the various requirement of following process.
Description of drawings
Fig. 1 is the structural representation of product of the present invention;
Fig. 2 is the schematic flow sheet of technology of the present invention.
The specific embodiment
In order to illustrate technical scheme of the present invention and technical purpose, the present invention is done further introduction below in conjunction with the accompanying drawing and the specific embodiment.
As shown in the figure, but the structure of tempering three-silver low radiation coated glass of the present invention is:
Glass substrate/first dielectric combination layer/first block protective layer/first dielectric layer/first silver layer/second block protective layer/first be dielectric combination layer/the 3rd block protective layer/second dielectric layer, second silver layer/the 4th block protective layer/second interval dielectric combination layer/the 5th block protective layer/the 3rd dielectric layer/the 3rd silver layer/the 6th block protective layer/second dielectric combination layer at interval.
The thickness of said first, second dielectric combination layer is 10-80nm;
The thickness of said first, second interval dielectric combination layer is: 10-200nm;
The thickness of said the first, second, third, fourth, the 5th, the 6th block protective layer is: 0.3-5nm;
Said first, second, third dielectric layer thickness is: 5-10nm;
The thickness of said first, second, third silver layer is: 5-40nm.
Embodiment 1:
Present embodiment film material structure is: glass substrate/SiNxOy/NiCrOx/AZO/Ag/NiCrOx/ZnSnOx/NiCrOx/AZO/Ag/NiCrOx/ ZnSnOx/NiCrOx/AZO/Ag/NiCrOx layer/Si 3N 4
First dielectric combination layer is silicon oxynitride (SiNxOy), and thicknesses of layers is: 46nm;
First block protective layer is oxidation nickel chromium triangle (NiCrOx), and thicknesses of layers is: 0.3nm;
First dielectric layer is AZO, and thicknesses of layers is: 6nm;
The first silver layer thicknesses of layers is: 13.9nm;
Second block protective layer is oxidation nickel chromium triangle (NiCrOx), and thicknesses of layers is: 0.3nm;
The first interval dielectric combination layer is zinc-tin oxide (ZnSnOx), and thicknesses of layers is: 69.7nm;
The 3rd block protective layer is oxidation nickel chromium triangle (NiCrOx), and thicknesses of layers is: 0.3nm;
Second dielectric layer is AZO, and thicknesses of layers is: 6nm;
The second silver layer thicknesses of layers is: 15.0nm;
The 4th block protective layer is oxidation nickel chromium triangle (NiCrOx), and thicknesses of layers is: 0.3nm;
The second interval dielectric combination layer is zinc-tin oxide (ZnSnOx), and thicknesses of layers is: 58.6nm;
The 5th block protective layer is oxidation nickel chromium triangle (NiCrOx), and thicknesses of layers is: 0.3nm;
The 3rd dielectric layer is AZO, and thicknesses of layers is: 6nm;
The 3rd silver layer thicknesses of layers is: 9.4nm;
The 6th block protective layer is oxidation nickel chromium triangle (NiCrOx), and thicknesses of layers is: 0.3nm;
Second dielectric combination layer is silicon nitride (Si 3N 4) thicknesses of layers is respectively: 32.2nm;
Silicon nitride (Si in the said structure 3N 4) layer use sial (92: 8) target, adopting dual rotary negative electrode, intermediate frequency reaction magnetocontrol sputtering mode sputtering sedimentation in argon nitrogen atmosphere, power is 20-80kw, supply frequency is 20-40kHz;
Silicon oxynitride (SiOxNy) layer uses sial (92: 8) target, adopts dual rotary negative electrode, intermediate frequency reaction magnetocontrol sputtering mode sputtering sedimentation in argon nitrogen oxygen atmosphere, and power is 20-80kw, and supply frequency is 20-40kHz;
The AZO layer uses ceramic zinc-aluminium target, adopts dual rotary negative electrode, intermediate frequency reaction magnetocontrol sputtering mode sputtering sedimentation in argon oxygen atmosphere, and power is 5-15kw, and supply frequency is 20-40kHz;
Zinc-tin oxide (ZnSnOx) layer uses Zinc-tin alloy (50: 50) target, adopts dual rotary negative electrode, intermediate frequency reaction magnetocontrol sputtering mode sputtering sedimentation in argon, oxygen atmosphere, and power is 10-70kw, and supply frequency is 20-40kHz;
Oxidation nickel chromium triangle (NiCrOx) layer uses the nichrome target, adopts planar cathode, magnetically controlled DC sputtering mode sputtering sedimentation in the straight argon atmosphere, and power is 2-10kw;
Functional layer Ag layer uses silver-colored target, adopts planar cathode, magnetically controlled DC sputtering mode sputtering sedimentation in the straight argon atmosphere, and power is 2-10kw;
As shown in Figure 2, rete plated film successively carries out on-line measurement to product parameters, product inspection then, packaging product afterwards after accomplishing.
Use glass (behind the tempering) optical property that above-mentioned technological parameter makes (glass is 6mm common white glass) as follows:
A, glass visible light transmissivity T=62.6%;
Visible light glass reflectivity=10.2%;
Visible light glass chromaticity coordinates a* value=-1.8;
Visible light glass chromaticity coordinates b* value=-5.0;
Visible light face reflectivity=6.5%;
Visible light face chromaticity coordinates a*=-2.2;
Visible light face chromaticity coordinates b*=-3.6;
Glass radiance E=0.014.
B, use the present invention to process the double glazing of 6mm+12A+6mm (rete outdoor inner face) structure, following according to the data of ISO10292 standard test:
Visible light transmissivity T=57.8%;
Visible light glass reflectivity (out)=12.4%;
Visible light glass reflectivity (in)=8.6%;
Solar energy transmitance T=17%;
Solar reflectance (out)=53%;
G-value=0.24;
Shading coefficient SC=0.275;
U value=1.51W/m2K;
Photo-thermal compares LSG=2.40.
Embodiment 2:
Present embodiment film material structure is: glass substrate/SiNxOy/NiCrOx/AZO/Ag/NiCrOx/SiNxOy/NiCrOx/AZO/Ag/NiCrOx/ SiNxOy/NiCrOx/AZO/Ag/NiCrOx/SiNxOy/Si 3N 4Said combination layer can be the individual layer stack combinations that is made up of separately multiple material.
Wherein, first dielectric combination layer is silicon oxynitride (SiNxOy), and the rete degree is: 48.0nm;
First block protective layer is oxidation nickel chromium triangle (NiCrOx), and thicknesses of layers is: 0.3nm;
First dielectric layer is AZO, and thicknesses of layers is: 8nm;
The first silver layer thicknesses of layers is: 13.5nm;
Second block protective layer is oxidation nickel chromium triangle (NiCrOx), and thicknesses of layers is: 0.3nm;
The first interval dielectric combination layer is silicon oxynitride (SiNxOy), and thicknesses of layers is: 68.2nm;
The 3rd block protective layer is oxidation nickel chromium triangle (NiCrOx), and thicknesses of layers is: 0.3nm;
Second dielectric layer is AZO, and thicknesses of layers is: 8nm;
The second silver layer thicknesses of layers is: 15.2nm;
The 4th block protective layer is oxidation nickel chromium triangle (NiCrOx), and thicknesses of layers is: 0.3nm;
The second interval dielectric combination layer is silicon oxynitride (SiNxOy), and thicknesses of layers is: 58.8nm;
The 5th block protective layer is oxidation nickel chromium triangle (NiCrOx), and thicknesses of layers is: 0.3nm;
The 3rd dielectric layer is AZO, and thicknesses of layers is: 8nm;
The 3rd silver layer thicknesses of layers is: 9.8nm;
The 6th block protective layer is oxidation nickel chromium triangle (NiCrOx), and thicknesses of layers is: 0.3nm;
Second dielectric combination layer is silicon oxynitride (SiNxOy) and silicon nitride (Si 3N 4) two-layer rete formation, thicknesses of layers is respectively: 16.6nm, 18.2nm.
Silicon nitride (Si in the said structure 3N 4) layer use sial (92: 8) target, adopting dual rotary negative electrode, intermediate frequency reaction magnetocontrol sputtering mode sputtering sedimentation in argon, nitrogen atmosphere, power is 20-80kw, supply frequency is 20-40kHz;
Silicon oxynitride (SiOxNy) layer uses sial (92: 8) target, adopts dual rotary negative electrode, intermediate frequency reaction magnetocontrol sputtering mode sputtering sedimentation in argon, nitrogen, oxygen atmosphere, and power is 20-80kw, and supply frequency is 20-40kHz;
The AZO layer uses ceramic zinc-aluminium target, adopts dual rotary negative electrode, intermediate frequency reaction magnetocontrol sputtering mode sputtering sedimentation in argon, oxygen atmosphere, and power is 5-15kw, and supply frequency is 20-40kHz;
Oxidation nickel chromium triangle (NiCrOx) layer uses the nichrome target, adopts planar cathode, magnetically controlled DC sputtering mode sputtering sedimentation in the straight argon atmosphere, and power is 2-10kw;
Functional layer Ag layer adopts planar cathode, magnetically controlled DC sputtering mode sputtering sedimentation in the straight argon atmosphere for using silver-colored target, and power is 2-10kw;
Use glass (behind the tempering) optical property that above-mentioned technological parameter makes (glass is 6mm common white glass) as follows:
A, glass visible light transmissivity T=56.4%;
Visible light glass reflectivity=11.4%;
Visible light glass chromaticity coordinates a* value=-2.8;
Visible light glass chromaticity coordinates b* value=-7.0;
Visible light face reflectivity=7.8%;
Visible light face chromaticity coordinates a*=1.2;
Visible light face chromaticity coordinates b*=-3.3;
Glass radiance E=0.015.
B, use the present invention to process the double glazing of 6mm+12A+6mm (rete outdoor inner face) structure, following according to the data of ISO10292 standard test:
Visible light transmissivity T=52.1%;
Visible light glass reflectivity (out)=13.4%;
Visible light glass reflectivity (in)=9.6%;
Solar energy transmitance T=14%;
Solar reflectance (out)=55%;
G-value=0.22;
Shading coefficient SC=0.25;
U value=1.51W/m2K;
Photo-thermal compares LSG=2.37.
Below disclose the present invention with preferred embodiment, so it is not in order to restriction the present invention, and all employings are equal to replacement or the technical scheme that obtained of equivalent transformation mode, all drop within protection scope of the present invention.

Claims (10)

1. but a tempering three-silver low radiation coated glass comprises glass body and plated film, it is characterized in that, is substrate with said glass substrate, and said plated film film layer structure from inside to outside is:
First dielectric combination layer, first block protective layer, first dielectric layer, first silver layer, second block protective layer, first be dielectric combination layer, the 3rd block protective layer, second dielectric layer, second silver layer, the 4th block protective layer, the second interval dielectric combination layer, the 5th block protective layer, the 3rd dielectric layer, the 3rd silver layer, the 6th block protective layer, second dielectric combination layer at interval.
2. but a kind of tempering three-silver low radiation coated glass according to claim 1 is characterized in that, said first dielectric combination layer, second dielectric combination layer are the silicon base compound material.
3. but a kind of tempering three-silver low radiation coated glass according to claim 2, it is characterized in that: said silicon base compound material is Si 3N 4, SiO 2Or SiOxNy.
4. but a kind of tempering three-silver low radiation coated glass according to claim 1 is characterized in that said first dielectric layer, second dielectric layer, the 3rd dielectric layer are the metallic zinc compound-material.
5. but a kind of tempering three-silver low radiation coated glass according to claim 4 is characterized in that,
Said metallic zinc compound-material is a kind of among ZnO, the AZO.
6. but a kind of tempering three-silver low radiation coated glass according to claim 1 is characterized in that, said first at interval dielectric combination layer, second at interval dielectric combination layer be SSTOx, CrNx, CdO, MnO 2, InSbO, TxO, SnO 2, ZnO, ZnSnOx, ZnSnPbOx, ZrO2, AZO, Si 3N 4, SiO2, SiOxNy, BiO 2, Al 2O 3, Nb 2O 5, Ta 2O 5, In 2O 3, MoO 3One or more formations in the material.
7. but a kind of tempering three-silver low radiation coated glass according to claim 1 is characterized in that said the first, second, third, fourth, the 5th, the 6th block protective layer is metal, metal oxide or metal nitride materials.
8. but a kind of tempering three-silver low radiation coated glass according to claim 7 is characterized in that,
The material of said the first, second, third, fourth, the 5th, the 6th block protective layer is a kind of among Ti, NiCr, Ni, Cr, Nb, Zr, NiCrOx, NiCrNx, the CrNx.
9. but the production technology of a tempering three-silver low radiation coated glass adopts the vacuum magnetic-control sputtering plated film, it is characterized in that, may further comprise the steps:
Step 1, with behind the glass substrate cleaning-drying, place the vacuum sputtering district, be carried out at vacuum transition;
Step 2, be substrate with said glass substrate; Dielectric combination layer, the 5th block protective layer, the 3rd layer of dielectric layer, the 3rd silver layer, the 6th block protective layer, second dielectric make up layer formation product at interval to deposit first dielectric combination layer, first block protective layer, first dielectric layer, first silver layer, second block protective layer, second wall dielectric combination layer, the 3rd block protective layer, second dielectric layer, second silver layer, the 4th block protective layer, second successively.
10. but the manufacturing approach of a kind of tempering three-silver low radiation coated glass according to claim 9 is characterized in that:
Said first, second, third dielectric layer, first, second dielectric combination layer, first, second interval dielectric combination layer all adopt the mode of dual rotary negative electrode, intermediate frequency reaction magnetocontrol sputtering in argon oxygen, argon nitrogen or argon oxygen nitrogen atmosphere, to deposit; Said first, second silver layer, first to the 6th block protective layer all adopt the mode of planar cathode, d.c. sputtering to be deposited in argon oxygen, argon nitrogen or the straight argon atmosphere and deposit.
CN2011103816681A 2011-11-25 2011-11-25 Temperable three-silver low radiation coated glass and production technology thereof Pending CN102490408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011103816681A CN102490408A (en) 2011-11-25 2011-11-25 Temperable three-silver low radiation coated glass and production technology thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011103816681A CN102490408A (en) 2011-11-25 2011-11-25 Temperable three-silver low radiation coated glass and production technology thereof

Publications (1)

Publication Number Publication Date
CN102490408A true CN102490408A (en) 2012-06-13

Family

ID=46182287

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011103816681A Pending CN102490408A (en) 2011-11-25 2011-11-25 Temperable three-silver low radiation coated glass and production technology thereof

Country Status (1)

Country Link
CN (1) CN102490408A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102745906A (en) * 2012-07-26 2012-10-24 福耀玻璃工业集团股份有限公司 Low radiation coated glass and sandwich glass product thereof
CN103643209A (en) * 2013-11-07 2014-03-19 中山市创科科研技术服务有限公司 Method for preparing film with infrared shielding function
CN103737999A (en) * 2014-01-06 2014-04-23 天津南玻节能玻璃有限公司 Coated glass with infrared reflection function and preparation method thereof
CN104494222A (en) * 2014-11-12 2015-04-08 揭阳市宏光镀膜玻璃有限公司 Gold three-silver LOW-E glass with high light transmittance and production method thereof
CN105058922A (en) * 2015-08-14 2015-11-18 中山市格兰特实业有限公司 Double-silver low-emissivity coated glass capable of being subjected to high-temperature heat treatment and preparation method thereof
CN105565679A (en) * 2016-02-04 2016-05-11 东莞南玻工程玻璃有限公司 Tri-silver low-emissivity coated glass capable of being tempered and preparation method thereof
CN105601126A (en) * 2016-02-04 2016-05-25 东莞南玻工程玻璃有限公司 Ocean blue double-silver low-emissivity coated glass
CN106007404A (en) * 2016-05-23 2016-10-12 基迈克材料科技(苏州)有限公司 Wear-resistant wet-resistant three-silver low-emissivity coated glass
CN106186724A (en) * 2016-08-31 2016-12-07 咸宁南玻节能玻璃有限公司 A kind of high light green color bendable steel Three-silver-layer low-radiation coated glass and preparation method thoroughly
CN106186723A (en) * 2016-08-31 2016-12-07 咸宁南玻节能玻璃有限公司 Saturating light blue bendable steel Three-silver-layer low-radiation coated glass and preparation technology in one
CN106915905A (en) * 2017-03-08 2017-07-04 威海中玻镀膜玻璃股份有限公司 It is a kind of with complex function thin film can tempering coated glass and preparation method thereof
CN107471785A (en) * 2016-06-08 2017-12-15 四川南玻节能玻璃有限公司 A kind of double silver low radiation energy-saving glass of high-performance
CN108407406A (en) * 2018-05-14 2018-08-17 四川南玻节能玻璃有限公司 It is a kind of can following process green low radiation coated glass
CN111233345A (en) * 2020-03-23 2020-06-05 中山市格兰特实业有限公司 Superstrong scratch-resistant three-silver temperable Low-E glass
CN111517668A (en) * 2020-06-02 2020-08-11 江苏奥蓝工程玻璃有限公司 One-way perspective coated glass and preparation method thereof
CN113173712A (en) * 2021-05-25 2021-07-27 广东旗滨节能玻璃有限公司 Low-emissivity coated glass and preparation method thereof
CN113867064A (en) * 2021-10-08 2021-12-31 中国科学院宁波材料技术与工程研究所 Nickel oxide electrochromic composite film and preparation method and application thereof
CN114560636A (en) * 2022-03-29 2022-05-31 咸宁南玻节能玻璃有限公司 Low-reflection specific-color neutral-color three-silver low-emissivity coated glass and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020023463A1 (en) * 2000-04-08 2002-02-28 Friedrich Siebers Flat float glass
CN201250183Y (en) * 2008-08-11 2009-06-03 洛阳新晶润工程玻璃有限公司 Three silver low radiation coated glass
CN101497500A (en) * 2009-03-06 2009-08-05 中国南玻集团股份有限公司 Three-silver low radiation film glass capable of being subsequently processed
CN201817403U (en) * 2010-09-01 2011-05-04 林嘉宏 Low emissivity glass capable of being processed in different places
CN202344935U (en) * 2011-11-25 2012-07-25 林嘉宏 Three-silver low emissivity coated glass capable of being tempered

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020023463A1 (en) * 2000-04-08 2002-02-28 Friedrich Siebers Flat float glass
CN201250183Y (en) * 2008-08-11 2009-06-03 洛阳新晶润工程玻璃有限公司 Three silver low radiation coated glass
CN101497500A (en) * 2009-03-06 2009-08-05 中国南玻集团股份有限公司 Three-silver low radiation film glass capable of being subsequently processed
CN201817403U (en) * 2010-09-01 2011-05-04 林嘉宏 Low emissivity glass capable of being processed in different places
CN202344935U (en) * 2011-11-25 2012-07-25 林嘉宏 Three-silver low emissivity coated glass capable of being tempered

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102745906A (en) * 2012-07-26 2012-10-24 福耀玻璃工业集团股份有限公司 Low radiation coated glass and sandwich glass product thereof
CN102745906B (en) * 2012-07-26 2014-10-22 福耀玻璃工业集团股份有限公司 Low radiation coated glass and sandwich glass product thereof
CN103643209A (en) * 2013-11-07 2014-03-19 中山市创科科研技术服务有限公司 Method for preparing film with infrared shielding function
CN103737999A (en) * 2014-01-06 2014-04-23 天津南玻节能玻璃有限公司 Coated glass with infrared reflection function and preparation method thereof
CN104494222A (en) * 2014-11-12 2015-04-08 揭阳市宏光镀膜玻璃有限公司 Gold three-silver LOW-E glass with high light transmittance and production method thereof
CN105058922A (en) * 2015-08-14 2015-11-18 中山市格兰特实业有限公司 Double-silver low-emissivity coated glass capable of being subjected to high-temperature heat treatment and preparation method thereof
CN105565679A (en) * 2016-02-04 2016-05-11 东莞南玻工程玻璃有限公司 Tri-silver low-emissivity coated glass capable of being tempered and preparation method thereof
CN105601126A (en) * 2016-02-04 2016-05-25 东莞南玻工程玻璃有限公司 Ocean blue double-silver low-emissivity coated glass
CN105565679B (en) * 2016-02-04 2018-12-11 东莞南玻工程玻璃有限公司 It is a kind of can tempering Three-silver-layer low-radiation coated glass and preparation method thereof
CN105601126B (en) * 2016-02-04 2018-12-11 东莞南玻工程玻璃有限公司 A kind of ocean blue double-silver low-emissivity coated glass
CN106007404A (en) * 2016-05-23 2016-10-12 基迈克材料科技(苏州)有限公司 Wear-resistant wet-resistant three-silver low-emissivity coated glass
CN107471785A (en) * 2016-06-08 2017-12-15 四川南玻节能玻璃有限公司 A kind of double silver low radiation energy-saving glass of high-performance
CN106186723A (en) * 2016-08-31 2016-12-07 咸宁南玻节能玻璃有限公司 Saturating light blue bendable steel Three-silver-layer low-radiation coated glass and preparation technology in one
CN106186724A (en) * 2016-08-31 2016-12-07 咸宁南玻节能玻璃有限公司 A kind of high light green color bendable steel Three-silver-layer low-radiation coated glass and preparation method thoroughly
CN106186724B (en) * 2016-08-31 2019-03-19 咸宁南玻节能玻璃有限公司 A kind of high light green color bendable steel Three-silver-layer low-radiation coated glass and preparation method
CN106186723B (en) * 2016-08-31 2019-03-19 咸宁南玻节能玻璃有限公司 Saturating light blue bendable steel Three-silver-layer low-radiation coated glass and preparation process in one kind
CN106915905A (en) * 2017-03-08 2017-07-04 威海中玻镀膜玻璃股份有限公司 It is a kind of with complex function thin film can tempering coated glass and preparation method thereof
CN108407406A (en) * 2018-05-14 2018-08-17 四川南玻节能玻璃有限公司 It is a kind of can following process green low radiation coated glass
CN111233345A (en) * 2020-03-23 2020-06-05 中山市格兰特实业有限公司 Superstrong scratch-resistant three-silver temperable Low-E glass
CN111517668A (en) * 2020-06-02 2020-08-11 江苏奥蓝工程玻璃有限公司 One-way perspective coated glass and preparation method thereof
CN111517668B (en) * 2020-06-02 2022-03-25 江苏奥蓝工程玻璃有限公司 One-way perspective coated glass and preparation method thereof
CN113173712A (en) * 2021-05-25 2021-07-27 广东旗滨节能玻璃有限公司 Low-emissivity coated glass and preparation method thereof
CN113867064A (en) * 2021-10-08 2021-12-31 中国科学院宁波材料技术与工程研究所 Nickel oxide electrochromic composite film and preparation method and application thereof
CN114560636A (en) * 2022-03-29 2022-05-31 咸宁南玻节能玻璃有限公司 Low-reflection specific-color neutral-color three-silver low-emissivity coated glass and preparation method thereof

Similar Documents

Publication Publication Date Title
CN102490408A (en) Temperable three-silver low radiation coated glass and production technology thereof
CN101497500B (en) Three-silver low radiation film glass capable of being subsequently processed
CN101497501B (en) Three-silver low radiation film glass
CN101875536B (en) Coated glass and manufacture method thereof
CN102757185B (en) Low-radiation heat-treatable coated glass and interlayer glass product thereof
CN110028251B (en) Copper-containing double-silver low-emissivity coated glass capable of being subsequently processed and preparation method thereof
CN110573468B (en) Low emissivity coating, glass surfaces including the same, and methods of making the same
CN102898040A (en) Triple-silver low-emissivity coated glass and preparation method thereof
CN102372447A (en) Low emissivity glass containing silver
CN111995258A (en) Medium-transmittance LOW-reflection temperable double-silver LOW-E glass and preparation method thereof
CN111606578A (en) Temperable low-reflection double-silver low-radiation coated glass and preparation method thereof
CN107663029B (en) European gray low-emissivity coated glass
CN110746123A (en) Temperable double-silver coated glass and preparation method thereof
CN105269893B (en) A kind of low reflection high temperature resistant can tempering wear-resisting coated glass and production method
TWI501931B (en) Can strengthen the three silver low-emission coated glass
CN202344934U (en) Offsite-processing four-silver low-radiation coated glass
CN202344935U (en) Three-silver low emissivity coated glass capable of being tempered
CN109081610B (en) Medium-transmittance gray temperable double-silver low-emissivity coated glass and preparation method thereof
CN102514279A (en) Four-silver coated glass with low radiation and manufacturing technique thereof
CN101691281A (en) Low radiation glass taking silica-based material as dielectric layer
CN102501449A (en) Four-silver low emissivity coated glass capable of being processed in foreign places and manufacturing method thereof
CN102336529A (en) High transmittance toughenable low radiation glass and manufacture method thereof
CN104264119B (en) Asymmetric-film-series double-silver LOW-E glass and preparation method thereof
CN205838842U (en) Off-line Europe ash low radiation coated glass
CN210656698U (en) High-transmittance light blue bendable steel three-silver low-emissivity coated glass

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120613