CN102479693B - 形成栅极的方法 - Google Patents

形成栅极的方法 Download PDF

Info

Publication number
CN102479693B
CN102479693B CN2010105682973A CN201010568297A CN102479693B CN 102479693 B CN102479693 B CN 102479693B CN 2010105682973 A CN2010105682973 A CN 2010105682973A CN 201010568297 A CN201010568297 A CN 201010568297A CN 102479693 B CN102479693 B CN 102479693B
Authority
CN
China
Prior art keywords
tungsten nitride
layer
grid
dielectric layer
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010105682973A
Other languages
English (en)
Other versions
CN102479693A (zh
Inventor
卢炯平
洪中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Beijing Corp
Priority to CN2010105682973A priority Critical patent/CN102479693B/zh
Priority to US13/177,517 priority patent/US8349675B2/en
Publication of CN102479693A publication Critical patent/CN102479693A/zh
Application granted granted Critical
Publication of CN102479693B publication Critical patent/CN102479693B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28079Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a single metal, e.g. Ta, W, Mo, Al
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28114Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor characterised by the sectional shape, e.g. T, inverted-T
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/495Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种形成栅极的方法,包括:提供衬底;在衬底表面形成栅介质层,在栅介质层表面形成氮化钨层,离衬底越远氮化钨层的含氮量越低,在氮化钨层表面形成硬掩膜层;图形化氮化钨层和硬掩膜层;以图形化后的硬掩膜层为掩膜湿法刻蚀去除部分图形化后的氮化钨层,形成顶部宽度大于底部宽度的氮化钨伪栅极,去除图形化后的硬掩膜层;形成介质层,覆盖栅介质层,介质层的表面与氮化钨伪栅极的表面相平;去除氮化钨伪栅极,形成栅极沟槽,栅极沟槽的顶部宽度大于底部宽度;在栅极沟槽内填充栅极材料,形成栅极。本发明工艺简单,避免形成空隙,或者至少可以减少形成的空隙;而且不会对衬底造成损伤。

Description

形成栅极的方法
技术领域
本发明涉及半导体技术领域,尤其涉及形成栅极的方法。
背景技术
现有技术中,形成栅的工艺可分为前栅(gate first)工艺和后栅(gate last)工艺。前栅工艺是指先沉积栅介质层,在栅介质层上形成栅电极,然后进行源漏注入,之后进行退火工艺以激活源漏中的离子。前栅工艺其工艺步骤简单,但在进行退火时,栅电极不可避免地要承受高温,导致MOS管的阈值电压Vt漂移,影响管子性能。后栅工艺是指在退火工艺后,即在高温步骤后,刻蚀掉多晶硅伪栅,形成伪栅沟槽,再用合适的金属填充伪栅沟槽以形成栅电极,这样可以使栅电极避开高温,避免MOS管的阈值电压Vt漂移,影响管子性能。
后栅工艺可以大大加宽栅电极的材料的选择范围,但是工艺变得更加复杂。在形成金属栅电极时,随着半导体器件尺寸越来越小,特别是在32nm及以下工艺中,由于伪栅沟槽宽度变小,使得金属材料的填充效率难以达到百分之百,即在伪栅沟槽中填入的金属中间会存在着一定的间隙,间隙不仅会增大栅电极的寄生电阻,而且还会造成MOS管可靠性降低等问题。
2010年2月24日公开的公开号为“CN101656205A”的中国专利申请公开的“集成电路金属栅极结构及其制造方法”公开了一种形成金属栅极的方法,包括:提供半导体衬底;在所述半导体衬底上形成伪栅极结构,其中,所述伪栅极结构包括多晶硅;除去所述伪栅极结构,以提供具有顶部和底部的沟槽,其中所述顶部和所述底部具有第一宽度;增加所述沟槽的顶部宽度,以提供第二宽度;以及,在包括所述第二宽度的所述沟槽中形成栅极,其中所述形成栅极的步骤包括将第一金属沉积到所述沟槽中。该专利文献中公开的形成金属栅极的方法,在去除伪栅极结构后,增加沟槽顶部的宽度,以利于之后向沟槽内填充金属,改善金属的填充性。然而,该专利文献中利用氩(Ar)溅射工艺增加沟槽顶部宽度,这样容易对衬底造成破坏。
发明内容
本发明解决的问题是现有技术的形成栅极的方法,容易对衬底造成损坏。
为解决上述问题,本发明提供一种形成栅极的方法,包括:
提供衬底;
在所述衬底表面形成栅介质层,在所述栅介质层表面形成氮化钨层,离所述衬底越远所述氮化钨层的含氮量越低,在所述氮化钨层表面形成硬掩膜层;
图形化所述氮化钨层和硬掩膜层;
以所述图形化后的硬掩膜层为掩膜湿法刻蚀去除部分所述图形化后的氮化钨层,形成顶部宽度大于底部宽度的氮化钨伪栅极,去除图形化后的硬掩膜层;
形成介质层,覆盖所述栅介质层,所述介质层的表面与所述氮化钨伪栅极的表面相平;
去除所述氮化钨伪栅极,形成栅极沟槽,所述栅极沟槽的顶部宽度大于底部宽度;
在所述栅极沟槽内填充栅极材料,形成栅极。
可选的,所述氮化钨伪栅极的侧壁偏离底部的角度为91°~105°。
可选的,利用化学气相沉积在所述栅介质层上形成氮化钨层;所述化学气相沉积中使用的气体包括:WF6,H2,N2,其中,反应开始阶段N2的流量大于反应结束阶段N2的流量。
可选的,所述WF6的流量为3~10sccm,所述N2的流量为50~200sccm,所述H2的流量为100~1000sccm。
可选的,所述N2的流量逐渐变小。
可选的,所述化学气相反应的时间为5~15秒。
可选的,所述湿法刻蚀中使用的溶液选自H2SO4溶液、NH4OH溶液、HF溶液其中之一。
可选的,利用干法刻蚀去除氮化钨伪栅极。
可选的,所述干法刻蚀中使用的气体包括:Cl2,HBr,SF6
可选的,所述栅介质层包括二氧化硅层、氮氧化硅层、氮化硅层其中之一,或者他们的任意组合。
可选的,所述栅介质层还包括至少一层高k介质层,所述k值大于4.5。
可选的,还包括:在去除图形化后的硬掩膜层后,形成介质层之前,在所述氮化钨伪栅极周围形成侧墙。
可选的,所述栅极材料选自铪、锆、钛、铝、铊、钯、铂、钴、镍、钨、银、铜、金、导电的金属氮化物、导电的金属碳化物、导电的金属硅化物其中之一或者他们的组合。
与现有技术相比,本发明具有以下优点:
本发明的形成栅极的方法,利用湿法刻蚀氮化钨时,刻蚀速率随氮化钨中含氮量的增加而变大的特点,在衬底上形成图形化的氮化钨,其中离衬底越远所述氮化钨中的含氮量越低,这样之后利用湿法刻蚀去除部分图形化后的氮化钨层时,由于对底部氮化钨的刻蚀速率大于顶部的氮化钨的刻蚀速率,因此可以形成顶部宽度大于底部宽度的氮化钨伪栅极。形成介质层后,去除氮化钨伪栅极后,就可以形成顶部宽度大于底部宽度的栅极沟槽,在栅极沟槽内填充栅极材料,形成栅极。工艺简单,而且,栅极沟槽的顶部宽度大于底部宽度,有利于栅极材料的填充,避免形成空隙,或者至少可以减少形成的空隙;而且,可以避免现有技术中描述的对衬底造成损伤的缺点。
附图说明
图1为本发明的具体实施方式的形成栅极的方法的流程图;
图2a~图2h为本发明具体实施例的形成栅极的方法的剖面结构示意图。
具体实施方式
发明人经过长期的钻研,希望可以找到简单的工艺形成顶部宽度大于底部宽度的栅极沟槽,有利于栅极材料的填充,避免形成空隙,或者至少可以减少形成的空隙;而且,可以避免现有技术中描述的对衬底造成损伤的缺点。经过大量的资料阅读,发明人意外的发现,“Enrico Bellandi,Cinzia De Marco,Antonio Truscello,Jeffery W.Butterbaugh”在“Future Fab International,Volume30,July 2009”公开的文章“resist removal and cleaning for TANOS metal gatenonvolatile memories”中披露了湿法刻蚀氮化钨时,刻蚀速率随氮化钨中含氮量的增加而变大的特点。
本发明具体实施方式的形成栅极的方法,利用湿法刻蚀氮化钨时,刻蚀速率随氮化钨中含氮量的增加而变大的特点,在衬底上形成图形化的氮化钨,其中离衬底越远所述氮化钨中的含氮量越低,这样之后利用湿法刻蚀去除部分图形化后的氮化钨层时,由于对底部氮化钨的刻蚀速率大于顶部的氮化钨的刻蚀速率,因此可以形成顶部宽度大于底部宽度的氮化钨伪栅极。形成介质层后,去除氮化钨伪栅极后,就可以形成顶部宽度大于底部宽度的栅极沟槽,在栅极沟槽内填充栅极材料,形成栅极。工艺简单,而且,栅极沟槽的顶部宽度大于底部宽度,有利于栅极材料的填充,避免形成空隙,或者至少可以减少形成的空隙;而且,可以避免现有技术中描述的对衬底造成损伤的缺点。
为了使本领域的技术人员可以更好的理解本发明,下面结合附图详细说明本发明的具体实施方式。
图1为本发明的具体实施方式的形成栅极的方法的流程图,参图1,本发明具体实施方式的形成栅极的方法包括:
步骤S11,提供衬底;
步骤S12,在所述衬底表面形成栅介质层,在所述栅介质层表面形成氮化钨层,离所述衬底越远所述氮化钨层的含氮量越低,在所述氮化钨层表面形成硬掩膜层;
步骤S13,图形化所述氮化钨层和硬掩膜层;
步骤S14,以所述图形化后的硬掩膜层为掩膜湿法刻蚀去除部分所述图形化后的氮化钨层,形成顶部宽度大于底部宽度的氮化钨伪栅极,去除所述图形化后的硬掩膜层;
步骤S15,形成介质层,覆盖所述栅介质层,所述介质层的表面与所述氮化钨伪栅极的表面相平;
步骤S16,去除所述氮化钨伪栅极,形成栅极沟槽,所述栅极沟槽的顶部宽度大于底部宽度;
步骤S17,在所述栅极沟槽内填充栅极材料,形成栅极。
图2a~图2h为本发明具体实施例的形成栅极的方法的剖面结构示意图,为了使本领域技术人员可以更好的理解本发明具体实施方式的形成栅极的方法,下面结合具体实施例并结合参考图1和图2a~图2h详细说明本发明具体实施方式的形成栅极的方法。
结合参考图1和图2a,执行步骤S11,提供衬底20。本发明具体实施例中,衬底20的材料可以为单晶硅、单晶锗或单晶硅锗;也可以是绝缘体上硅(SOI);或者还可以包括其它的材料,例如砷化镓等III-V族化合物。在所述半导体衬底20中形成有器件结构(图中未示),例如隔离沟槽结构等。
结合参考图1和图2b,执行步骤S12,在所述衬底20表面形成栅介质层21,在所述栅介质层21表面形成氮化钨(WN)层22,离所述衬底20越远所述氮化钨层的含氮量越低,在所述氮化钨层22表面形成硬掩膜层23。
本发明具体实施例中,所述栅介质层21的材料包括二氧化硅(SiO2)、氮氧化硅(SiON)、氮化硅(SiN)其中之一,或者他们的任意组合,也就是说,栅介质层21可以为二氧化硅层,或者为氮氧化硅层,或者氮化硅层,也可以为二氧化硅层,为氮氧化硅层、氮化硅层的任意组合,可以为单层结构,也可以为叠层结构,例如二氧化硅层和氮化硅层组成的两层结构,二氧化硅层、氮氧化硅层、氮化硅层组成的三层结构。而且,在本发明具体实施例中,所述栅介质层21还可以包括至少一层高k介质层,所述k值大于4.5,高k介质层的材料选自氧化铪(HfO2)、硅氧化铪(HfSiO)、氮氧化铪(HfON)、氮氧化铪硅(HfSiON),氧化镧(La2O3)、氧化锆(ZrO2)、硅氧化锆(ZrSiO)、氧化钛(TiO2)、氧化钇(Y2O3)。例如,栅介质层21为两层结构,包括氧化硅层、以及位于氧化硅层上的硅氧化铪(HfSiO)层。
本发明具体实施例中,利用化学气相沉积在所述栅介质层21上形成氮化钨层22。所述化学气相沉积中使用的气体包括:WF6(六氟化钨),H2(氢),N2(氮),反应式为:WF6+H2+N2→WN+HF。WF6的流量为3~10sccm,N2的流量为50~200sccm,其中,反应开始阶段N2的流量大于反应结束阶段N2的流量。在本发明具体实施例中,所述N2的流量逐渐变小,呈线性变化。H2的流量为100~1000sccm,而且本发明具体实施例中,使用的气体还包括Ar(氩)气,其流量为300~1000sccm。反应腔内的气压为3~5Torr(毫托),射频功率为200~500W,反应腔内的温度范围为400~500℃,反应时间为5~15秒。
本发明具体实施例中,硬掩膜层23的材料为氮化硅。
结合参考图1和图2c,执行步骤S13,图形化所述氮化钨层22和硬掩膜层23。具体为:在硬掩膜层23上形成光刻胶层,形成光刻胶层的方法可以为旋涂法、滴涂法或者刷涂法,本发明具体实施例中利用旋涂法形成光刻胶层。之后,对光刻胶层进行曝光、显影,形成图形化的光刻胶层;然后,以图形化的光刻层为掩膜刻蚀硬掩膜层23,氮化钨层22,将图形化的光刻胶层上的图形转移至硬掩膜层23、氮化钨层22。在该步骤中,并不刻蚀栅介质层21,该栅介质层21在之后的湿法刻蚀腐蚀氮化钨时,用来保护衬底20不受损伤。
结合参考图1和图2d,执行步骤S14,以所述图形化后的硬掩膜层23为掩膜湿法刻蚀去除部分所述图形化后的氮化钨层22(结合参考图2c),形成顶部宽度大于底部宽度的氮化钨伪栅极22′,去除所述图形化后的硬掩膜层23。本发明具体实施方式中,所述湿法刻蚀中使用的溶液选自H2SO4溶液、NH4OH溶液、HF溶液其中之一。本发明具体实施例中,选用NH4OH溶液湿法刻蚀氮化钨层22,形成顶部宽度大于底部宽度的氮化钨伪栅极22′。湿法刻蚀氮化钨层22时,刻蚀速率随氮化钨中含氮量的增加而变大的特点,本发明中在衬底20上形成图形化的氮化钨中离衬底越远氮化钨中的含氮量越低,这样利用湿法刻蚀去除部分图形化后的氮化钨层时,由于对底部氮化钨的刻蚀速率大于顶部的氮化钨的刻蚀速率,因此可以形成顶部宽度大于底部宽度的氮化钨伪栅极22′。本发明中,氮化钨伪栅极22′的侧壁与衬底20之间的角度d范围为:75°~89°,也就是说,氮化钨伪栅极22′的侧壁偏离底部的角度为:91°~105°。
参考图2e,本发明具体实施例中,形成氮化钨伪栅极22′后,对半导体衬底20进行源漏注入,在半导体衬底20中形成源区和漏区(图中未示),去除硬掩膜层。之后,形成介质层,覆盖所述栅介质层21和氮化钨伪栅极22′形成的表面,之后回刻介质层,在氮化钨伪栅极22′的周围形成侧墙24。
结合参考图1和图2f,执行步骤S15,形成介质层25,覆盖所述栅介质层21,所述介质层25的表面与所述氮化钨伪栅极22′的表面相平。具体为:形成介质层25,覆盖所述栅介质层21和侧墙24、氮化钨伪栅极22′形成的表面,之后,利用化学机械平坦化(CMP)去除高出氮化钨伪栅极22′的表面的介质层,形成与所述氮化钨伪栅极22′的表面相平的介质层25。本发明,介质层25的材料为低k材料,其可以为氧化硅(SiO2)、氟氧化硅(SiOF)、碳氧化硅(SiCO)等本领域技术人员公知的低k材料,本发明具体实施例中,选用氧化硅作为介质层25的材料。
结合参考图1和图2g,执行步骤S16,去除所述氮化钨伪栅极22′(结合参考图2f),形成栅极沟槽26,所述栅极沟槽26的顶部宽度大于底部宽度。由于氮化钨伪栅极22′的顶部宽度大于底部宽度,因此去除氮化钨伪栅极22′后,形成的栅极沟槽26的顶部宽度大于底部宽度。且所述栅极沟槽26的侧壁偏离底部的角度为:91°~105°。本发明中,利用干法刻蚀去除氮化钨伪栅极,在本发明具体实施例中,所述干法刻蚀中使用的气体包括:C12,HBr,SF6
结合参考图1和图2h,执行步骤S17,在所述栅极沟槽26内填充栅极材料,形成栅极27。本发明具体实施方式中,所述栅极27的材料选自铪、锆、钛、铝、铊、钯、铂、钴、镍、钨、银、铜、金、导电的金属氮化物、导电的金属碳化物、导电的金属硅化物其中之一或者他们的组合。形成栅极27的方法具体为:利用气相沉积,例如物理气相沉积(PVD)、化学气相沉积(CVD)填充栅极材料于所述栅极沟槽26内,且填满栅极沟槽26,之后,利用平坦化工艺,例如化学机械研磨平坦化栅极材料,最终形成栅极27。在本发明具体实施例中,选用金属铝作为栅极材料。利用物理气相沉积方法填充金属铝于所述栅极沟槽26内,并且在沉积金属铝时,在介质层25的表面上也沉积有金属铝,之后利用平坦化工艺去除介质层25表面上的金属铝,形成栅极27,栅极27的表面和介质层25的表面相平。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。

Claims (13)

1.一种形成栅极的方法,其特征在于,包括:
提供衬底;
在所述衬底表面形成栅介质层,在所述栅介质层表面形成氮化钨层,离所述衬底越远所述氮化钨层的含氮量越低,在所述氮化钨层表面形成硬掩膜层;
利用光刻工艺图形化所述氮化钨层和硬掩膜层,图形化后的氮化钨层顶部宽度和底部宽度相等;
以所述图形化后的硬掩膜层为掩膜湿法刻蚀去除部分所述图形化后的氮化钨层,形成顶部宽度大于底部宽度的氮化钨伪栅极,去除所述图形化后的硬掩膜层;
形成介质层,覆盖所述栅介质层,所述介质层的表面与所述氮化钨伪栅极的表面相平;
去除所述氮化钨伪栅极,形成栅极沟槽,所述栅极沟槽的顶部宽度大于底部宽度;
在所述栅极沟槽内填充栅极材料,形成栅极。
2.如权利要求1所述的形成栅极的方法,其特征在于,所述氮化钨伪栅极的侧壁偏离底部的角度为91°~105°。
3.如权利要求1所述的形成栅极的方法,其特征在于,利用化学气相沉积在所述栅介质层上形成氮化钨层;所述化学气相沉积中使用的气体包括:WF6,H2,N2,其中,反应开始阶段N2的流量大于反应结束阶段N2的流量。
4.如权利要求3所述的形成栅极的方法,其特征在于,所述WF6的流量为3~10sccm,所述N2的流量为50~200sccm,所述H2的流量为100~1000sccm。
5.如权利要求4所述的形成栅极的方法,其特征在于,所述N2的流量逐渐变小。
6.如权利要求3所述的形成栅极的方法,其特征在于,所述化学气相反应的时间为5~15秒。
7.如权利要求1所述的形成栅极的方法,其特征在于,所述湿法刻蚀中使用的溶液选自H2SO4溶液、NH4OH溶液、HF溶液其中之一。
8.如权利要求1所述的形成栅极的方法,其特征在于,利用干法刻蚀去除氮化钨伪栅极。
9.如权利要求8所述的形成栅极的方法,其特征在于,所述干法刻蚀中使用的气体包括:Cl2,HBr,SF6
10.如权利要求1所述的形成栅极的方法,其特征在于,所述栅介质层包括二氧化硅层、氮氧化硅层、氮化硅层其中之一,或者他们的任意组合。
11.如权利要求10所述的形成栅极的方法,其特征在于,所述栅介质层还包括至少一层高k介质层,所述k值大于4.5。
12.如权利要求1所述的形成栅极的方法,其特征在于,还包括:在去除图形化后的硬掩膜层后,形成介质层之前,在所述氮化钨伪栅极周围形成侧墙。
13.如权利要求1所述的形成栅极的方法,其特征在于,所述栅极材料选自铪、锆、钛、铝、铊、钯、铂、钴、镍、钨、银、铜、金、导电的金属氮化物、导电的金属碳化物、导电的金属硅化物其中之一或者他们的组合。
CN2010105682973A 2010-11-30 2010-11-30 形成栅极的方法 Active CN102479693B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010105682973A CN102479693B (zh) 2010-11-30 2010-11-30 形成栅极的方法
US13/177,517 US8349675B2 (en) 2010-11-30 2011-07-06 Method for forming a gate electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105682973A CN102479693B (zh) 2010-11-30 2010-11-30 形成栅极的方法

Publications (2)

Publication Number Publication Date
CN102479693A CN102479693A (zh) 2012-05-30
CN102479693B true CN102479693B (zh) 2013-11-06

Family

ID=46092278

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105682973A Active CN102479693B (zh) 2010-11-30 2010-11-30 形成栅极的方法

Country Status (2)

Country Link
US (1) US8349675B2 (zh)
CN (1) CN102479693B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541296B2 (en) * 2011-09-01 2013-09-24 The Institute of Microelectronics Chinese Academy of Science Method of manufacturing dummy gates in gate last process
JP2014120661A (ja) * 2012-12-18 2014-06-30 Tokyo Electron Ltd ダミーゲートを形成する方法
CN104241131B (zh) * 2013-06-09 2017-08-25 中芯国际集成电路制造(上海)有限公司 金属栅极晶体管的形成方法
CN104241129B (zh) * 2013-06-09 2017-12-01 中芯国际集成电路制造(上海)有限公司 金属栅极晶体管的形成方法
US9520474B2 (en) 2013-09-12 2016-12-13 Taiwan Semiconductor Manufacturing Company Limited Methods of forming a semiconductor device with a gate stack having tapered sidewalls
CN104576725B (zh) * 2013-10-11 2017-09-05 中国科学院微电子研究所 后栅工艺中伪栅器件及半导体器件的形成方法
US9054214B1 (en) * 2013-12-12 2015-06-09 Texas Instruments Incorporated Methodology of forming CMOS gates on the secondary axis using double-patterning technique
US10164049B2 (en) * 2014-10-06 2018-12-25 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and formation method of semiconductor device with gate stack
CN105826176B (zh) * 2015-01-06 2018-10-16 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
US9882013B2 (en) * 2016-03-31 2018-01-30 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof
CN110739212A (zh) * 2019-10-30 2020-01-31 上海华力微电子有限公司 硬掩膜的制备方法及半导体器件的制造方法
CN113327979B (zh) * 2020-02-28 2023-04-18 中芯国际集成电路制造(天津)有限公司 半导体结构的形成方法
CN112509912B (zh) * 2021-02-03 2021-04-30 成都市克莱微波科技有限公司 一种半导体器件的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101203947A (zh) * 2005-06-21 2008-06-18 英特尔公司 采用抬高的源极漏极和替代金属栅极的互补型金属氧化物半导体集成电路
US7557446B2 (en) * 2005-06-17 2009-07-07 Fujitsu Microelectronics Limited Semiconductor device and a fabrication process thereof
US7595248B2 (en) * 2005-12-01 2009-09-29 Intel Corporation Angled implantation for removal of thin film layers
TW200950000A (en) * 2008-03-14 2009-12-01 Advanced Micro Devices Inc Integrated circuit having long and short channel metal gate devices and method of manufacture

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664196B1 (en) * 1999-03-15 2003-12-16 Matsushita Electric Industrial Co., Ltd. Method of cleaning electronic device and method of fabricating the same
US6326297B1 (en) * 1999-09-30 2001-12-04 Novellus Systems, Inc. Method of making a tungsten nitride barrier layer with improved adhesion and stability using a silicon layer
US8735235B2 (en) 2008-08-20 2014-05-27 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit metal gate structure and method of fabrication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7557446B2 (en) * 2005-06-17 2009-07-07 Fujitsu Microelectronics Limited Semiconductor device and a fabrication process thereof
CN101203947A (zh) * 2005-06-21 2008-06-18 英特尔公司 采用抬高的源极漏极和替代金属栅极的互补型金属氧化物半导体集成电路
US7595248B2 (en) * 2005-12-01 2009-09-29 Intel Corporation Angled implantation for removal of thin film layers
TW200950000A (en) * 2008-03-14 2009-12-01 Advanced Micro Devices Inc Integrated circuit having long and short channel metal gate devices and method of manufacture

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Enrico Bellandi等.resist removal and cleaning for TANOS metal gate nonvolatile memories.《Future Fab International》.2009,(第30期),1-7.
resist removal and cleaning for TANOS metal gate nonvolatile memories;Enrico Bellandi等;《Future Fab International》;20090709(第30期);1-7 *

Also Published As

Publication number Publication date
US20120135594A1 (en) 2012-05-31
US8349675B2 (en) 2013-01-08
CN102479693A (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
CN102479693B (zh) 形成栅极的方法
CN102479692B (zh) 形成栅极的方法
TWI601290B (zh) 金屬閘極結構及其製造方法
CN106169501B (zh) 具有不均匀栅极结构的FinFET器件结构及其形成方法
US9129987B2 (en) Replacement low-K spacer
US9257516B2 (en) Reduction of oxide recesses for gate height control
CN104617093B (zh) 半导体结构及其形成方法
CN102486998B (zh) 形成栅极的方法
CN104752185B (zh) 金属栅极的形成方法
CN102487013B (zh) 形成栅极的方法
US9484204B2 (en) Transistor and method for forming the same
CN102386081B (zh) 金属栅极的形成方法
US9385037B2 (en) Semiconductor arrangement comprising metal cap and dielectric layer defining air gap
US7968423B2 (en) Method for forming isolation layer and method for fabricating nonvolatile memory device using the same
US9553096B2 (en) Semiconductor arrangement with capacitor
US20150170923A1 (en) Feature Size Reduction in Semiconductor Devices by Selective Wet Etching
CN103390547B (zh) 具有金属栅电极层的半导体结构形成方法
CN103456692B (zh) 互补型金属氧化物半导体管的形成方法
CN105632909B (zh) 一种半导体器件及其制造方法、电子装置
CN105244276A (zh) 一种FinFET及其制造方法、电子装置
CN105336594A (zh) 半导体结构的形成方法
CN104952714A (zh) 一种半导体器件的制造方法
CN102790010B (zh) 改善可靠性的铜互连层制备方法及半导体器件
US20080164498A1 (en) Forming a semiconductor device having a metal electrode and structure thereof
CN103681445B (zh) 沟槽隔离结构及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant