CN102472745A - 使用纸基微流体系统的定量和自校准化学分析 - Google Patents

使用纸基微流体系统的定量和自校准化学分析 Download PDF

Info

Publication number
CN102472745A
CN102472745A CN2010800294240A CN201080029424A CN102472745A CN 102472745 A CN102472745 A CN 102472745A CN 2010800294240 A CN2010800294240 A CN 2010800294240A CN 201080029424 A CN201080029424 A CN 201080029424A CN 102472745 A CN102472745 A CN 102472745A
Authority
CN
China
Prior art keywords
fluid sample
concentration
tried
sample
test section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800294240A
Other languages
English (en)
Other versions
CN102472745B (zh
Inventor
沈卫
李煦
田君飞
吉尔·加尼尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monash University
Original Assignee
Monash University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2009903024A external-priority patent/AU2009903024A0/en
Application filed by Monash University filed Critical Monash University
Publication of CN102472745A publication Critical patent/CN102472745A/zh
Application granted granted Critical
Publication of CN102472745B publication Critical patent/CN102472745B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/93Detection standards; Calibrating baseline adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5302Apparatus specially adapted for immunological test procedures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/126Paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/145555Hetero-N
    • Y10T436/147777Plural nitrogen in the same ring [e.g., barbituates, creatinine, etc.]
    • Y10T436/148888Uric acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/17Nitrogen containing
    • Y10T436/173076Nitrite or nitrate

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Dispersion Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种使用具有多个亲水测试区的纸基微流体系统来测定受试流体样品的浓度的方法,所述方法包括:a)在至少一个所述测试区上施加所述受试流体样品;b)在其它所述测试区上施加具有不同已知浓度的多个标准流体样品或反应物;c)向每个所述测试区引入指示剂溶液从而与所施加的流体样品反应并产生作为流体样品浓度的函数的颜色强度变化;以及d)比较受试流体样品和标准流体样品或反应物之间的颜色强度差异,从而测定所述受试流体样品的浓度。

Description

使用纸基微流体系统的定量和自校准化学分析
发明领域
本发明一般性地涉及定量化学分析系统,特别是涉及使用纸基微流体系统的化学分析。
发明背景
用于获得分析物浓度的精确定量测量结果的常见方法需要使用仪器深入分析。这种用于测量溶液中分析物浓度的方法需要使用利用光谱、色谱、NMR、原子吸收或使用起来还可能困难且费时的其它分析程序的昂贵仪器。而且,测试可能需要相对较大体积的溶液。
用于包括化学分析在内的多种应用中的纸基微流体系统的用途在Martinez,A.W.;Phillips,S.T.;Butte,M.;Whitesides,G.M.,PatternedPaper as a Platform for Inexpensive,Low-volume,Portable Bioassays,Angew.Chem.Int.Ed.,2007,46,1318-1320中首次提出。使用这种系统的优势是它们的低成本和轻便性。此外,样品体积量可以显著减少,这在所获得的样品量有限的情况下有利(例如来自医院患者的生物样品)。应注意本申请所用术语“纸”指除纸外还包括织造织物和非织造材料的纤维素材料。
在申请人的澳大利亚临时专利申请2008903553和2008905776中描述了这种纸基微流体系统的进一步进展。在申请人的微流体系统中,在纸基材的表面上提供疏水/亲水反差,从而限定由于毛细作用而无需外部泵送来控制水溶液输送的微流体通道。
可以通过使受试样品与指示剂溶液反应使用该微流体系统和比色法来测定受试样品的浓度。然而结果的精确性受到多种外界因素影响,包括诸如环境温度和相对湿度的环境条件、纸的质量和使用期限、用于记录结果的扫描仪或相机的质量和设置,或者电子传送结果的手段。这可以导致比色分析结果的显著误差。因此,使用不同的纸基材、使用不同的扫描仪或相机测量同一受试样品,或者使用不同电子传送系统和不同软件传送同一受试样品可以导致结果的显著变化。
相同的原理可以与基于纸的ELISA型分析一起使用,其中生物缀合物(bioconjugate)被固定到纸上。
发明概述
因此本发明的一个目的是使用纸基微流体系统来更精确地测定受试样品的浓度。
为此,提供一种使用具有多个亲水测试区的纸基微流体系统来测定受试流体样品浓度的方法,其包括:
a)在至少一个所述测试区上施加所述受试流体样品;
b)在其它所述测试区上施加具有不同已知浓度的多个标准流体样品或反应物;
c)向每个所述测试区引入指示剂溶液从而与所施加的流体样品反应并产生作为流体样品浓度的函数的颜色强度变化;以及
d)比较受试流体样品和标准流体样品或反应物之间的颜色强度差异,从而测定所述受试流体样品的浓度。
标准流体样品或反应物的施加可以在施加受试样品之前或之中进行。
使用具有不同已知浓度的多个标准流体样品或反应物为本发明方法提供内部自校准。这可以致使获得更精确的结果而不受之前所述的多个外部因素的影响。这是因为基于受试流体样品和标准流体样品或反应物之间的相对差来测定测试结果,从而避免了与之前所述的外部因素相关的影响。
因此可以使用多种仪器(包括台式扫描仪或甚至手机照相机)来记录结果。因此可以将图像导入图形程序如Adobe
Figure BDA0000126579260000021
并转化成灰度模式。然后可以使用软件的直方图功能来修饰主要颜色强度。然后可以优选地如下获得每个测试区的最终平均强度值:从空白对照区的平均强度减去测得的平均强度并转化为图以获得校准曲线,该图是平均强度相对于溶液浓度的图。
ELISA是酶联免疫吸附测定(enzyme-linked immunosorbent assay)。纸基微流体装置可以设计为进行ELISA类测定。在该测定中,将一定量的抗原固定到纸表面上,在纸表面上施加特异抗体以使其可以与所述抗原结合。该抗体与酶结合。在ELISA的最后步骤中,添加物质以将酶转化成某种可检测信号。
还提供一种用于测定受试流体样品浓度的系统,所述系统包括:
a)具有多个亲水测试区的纸基微流体系统,所述受试流体样品可被施加到至少一个测试区上;
b)不同已知浓度的多个标准流体样品或反应物,用于施加在其它所述测试区上;
c)指示剂溶液,用于引入到每个测试区从而与流体样品反应并产生作为流体样品浓度的函数的颜色强度变化,
其中通过比较受试流体样品和标准流体样品或反应物之间的颜色强度差异能够测定受试流体样品的浓度。
附图简述
方便的是参照说明本发明方法的附图进一步描述本发明。本发明可以有其它实施方案,因此不应将附图的具体内容理解为是对本发明说明进行的取代。
在图中:
图1示出用于产生NO2 -校准曲线的本发明纸基微流体系统;
图2示出从图1所示微流体系统的测试结果获得的NO2 -校准曲线;
图3示出用于测定未知样品的NO2 -浓度的本发明纸基微流体系统;
图4示出从图3所示微流体系统的测试结果获得的校准曲线;
图5示出用于测量未知样品的尿酸(UA)浓度的本发明纸基微流体系统;
图6示出从图5所示微流体系统的测试结果获得的校准曲线。
发明详述
现在将参照描述本发明不同可能应用的以下实施例来描述本发明。然而应理解本发明不限于这些实施例。
使用本申请人上述临时申请中所述的技术制造纸基微流体系统。
选择Whatman滤纸(No.4)作为基材来制备微流体系统。使用两种方法—等离子体处理和喷墨印刷进行制造。前一图案化方法基于这样的原理:使用真空等离子体反应器(K1050X等离子体灰化器(Quorum Emitech,UK))和预制的掩模来对预先已用烷基烯酮二聚体(Wax 88konz,BASF)疏水化的滤纸样品进行选择性去疏水化。后一方法使用市售台式喷墨打印机将烯基烯酮二聚体(Precis 900,Hercules Australia Pty Ltd)选择性施加到滤纸上。制造具有6个检测区和一个中央入口区构成的模式的微流体系统。
用Millipore纯化的水来制备测试微流体系统性能所需的所有液体样品。分别用溶于水的亚硝酸钠(≥99%,Sigma-Aldrich)和溶于氢氧化钠溶液(0.2mol/L)的尿酸(≥99%,Sigma-Aldrich)来制备系列稀释的亚硝酸盐和尿酸标准溶液。
NO2 -的指示剂溶液包含50mmol/L磺胺(≥99%,Sigma-Aldrich)、330mmol/L柠檬酸(≥99.5%,Sigma-Aldrich)和10mmol/L N-(1-萘基)乙二胺(≥98%,Sigma-Aldrich)。
UA的指示剂溶液由溶液A(2.56%(w/v)2,2′-联喹啉-4,4′-二羧酸二钠盐水合物,≥98%,Sigma-Aldrich)和溶液B(20mmol/L柠檬酸钠和0.08%(w/v)硫酸铜(II),≥99%,Sigma-Aldrich)的1∶1混合物组成。
为生成亚硝酸盐校准曲线,使用eppendorf
Figure BDA0000126579260000041
移液器(0.1-2.5μL)将1个空白对照(水,0.5μL)和5个系列稀释的亚硝酸盐标准溶液样品(浓度范围为78μmol/L至1250μmol/L,0.5μL)顺次施加到6个检测区上。
将亚硝酸盐溶液(500μmol/L NO2 -)假定为浓度未知的样品溶液。将该样品溶液(0.5μL)点到1个检测区上,并将系列稀释的亚硝酸盐标准溶液样品(156μmol/L至2500μmol/L,0.5μL)顺次点到其它检测区上。在该测定中,将水(0.5μL)加到中央入口区上作为空白对照。
对于尿酸测定,将尿酸溶液(500μmol/L UA)假定为未知样品溶液,并且在μPAD的每个检测区上相继载入5个系列稀释的UA标准溶液样品(100μmol/L至1600μmol/L)。用NaOH溶液(0.2mol/L)作为该测定中的空白对照。
在所有上述测定中,用eppendorf
Figure BDA0000126579260000042
移液器(0.5-10μL)利用毛细渗透从入口区将相应指示剂溶液(5μL)引入检测区。对于每个测定而言,用6个装置进行6次独立的测量。
比色测定的结果用台式扫描仪(Epson Perfection 2450,彩色照片设置,分辨率1200dpi)成像,然后导入Adobe
Figure BDA0000126579260000051
并转化成灰度模式。用Adobe
Figure BDA0000126579260000052
的直方图功能对平均强度进行量化。通过从空白对照的平均强度减去测得的平均强度获得每个检测区的最终平均强度值并转入Microsoft
Figure BDA0000126579260000053
以获得校准曲线数据。
实施例1
在该实施例中,如图1和2所示产生了NO2 -校准曲线。NO2 -的比色测试基于Griess反应的机理,它是NO2 -的常用定量测量方法。在该测定中,将系列稀释的NO2 -标准溶液(78、156、312、625、1250μmol/L)顺次施加在每个检测区1-5中,而将空白对照溶液点在检测区0上。然后将NO2 -的指示剂溶液经由入口区引入装置中。当指示剂溶液由于毛细作用渗入测试区并与分析物接触时,指示剂溶液中的柠檬酸将NO2 -转化成HNO2 -。然后亚硝酸将磺胺转化为重氮化磺胺,重氮化磺胺与N-(1-萘基)乙二胺耦合形成粉红色偶氮化合物。由于标准溶液样品的浓度不同,每个检测区中显示的所得颜色从几乎无色(区0)变为粉红(区5)(图1)。在图2中,每个标准样品的平均颜色强度值是使用6个微流体系统进行并用软件测量和计算的6次独立测量的平均值。误差线(error bar)是相对标准偏差。
亚硝酸根数据的线性最小二乘法拟合给出的决定系数(R2)为0.9902。平均颜色强度与NO2 -浓度成比例。该测定证实了可以使用纸基微流体系统(例如6通道模式)来生成用于定量分析的校准曲线。
实施例2
在该实施例中,测量了未知样品的NO2 -浓度。为使用纸基微流体系统测量未知样品的亚硝酸根浓度,制备了空白对照溶液(0μmol/L NO2 -,施加在区0上)、5个标准溶液(156、312、625、1250、2500μmol/L NO2 -,施加在区1-5上)和作为假定的未知样品溶液的500μmol/L NO2 -溶液(施加在区x上)。仍从中央入口区将指示剂溶液引入系统,它在不同测试区显示不同颜色(图3)。在该测定中,使用6个微流体系统进行6个独立测试,这提供了每个标准溶液的平均颜色强度和误差线以生成校准曲线(图4),这给出用于计算未知样品浓度的二次回归方程。只要测得的浓度接近真实值,则认为纸基微流体系统是定量分析未知样品溶液的分析物浓度的有效工具。软件分析获得的结果表明对未知样品测得的平均颜色强度为12.684,因而计算的未知样品的NO2 -浓度是507μmol/L(与500μmol/L的实际浓度相比相对误差为1.4%)。
实施例3
在该实施例中,如图5和6所示测量未知样品的UA浓度。
尿酸的比色测定基于bicinchoninate(联喹啉二羧酸盐)螯合法。当UA指示剂溶液进入检测区后,指示剂溶液中的Cu(II)被预先负载在测试区上的UA还原成Cu(I),然后亚铜离子与联喹啉二羧酸钠形成紫色螯合产物。对应于不同的UA浓度(0、100、200、400、800、1600μmol/L),测试区0-5中显示的所得颜色从浅紫逐渐变深到紫色(图6)。图7的数据和误差线分别是使用6个装置进行的6次独立测量的平均值和相对标准偏差。制备了具有500μmol/L尿酸的样品溶液,并假定该溶液为未知样品,将该样品也施加在测试区x上。通过软件分析,未知样品的6次颜色强度测量值的平均为12.492;因此可以从回归方程计算6个未知样品的平均UA浓度为502μmol/L。与真实浓度值(500μmol/L)相比相对误差为0.4%。
所有测定的结果表明纸基微流体系统足以同时对不同检测区进行平行测试。用1个系统运行的测试量与测试区的数目相关联,而测试区的数目可根据不同的预先设计模式进行更改。在所述实施例中,6通道模式能1次检测多达7个样品,从而生成校准曲线并为未知样品浓度测量提供回归方程。该方法是依靠受试分析物的比色化学的低成本、快速且简便的浓度检测方法。
微流体纸基多流体系统与分析物的比色反应以及现有的计算机软件(例如Adobe
Figure BDA0000126579260000061
)联用可以提供定量检测未知样品浓度的便宜且易用的工具。这些微流体系统的原材料(纸)是相对经济的,并且这些系统的制造方法相当简单。因此,当在资源受限的工业化程度较低的区或偏远地区进行测量时,纸基微流体系统可以是有用的工具。此外,该方法大大减少了样品体积,这在可获得样品量有限(例如,来自患者的生物样品)的情况下有利。

Claims (7)

1.一种使用具有多个亲水测试区的纸基微流体系统来测定受试流体样品的浓度的方法,其包括:
a)在至少一个所述测试区上施加所述受试流体样品;
b)在其它所述测试区上施加具有不同已知浓度的多个标准流体样品或反应物;
c)向每个所述测试区引入指示剂溶液从而与所施加的流体样品反应并产生作为所述流体样品浓度的函数的颜色强度变化;以及
d)比较所述受试流体样品和所述标准流体样品或反应物之间的颜色强度差异,从而测定所述受试流体样品的浓度。
2.根据权利要求1的方法,其包括对每个所述测试区中作为已知流体样品浓度的函数的所述颜色强度进行量化,从而生成校准曲线,从所述校准曲线能够获得所述受试流体样品的浓度。
3.根据权利要求1或2的方法,其中一个所述测试区施加有水或标准溶液以提供空白对照区。
4.根据权利要求1的方法,其中在施加所述受试流体样品之前施加所述标准流体样品或反应物。
5.根据权利要求1的方法,其中使用生物缀合进行ELISA型生物分析。
6.一种用于测定受试流体样品的浓度的系统,所述系统包括:
a)具有多个亲水测试区的纸基微流体系统,所述受试流体样品能被施加到至少一个测试区上;
b)不同已知浓度的多个标准流体样品或反应物,用于施加在其它所述测试区上;
c)指示剂溶液,用于引入到每个测试区从而与所述流体样品反应并产生作为流体样品浓度的函数的颜色强度变化,
其中通过比较所述受试流体样品和所述标准流体样品或反应物之间的颜色强度差异能够测定所述受试流体样品的浓度。
7.一种适于实施根据权利要求1至5中任一项的方法的纸基微流体系统。
CN201080029424.0A 2009-06-30 2010-06-30 使用纸基微流体系统的定量和自校准化学分析 Active CN102472745B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2009903024A AU2009903024A0 (en) 2009-06-30 Quantitative and Self-Calibrating Chemical Analysis Using Paper-Based Microfluidic Systems
AU2009903024 2009-06-30
PCT/AU2010/000837 WO2011000047A1 (en) 2009-06-30 2010-06-30 Quantitative and self-calibrating chemical analysis using paper-based microfluidic systems

Publications (2)

Publication Number Publication Date
CN102472745A true CN102472745A (zh) 2012-05-23
CN102472745B CN102472745B (zh) 2015-08-05

Family

ID=43410373

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080029424.0A Active CN102472745B (zh) 2009-06-30 2010-06-30 使用纸基微流体系统的定量和自校准化学分析

Country Status (6)

Country Link
US (1) US9116146B2 (zh)
EP (1) EP2449380B1 (zh)
CN (1) CN102472745B (zh)
AU (1) AU2010268771B2 (zh)
NZ (1) NZ597217A (zh)
WO (1) WO2011000047A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102980998A (zh) * 2012-11-21 2013-03-20 济南大学 高通量微流控纸芯片即时快速检测多种人体肿瘤标志物
CN103389303A (zh) * 2013-08-07 2013-11-13 苏州扬清芯片科技有限公司 一种多指标分析纸芯片及其制备方法
CN104215633A (zh) * 2014-09-11 2014-12-17 中国水稻研究所 稻米中直链淀粉含量快速测定纸芯片检测方法及所用体系
CN105277680A (zh) * 2014-07-03 2016-01-27 北京倍肯华业科技发展有限公司 一种智能化免疫层析及光谱分析一体化装置及其分析方法
CN105388144A (zh) * 2014-08-25 2016-03-09 施乐公司 用于纸基传感器的稳健比色处理方法
CN106353312A (zh) * 2016-10-09 2017-01-25 中国农业科学院茶叶研究所 一种基于微流控纸芯片技术的茶多酚含量快速检测方法
CN106770520A (zh) * 2016-12-22 2017-05-31 西安交通大学 全血中血红蛋白检测的纸基微流控芯片及其制作和应用
CN109060802A (zh) * 2018-06-28 2018-12-21 中国农业大学 一种基于手机的纸基层析传感器定量分析系统、分析方法
CN110898866A (zh) * 2019-11-27 2020-03-24 陕西煤业化工技术研究院有限责任公司 检测水体中铬、汞离子的纸基微流控芯片及其制备方法和检测方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ597217A (en) 2009-06-30 2013-02-22 Univ Monash Quantitative and self-calibrating chemical analysis using paper-based microfluidic systems
AU2010300092B2 (en) 2009-09-24 2016-02-04 Monash University Testing device for identifying antigens and antibodies in biofluids
WO2012125494A2 (en) * 2011-03-11 2012-09-20 Mc10, Inc. Integrated devices to facilitate quantitative assays and diagnostics
US9629156B2 (en) 2011-08-12 2017-04-18 Telefonaktiebolaget Lm Ericsson (Publ) Aggregated carrier synchronization and reference signal transmitting and receiving methods, devices and systems
CN104126120B (zh) * 2011-11-10 2017-12-08 杜兰教育基金管理者 纸基诊断测试
US20140349279A1 (en) 2011-12-15 2014-11-27 Commissariat à l'énergie atomique et aux énergies alternatives 3d microfluidic system having nested areas and a built-in reservoir, method for the preparing same, and uses thereof
KR20130086743A (ko) * 2012-01-26 2013-08-05 삼성전자주식회사 미세유동장치 및 그 제어방법
WO2014058922A1 (en) * 2012-10-08 2014-04-17 Colorado State University Research Foundation Distance-based quantitative analysis using a capillarity-based analytical device
CA2911162C (en) 2013-04-30 2019-12-31 Helder Goncalves Da Costa Packaging and transportation kit for hydrogen peroxide or other chemical product used in sterilization or disinfection equipments and respective supplying system
GB201411094D0 (en) * 2014-06-22 2014-08-06 Technion Res And Dev Company Ltd Microfluidic electrokinetic paper based devices
US9586204B2 (en) * 2014-06-23 2017-03-07 Xerox Corporation Paper sensor
CN104502333A (zh) * 2014-12-05 2015-04-08 苏州国环环境检测有限公司 一种快速检测水中氯离子浓度的方法
US10634597B2 (en) * 2015-03-31 2020-04-28 Halliburton Energy Services, Inc. Method and apparatus for selecting surfactants
US10598625B2 (en) 2015-04-08 2020-03-24 Board of Regents, The University System of Texas Methods and systems for the detection of analytes
WO2019079301A2 (en) 2017-10-18 2019-04-25 Group K Diagnostics, Inc. MONOLAYER MICROFLUIDIC DEVICE AND METHODS OF MAKING AND USING SAME
CN108636467B (zh) * 2018-05-22 2023-04-07 福州大学 一种氧化石墨烯纳米片增强三维纸基芯片及其应用
USD879999S1 (en) 2018-11-02 2020-03-31 Group K Diagnostics, Inc. Microfluidic device
CN110231478A (zh) * 2019-07-03 2019-09-13 杭州霆科生物科技有限公司 一种集成酶抑制法和免疫阵列的农残检测芯片
CN111678913B (zh) * 2020-06-11 2022-08-05 浙江工业大学 一种基于图像识别实现溶液浓度定量测定的实验方法
CN113092454A (zh) * 2021-03-04 2021-07-09 武汉科技大学 一种用于光催化剂性能检测的方法
CN113504226A (zh) * 2021-07-29 2021-10-15 上海海洋大学 功能化纸基微流控芯片检测试纸及基于该检测试纸快速检测蔬菜中农药残留的方法及其应用
CN114225976B (zh) * 2021-11-23 2023-03-21 中国检验检疫科学研究院 同时测定Cu(II)、Hg(II)、Mn(II)的纸基微流控芯片的制备方法及应用
CN114660053B (zh) * 2022-03-22 2022-09-13 青岛科技大学 基于微流体聚集的鱼肉鲜度检测纸基芯片的制作及应用
CN114798021B (zh) * 2022-04-18 2023-02-17 四川农业大学 一种快速检测水体中亚硝酸盐的三维纸基微流控芯片及其制备方法和应用
CN115166173A (zh) * 2022-05-10 2022-10-11 北京理工大学 基于智能手机app的多重检测的纸微流控系统及检测方法
CN115420704B (zh) * 2022-08-31 2023-09-08 武汉新烽光电股份有限公司 一种基于微流控盘芯片空白计算零浓度的估算方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929580A (en) * 1974-08-29 1975-12-30 American Cyanamid Co Creatine phosphokinase test indicator
CN101076601A (zh) * 2004-12-13 2007-11-21 拜尔保健有限公司 用于测量生物液体中的分析物的自我限定大小的组合物和检验设备
WO2008049083A2 (en) * 2006-10-18 2008-04-24 President And Fellows Of Harvard College Lateral flow and flow-through bioassay based on patterned porous media, methods of making same, and methods of using same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060000722A1 (en) * 1996-06-28 2006-01-05 Caliper Life Sciences, Inc. High throughput screening assay systems in microscale fluidic devices
US20030119203A1 (en) * 2001-12-24 2003-06-26 Kimberly-Clark Worldwide, Inc. Lateral flow assay devices and methods for conducting assays
US20100285490A1 (en) * 2006-12-29 2010-11-11 Invitrogen Corporation Detection apparatus
NZ597217A (en) 2009-06-30 2013-02-22 Univ Monash Quantitative and self-calibrating chemical analysis using paper-based microfluidic systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929580A (en) * 1974-08-29 1975-12-30 American Cyanamid Co Creatine phosphokinase test indicator
CN101076601A (zh) * 2004-12-13 2007-11-21 拜尔保健有限公司 用于测量生物液体中的分析物的自我限定大小的组合物和检验设备
WO2008049083A2 (en) * 2006-10-18 2008-04-24 President And Fellows Of Harvard College Lateral flow and flow-through bioassay based on patterned porous media, methods of making same, and methods of using same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANDRES W. MARTINEZ ET AL: "Simple Telemedicine for Developing Regions: Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site Diagnosis", 《ANALYTICAL CHEMISTYR》, vol. 80, no. 10, 15 May 2008 (2008-05-15) *
ANDRES W. MARTINEZ ET AL: "Three-dimensional microfluidic devices fabricated in layered paper and tape", 《PNAS》, vol. 105, no. 50, 16 December 2008 (2008-12-16), XP055042226, DOI: doi:10.1073/pnas.0810903105 *
XU LI ET AL: "Paper-Based Microfluidic Devices by Plasma Treatment", 《ANALYTICAL CHEMISTRY》, vol. 80, no. 23, 1 December 2008 (2008-12-01), XP055042177, DOI: doi:10.1021/ac801729t *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102980998A (zh) * 2012-11-21 2013-03-20 济南大学 高通量微流控纸芯片即时快速检测多种人体肿瘤标志物
CN103389303A (zh) * 2013-08-07 2013-11-13 苏州扬清芯片科技有限公司 一种多指标分析纸芯片及其制备方法
CN105277680A (zh) * 2014-07-03 2016-01-27 北京倍肯华业科技发展有限公司 一种智能化免疫层析及光谱分析一体化装置及其分析方法
CN105388144A (zh) * 2014-08-25 2016-03-09 施乐公司 用于纸基传感器的稳健比色处理方法
CN105388144B (zh) * 2014-08-25 2019-09-06 施乐公司 用于纸基传感器的稳健比色处理方法
CN104215633A (zh) * 2014-09-11 2014-12-17 中国水稻研究所 稻米中直链淀粉含量快速测定纸芯片检测方法及所用体系
CN106353312B (zh) * 2016-10-09 2019-06-25 中国农业科学院茶叶研究所 一种基于微流控纸芯片技术的茶多酚含量快速检测方法
CN106353312A (zh) * 2016-10-09 2017-01-25 中国农业科学院茶叶研究所 一种基于微流控纸芯片技术的茶多酚含量快速检测方法
CN106770520B (zh) * 2016-12-22 2019-04-23 西安交通大学 全血中血红蛋白检测的纸基微流控芯片及其制作和应用
CN106770520A (zh) * 2016-12-22 2017-05-31 西安交通大学 全血中血红蛋白检测的纸基微流控芯片及其制作和应用
CN109060802A (zh) * 2018-06-28 2018-12-21 中国农业大学 一种基于手机的纸基层析传感器定量分析系统、分析方法
CN109060802B (zh) * 2018-06-28 2021-07-13 中国农业大学 一种基于手机的纸基层析传感器定量分析系统、分析方法
CN110898866A (zh) * 2019-11-27 2020-03-24 陕西煤业化工技术研究院有限责任公司 检测水体中铬、汞离子的纸基微流控芯片及其制备方法和检测方法

Also Published As

Publication number Publication date
EP2449380A1 (en) 2012-05-09
EP2449380A4 (en) 2012-12-12
CN102472745B (zh) 2015-08-05
EP2449380B1 (en) 2015-01-21
AU2010268771A1 (en) 2012-02-02
WO2011000047A1 (en) 2011-01-06
NZ597217A (en) 2013-02-22
US9116146B2 (en) 2015-08-25
AU2010268771B2 (en) 2015-12-17
US20120171702A1 (en) 2012-07-05

Similar Documents

Publication Publication Date Title
CN102472745B (zh) 使用纸基微流体系统的定量和自校准化学分析
Li et al. Quantitative biomarker assay with microfluidic paper-based analytical devices
CN106353312B (zh) 一种基于微流控纸芯片技术的茶多酚含量快速检测方法
DE10251757B4 (de) Vorrichtung zur Bestimmung der Konzentration von in einer zu untersuchenden Probe enthaltenen Liganden
CN101044402B (zh) 测量动态内部校准真值剂量反应曲线的方法
EP1312919A3 (en) Sample volume metering apparatus
CN102507473B (zh) 一种氨氮水质在线监测仪上污水中原物质干扰消除的方法
EP1621887A1 (en) Analytical test strip with control zone
CA2495209A1 (en) Membrane-based assay devices
CN110672594A (zh) 一种基于光透射结果分析的芯片比色检测方法
CN110568056A (zh) 一种固体表面小分子物质的原位质谱定量方法
Attin et al. Suitability of a malachite green procedure to detect minimal amounts of phosphate dissolved in acidic solutions
CN108535472A (zh) 一种显著提高侧向流免疫层析的检测试条
JP5002616B2 (ja) 液体試料中の分析対象の測定方法及び分析装置
US6601006B2 (en) Methods for the calibration of analyte assays
CN109632674A (zh) 一种检测样品pH值的方法
US11209364B2 (en) Apparatus and method for measuring free water in hydrocarbon fuels and method of calibrating the apparatus
CN108152282A (zh) 一种检测尿液肌酐的试剂及其应用
CN107478632A (zh) 一种通过pH试纸的荧光检测pH值的方法
CN101275909B (zh) 双草酸硼酸锂中游离草酸的测定方法
CA2573933A1 (en) Method to measure dynamic internal calibration true dose response curves
Gautam et al. Quantification of creatinine in whole blood by a paper-based device using an RGB sensor
Ghaderinezhad based Point-of-Care Diagnostic Devices for Urinalysis
JP2019039815A (ja) 滴定分析方法およびそれに用いる滴定剤含浸材
CN105319208B (zh) 一种可消除试剂空白影响的水中镍离子现场快速检测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant