CN102456690A - 半导体器件及其制造方法 - Google Patents

半导体器件及其制造方法 Download PDF

Info

Publication number
CN102456690A
CN102456690A CN2010105269976A CN201010526997A CN102456690A CN 102456690 A CN102456690 A CN 102456690A CN 2010105269976 A CN2010105269976 A CN 2010105269976A CN 201010526997 A CN201010526997 A CN 201010526997A CN 102456690 A CN102456690 A CN 102456690A
Authority
CN
China
Prior art keywords
groove
type
doped region
semiconductor substrate
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010105269976A
Other languages
English (en)
Other versions
CN102456690B (zh
Inventor
张磊
李铁生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Monolithic Power Systems Co Ltd
Original Assignee
Chengdu Monolithic Power Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Monolithic Power Systems Co Ltd filed Critical Chengdu Monolithic Power Systems Co Ltd
Priority to CN201010526997.6A priority Critical patent/CN102456690B/zh
Priority to US13/278,463 priority patent/US8716784B2/en
Publication of CN102456690A publication Critical patent/CN102456690A/zh
Application granted granted Critical
Publication of CN102456690B publication Critical patent/CN102456690B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提供一种半导体器件及其制造方法。该半导体器件包括:沟槽型的金属氧化物半导体场效应晶体管,形成于n型半导体衬底中;集成的肖特基二极管,位于该金属氧化物半导体场效应晶体管旁边,且包括与该n型半导体衬底接触的正极金属层;以及沟槽隔离结构,位于该金属氧化物半导体场效应晶体管和该肖特基二极管之间,从而阻挡该金属氧化物半导体场效应晶体管的p型阱掺杂区的一部分朝向该肖特基二极管扩散,其中该p型阱掺杂区具有经该沟槽隔离结构下方横向扩散到该肖特基二极管的靠近该沟槽隔离结构的部分区域中的突出部。

Description

半导体器件及其制造方法
技术领域
本发明涉及半导体器件及其制造方法,更具体而言,涉及一种集成沟槽型金属氧化物半导体场效应晶体管(Trench MOSFET)和肖特基二极管(Schottky diode)的半导体器件及其制造方法。
背景技术
在当今的电子器件中,多重供电被广泛使用。例如在一些应用中,中央处理单元被设计成在特定时间根据计算负载而具有不同供给电压的方式来工作。因此,直流/直流变流器(DC/DC convert)被用来满足电路的宽范围供电需求。直流/直流变流器通常采用沟槽型功率金属氧化物半导体场效应晶体管(MOSFET)实现的高效开关。
在常规的直流/直流变流器电路中,为了避免急通(shoot-through)电流对MOSFET造成损坏,高电压侧的MOSFET和低电压侧的MOSFET不能同时导通。在一个MOSFET导通之前,两个MOSFET必须同时断开。在该死时间(dead time)期间,沟槽型MOSFET中的内部PN结本体二极管能够传导电流。不利地,该本体二极管具有较高(约0.7V)的正向电压,因此功率被消耗。还不利的是,PN结二极管具有差的反向恢复特性。一旦PN结二极管导通,空穴和电子二者均会产生,所以需要较长的时间来通过电子空穴复合消除空穴和电子载流子。
肖特基二极管(Schottky diode)由于其金属半导体接触结构而具有比PN结二极管小的正向电压降。此外,由于肖特基二极管是单载流子器件(仅电子),所以它具有比PN结二极管更好的反向恢复特性。归因于上述优点,已经提出了将肖特基二极管与沟槽型MOSFET集成,使肖特基二极管与沟槽型MOSFET的本体二极管并联,以获得更好的器件性能,例如更小的功率损耗和更快的开关速度。
目前的集成沟槽型MOSFET和肖特基二极管的半导体器件具有这样的结构,其中在肖特基二极管区域的旁边设置完全扩散的p型阱,或者设置额外的更深的p型阱从而能以低的漏极电压掐断(pinch off)肖特基二极管区域,提高肖特基二极管的击穿电压(breakdown voltage)。然而,对于完全扩散p型阱而言,由于其深的结,需要占据大的管芯面积以用于形成大尺寸的p型阱,这降低了器件的功率面积比。对于额外的更深的p型阱而言,需要使用额外的掩模和热扩散工艺,制造工艺复杂且增加了成本。而且,上述两种结构的半导体器件都具有低的管芯尺寸利用率。
发明内容
本发明的一个方面在于提供一种半导体器件及其制造方法,该半导体器件集成有沟槽型金属氧化物半导体场效应晶体管和肖特基二极管,具有紧凑的器件结构,且节省了管芯的使用面积。
本发明的至少一个方面可通过提供一种半导体器件来实现,该半导体器件包括:沟槽型的金属氧化物半导体场效应晶体管,形成于n型半导体衬底中;集成的肖特基二极管,位于该金属氧化物半导体场效应晶体管旁边,且包括与该n型半导体衬底接触的正极金属层;以及沟槽隔离结构,位于该金属氧化物半导体场效应晶体管和该肖特基二极管之间,从而阻挡该金属氧化物半导体场效应晶体管的p型阱掺杂区的一部分朝向该肖特基二极管扩散,其中该p型阱掺杂区具有经该沟槽隔离结构下方横向扩散到该肖特基二极管的靠近该沟槽隔离结构的部分区域中的突出部。
本发明的至少一个方面还可通过提供一种半导体器件来实现,该半导体器件集成有沟槽型的金属氧化物半导体场效应晶体管和肖特基二极管,该半导体器件包括:n型半导体衬底;p型阱掺杂区,位于该n型半导体衬底中;n+型掺杂区,位于该p型阱掺杂区的表面处;第一沟槽,穿过该n+型掺杂区和该p型阱掺杂区向下延伸到该n型半导体衬底中,且具有形成在其中的栅极结构;第二沟槽,位于该p型阱掺杂区旁边,并具有形成在其中的沟槽隔离结构以阻挡该p型阱掺杂区的一部分的横向扩散;正极金属层,位于相邻的两个第二沟槽之间的该n型半导体衬底上以形成金属-半导体接触面,其中该p型阱掺杂区具有经该第二沟槽下方横向扩散到所述相邻的两个第二沟槽之间的n型半导体衬底的部分区域中的突出部。
在一实施例中,该沟槽隔离结构可包括形成在沟槽中的栅极结构。
在一实施例中,该沟槽隔离结构可包括形成在沟槽中的绝缘材料。
在一实施例中,该第二沟槽的深度浅于该第一沟槽。
在一实施例中,该半导体器件还包括:源极电极,形成于该n+型掺杂区中,其中该正极金属层可电连接到该源极电极。
在一实施例中,该源极电极穿过该n+型掺杂区向下延伸到该p型阱掺杂区中,且在该源极电极的位于该p型阱掺杂区中的末端周围形成有p+区。
本发明的至少一个方面还可通过提供一种形成半导体器件的方法来实现,该方法包括:提供n型半导体衬底;在该n型半导体衬底中形成第一沟槽;在该第一沟槽旁边的该n型半导体衬底中形成第二沟槽,该第二沟槽比该第一沟槽浅;在该第一沟槽中形成栅极结构;在该第二沟槽中形成沟槽隔离结构;在该第二沟槽的面向该第一沟槽的一侧进行离子注入工艺,并进行扩散工艺以形成p型阱掺杂区,该p型阱掺杂区的下表面介于该第一沟槽的下端和该第二沟槽的下端之间,该p型阱掺杂区具有经该第二沟槽下方横向扩散到相邻的第二沟槽之间的部分n型半导体衬底区域中的突出部;在该p型阱掺杂区的表面处形成n+源极区;在该n+源极区中形成源极电极;以及在相邻的第二沟槽之间的该n型半导体衬底上形成正极金属层。
在一实施例中,该沟槽隔离结构具有与该第一沟槽中的栅极结构相同的结构,且与该第一沟槽中的栅极结构同时形成。
在一实施例中,该沟槽隔离结构由绝缘材料形成。
附图说明
通过参照附图描述本发明的示范实施方式,本发明的上述和/或其他特征和优点将更加明显,附图中:
图1是根据本发明一示范实施方式的集成沟槽型MOSFET和肖特基二极管的半导体器件的剖视图;
图2是根据本发明一示范实施方式的集成沟槽型MOSFET和肖特基二极管的半导体器件的俯视图;
图3A(1)、3A(2)、3A(3)、3B、3C、3D、3E和3F是剖视图,示出根据本发明一示范实施方式的形成集成有沟槽型MOSFET和肖特基二极管的半导体器件的方法。
具体实施方式
下面参照附图更充分地描述本发明的示范实施方式。然而,本发明可以以许多不同形式体现,不应理解为局限于这里阐述的示范实施方式。
附图是示范实施方式和/或中间结构的理想化示意图。应理解,例如制造技术和/或容差导致的图示形状的变化是可以预期的。因此,本发明的示范实施方式不应解释为局限于这里所示区域的特定形状,而是包括例如制造导致的形状偏差。例如,示出为矩形的注入区域通常在其边缘具有圆化或弯曲的特征和/或注入浓度梯度,而不是从注入区到非注入区的二元改变。同样,通过注入形成的掩埋区可导致该掩埋区和进行注入时所经过的表面之间的区域中的一些注入。因此,图中显示的区域实质上是示意性的,它们的形状不意图限定本发明的范围。还应理解,附图不是按比例绘制的。为了清晰,层和区域的尺寸可被放大。
还应理解,下面用“+”和“-”来描述掺杂区的相对浓度,但是这并不限制掺杂区的浓度范围,也不对掺杂区进行其他方面的限制。例如,下面描述为n+或n-的掺杂区,亦可以称为n型掺杂区。
图1是剖视图,示出根据本发明一示范实施方式的集成有沟槽型MOSFET和肖特基二极管的半导体器件。图2是俯视图,示出根据本发明一示范实施方式的集成有沟槽型MOSFET和肖特基二极管的半导体器件。在图2中,为了清楚地示出半导体器件的半导体衬底中的各个区域的分布而省略了形成在半导体衬底的表面上的部件。
如图1和2所示,根据本发明一示范实施方式的半导体器件100可包括沟槽型MOSFET 10、肖特基二极管20、以及位于它们之间的沟槽隔离结构206。半导体器件100可具有n型半导体衬底,在一示例中,n型半导体衬底例如包括n+型衬底101和形成于n+型衬底101上的n-型外延层102。n型半导体衬底(或者n-型外延层102)可具有形成在其中的p-型阱掺杂区103。n-型外延层102还可具有形成在p-型阱掺杂区103的表面处的n+层105。将理解,n+层105可用作沟槽型MOSFET 10的源极,n型半导体衬底可用作MOSFET 10的漏极。
第一沟槽104穿过源极105和p-型阱掺杂区103延伸到n型半导体衬底或n-型外延层102中。第一沟槽104的内壁可覆盖有栅极绝缘层106。沟槽型MOSFET的栅极G可形成于第一沟槽104中且包括例如多晶硅。
源极电极108可形成得接触源极105。在一示范实施方式中,源极电极108可形成在源极105的表面上。在又一示范实施方式中,源极电极108形成得穿过源极105并延伸到p-型阱掺杂区103中。在后一情况中,优选地,在源极电极108的延伸到p-型阱掺杂区103中的末端周围形成p+区107,从而减小p-型阱掺杂区103在此处的电阻,提高器件的UIS能力。
参照图1和2,肖特基二极管20位于沟槽型MOSFET 10旁边且透过沟槽隔离结构206与沟槽型MOSFET 10隔开。肖特基二极管20包括n型半导体部分201和形成在n型半导体部分201上的正极金属层202,从而形成金属-半导体接触面。n型半导体部分201可以是n型半导体衬底或者n-型外延层102的位于相邻的两个沟槽隔离结构206之间的部分。肖特基二极管20的正极金属层202可电连接到MOSFET 10的源极电极108。
沟槽隔离结构206位于沟槽型MOSFET 10与肖特基二极管20之间且与二者接触。在一实施例中,沟槽隔离结构206可包括与第一沟槽104中的栅极结构相同的栅极结构,此时,正极金属层202可以接触(如图1所示)也可以不接触(未示出)沟槽隔离结构206中的栅极;在另一实施例中,沟槽隔离结构206可通过用绝缘材料例如二氧化硅填满沟槽来形成。在前一种情况中,沟槽隔离结构206可与第一沟槽104(包括其中的栅极结构)同时形成;在后一情况中,可以单独地形成第一沟槽104(包括其中的栅极结构)和沟槽隔离结构206。这将在下面详细论述。
在图1所示的实施例中,沟槽隔离结构206可延伸得比p-型阱掺杂区103的下表面更浅。这样,沟槽隔离结构206可阻挡p-型阱掺杂区103的部分横向扩散,从而也能以较小的p-型阱掺杂区103形成沟槽型MOSFET 10,获得紧凑的器件结构,节省管芯的使用面积。此外,在沟槽隔离结构206下方,p-型阱掺杂区103可向肖特基二极管20横向扩散,例如可扩散得超过沟槽隔离结构206的侧表面,突出到肖特基二极管20的n型半导体部分201中,从而形成突出部1031,如图1所示。突出部1031有助于以较低的漏极电压掐断(pinch off)肖特基二极管区域,从而提高肖特基二极管20的击穿电压(breakdown voltage)。例如,在一示例中,可以使肖特基二极管20具有与MOSFET 10相同的击穿电压。从而,本示例的半导体器件还可具有改善的性能。
如图1和2所示,肖特基二极管20可插入在相邻的沟槽型MOSFET 10之间,且通过两个沟槽隔离结构206分别与两个相邻的沟槽型MOSFET 10分隔开。这样,肖特基二极管的电流路径被限制在沟槽隔离结构206之间。可以理解,肖特基二极管20可插入在整个管芯上的相邻的沟槽型MOSFET10之间,从而提高管芯的面积利用率。
应理解,根据本发明一示范实施方式的半导体器件可具有上述特征和优点中的一个或者多个,而不一定是全部。
图3A(1)、3A(2)、3A(3)、3B、3C、3D、3E和3F是剖视图,示出根据本发明一示范实施方式的形成集成有沟槽型MOSFET和肖特基二极管的半导体器件的方法。在下面对该示范实施方式的描述中,省略对公知的步骤、工艺、材料、掺杂剂等的描述。而且,本领域技术人员可以理解,下面描述的步骤能以不同的顺序实施,而不局限于下面阐述的示例。
参照图3A(1)、3A(2)、3A(3)和3B,提供n型半导体衬底,并在n型半导体衬底中形成第一沟槽104和第二沟槽204。n型半导体衬底可包括例如n+型半导体衬底101和形成在其上的n-型外延层102。可以有至少以下三种方法来形成第一沟槽104和第二沟槽204:如图3A(1)和3B所示,先形成第二沟槽204,然后形成比第二沟槽204更深的第一沟槽104;如图3A(3)和3B所示,先形成第一沟槽104,然后形成比第一沟槽104更浅的第二沟槽204;或者如图3A(2)和3B所示,形成多个第二沟槽204,然后通过加深部分第二沟槽204来形成第一沟槽104。
然后如图3C所示,在第一沟槽104和第二沟槽204中形成栅极绝缘层106和栅极G。栅极绝缘层106和栅极G可同时形成在第一沟槽104和第二沟槽204中,其形成方法可包括例如先顺序形成栅极绝缘层材料和栅极材料,然后通过研磨或蚀刻工艺来去除沟槽之外的栅极绝缘层材料和栅极材料。
这里示出了第二沟槽204具有与第一沟槽104中的栅极结构相同的栅极结构的实施例。如前所述,第二沟槽204亦可仅被绝缘材料填充。此时,可以遮蔽第一沟槽104而在第二沟槽204中单独填充绝缘材料例如二氧化硅。
本领域技术人员可以理解,这里阐述的步骤能以其他顺序或者以其他工艺实施,不限于这里公开的特定细节。例如,可以先形成第一沟槽104并在第一沟槽104中形成栅极结构,然后遮蔽第一沟槽104,形成第二沟槽204并在第二沟槽204中形成隔离结构。反之亦可。
如图3D所示,在第二沟槽204的面向第一沟槽104的一侧进行离子注入工艺,并进行扩散工艺以形成p-型阱掺杂区103。离子注入不在相邻第二沟槽204之间的区域进行,如图3D所示。所形成的p-型阱掺杂区103的深度可大于第二沟槽204的深度而小于第一沟槽104的深度。如图所示,p-型阱掺杂区103具有经第二沟槽204下方横向扩散到相邻第二沟槽204之间的部分n型半导体衬底区域中的突出部1031。
如图3E所示,在p-型阱掺杂区103的表面处形成n+源极区105。
如图3F所示,在n+源极区105中形成源极电极108,并且在相邻第二沟槽204之间的n型半导体衬底上形成肖特基二极管20的正极金属层202。正极金属层202可以接触第二沟槽204中的栅极,且可以电连接到源极电极108。在图3F中,源极电极108穿透源极105并延伸到p-型阱掺杂区103中。在另一示范实施例中,源极电极108亦可位于源极105的表面上(未示出)。此外,还可以在源极电极108的位于p-型阱掺杂区103中的末端周围形成p+区。
然后,可通过后续工艺完成半导体器件的制作。
尽管描述了本发明的示例实施方式,但应该理解,本发明不限于这些示例实施方式,在不脱离权利要求所限定的本发明的精神和范围内,本领域技术人员可以进行各种修改和变型。

Claims (10)

1.一种半导体器件,包括:
沟槽型的金属氧化物半导体场效应晶体管,形成于n型半导体衬底中;
集成的肖特基二极管,位于该金属氧化物半导体场效应晶体管旁边,且包括与该n型半导体衬底接触的正极金属层;以及
沟槽隔离结构,位于该金属氧化物半导体场效应晶体管和该肖特基二极管之间,从而阻挡该金属氧化物半导体场效应晶体管的p型阱掺杂区的一部分朝向该肖特基二极管扩散,
其中该p型阱掺杂区具有经该沟槽隔离结构下方横向扩散到该肖特基二极管的靠近该沟槽隔离结构的部分区域中的突出部。
2.一种半导体器件,集成有沟槽型的金属氧化物半导体场效应晶体管和肖特基二极管,该半导体器件包括:
n型半导体衬底;
p型阱掺杂区,位于该n型半导体衬底中;
n+型掺杂区,位于该p型阱掺杂区的表面处;
第一沟槽,穿过该n+型掺杂区和该p型阱掺杂区向下延伸到该n型半导体衬底中,且具有形成在其中的栅极结构;
第二沟槽,位于该p型阱掺杂区旁边,并具有形成在其中的沟槽隔离结构以阻挡该p型阱掺杂区的一部分的横向扩散;
正极金属层,位于相邻的两个第二沟槽之间的该n型半导体衬底上以形成金属-半导体接触面,
其中该p型阱掺杂区具有经该第二沟槽下方横向扩散到所述相邻的两个第二沟槽之间的n型半导体衬底的部分区域中的突出部。
3.如权利要求1或2所述的半导体器件,其中该沟槽隔离结构包括形成在沟槽中的栅极结构。
4.如权利要求1或2所述的半导体器件,其中该沟槽隔离结构包括形成在沟槽中的绝缘材料。
5.如权利要求2所述的半导体器件,其中该第二沟槽的深度浅于该第一沟槽。
6.如权利要求2所述的半导体器件,还包括:
源极电极,形成于该n+型掺杂区中,
其中该正极金属层电连接到该源极电极。
7.如权利要求6所述的半导体器件,其中该源极电极穿过该n+型掺杂区向下延伸到该p型阱掺杂区中,且
在该源极电极的位于该p型阱掺杂区中的末端周围形成有p+区。
8.一种形成半导体器件的方法,包括:
提供n型半导体衬底;
在该n型半导体衬底中形成第一沟槽;
在该第一沟槽旁边的该n型半导体衬底中形成第二沟槽,该第二沟槽比该第一沟槽浅;
在该第一沟槽中形成栅极结构;
在该第二沟槽中形成沟槽隔离结构;
在该第二沟槽的面向该第一沟槽的一侧进行离子注入工艺,并进行扩散工艺以形成p型阱掺杂区,该p型阱掺杂区的下表面介于该第一沟槽的下端和该第二沟槽的下端之间,该p型阱掺杂区具有经该第二沟槽下方横向扩散到相邻的第二沟槽之间的部分n型半导体衬底区域中的突出部;
在该p型阱掺杂区的表面处形成n+源极区;
在该n+源极区中形成源极电极;以及
在相邻的第二沟槽之间的该n型半导体衬底上形成正极金属层。
9.如权利要求8所述的方法,其中该沟槽隔离结构具有与该第一沟槽中的栅极结构相同的结构,且与该第一沟槽中的栅极结构同时形成。
10.如权利要求8所述的方法,其中该沟槽隔离结构由绝缘材料形成。
CN201010526997.6A 2010-10-22 2010-10-22 半导体器件及其制造方法 Active CN102456690B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201010526997.6A CN102456690B (zh) 2010-10-22 2010-10-22 半导体器件及其制造方法
US13/278,463 US8716784B2 (en) 2010-10-22 2011-10-21 Semiconductor device and associated fabrication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010526997.6A CN102456690B (zh) 2010-10-22 2010-10-22 半导体器件及其制造方法

Publications (2)

Publication Number Publication Date
CN102456690A true CN102456690A (zh) 2012-05-16
CN102456690B CN102456690B (zh) 2014-07-02

Family

ID=46039669

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010526997.6A Active CN102456690B (zh) 2010-10-22 2010-10-22 半导体器件及其制造方法

Country Status (2)

Country Link
US (1) US8716784B2 (zh)
CN (1) CN102456690B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779416A (zh) * 2014-01-20 2014-05-07 张家港凯思半导体有限公司 一种低vf的功率mosfet器件及其制造方法
CN104425569A (zh) * 2013-09-11 2015-03-18 英飞凌科技股份有限公司 半导体器件、结型场效应晶体管和垂直场效应晶体管
CN110148629A (zh) * 2019-03-18 2019-08-20 电子科技大学 一种沟槽型碳化硅mosfet器件及其制备方法
CN111244181A (zh) * 2020-01-19 2020-06-05 深圳市昭矽微电子科技有限公司 金属氧化物半导体场效应晶体管及其制作方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102046663B1 (ko) * 2013-11-04 2019-11-20 매그나칩 반도체 유한회사 반도체 소자 및 그 제조방법
US10388781B2 (en) * 2016-05-20 2019-08-20 Alpha And Omega Semiconductor Incorporated Device structure having inter-digitated back to back MOSFETs
CN106449419A (zh) * 2016-12-08 2017-02-22 西安电子科技大学 基于Ga2O3材料的U型栅MOSFET及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6351018B1 (en) * 1999-02-26 2002-02-26 Fairchild Semiconductor Corporation Monolithically integrated trench MOSFET and Schottky diode
US6433396B1 (en) * 1999-10-05 2002-08-13 International Rectifier Corporation Trench MOSFET with integrated schottky device and process for its manufacture
US20080012050A1 (en) * 2006-07-14 2008-01-17 Denso Corporation Semiconductor device
CN101853852A (zh) * 2010-04-29 2010-10-06 苏州硅能半导体科技股份有限公司 单胞中集成肖特基二极管的沟槽mos器件及制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7652326B2 (en) * 2003-05-20 2010-01-26 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US6987305B2 (en) * 2003-08-04 2006-01-17 International Rectifier Corporation Integrated FET and schottky device
US7952139B2 (en) * 2005-02-11 2011-05-31 Alpha & Omega Semiconductor Ltd. Enhancing Schottky breakdown voltage (BV) without affecting an integrated MOSFET-Schottky device layout
TWI382534B (zh) * 2009-05-13 2013-01-11 Anpec Electronics Corp 整合金氧半導體場效電晶體與蕭特基二極體之半導體元件及其製作方法
US8169801B2 (en) 2009-05-28 2012-05-01 Monolithic Power Systems, Inc. Voltage converters with integrated low power leaker device and associated methods
US20110057259A1 (en) 2009-09-04 2011-03-10 Tiesheng Li Method for forming a thick bottom oxide (tbo) in a trench mosfet
US7977193B1 (en) 2010-08-20 2011-07-12 Monolithic Power Systems, Inc. Trench-gate MOSFET with capacitively depleted drift region

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6351018B1 (en) * 1999-02-26 2002-02-26 Fairchild Semiconductor Corporation Monolithically integrated trench MOSFET and Schottky diode
US6433396B1 (en) * 1999-10-05 2002-08-13 International Rectifier Corporation Trench MOSFET with integrated schottky device and process for its manufacture
US20080012050A1 (en) * 2006-07-14 2008-01-17 Denso Corporation Semiconductor device
CN101853852A (zh) * 2010-04-29 2010-10-06 苏州硅能半导体科技股份有限公司 单胞中集成肖特基二极管的沟槽mos器件及制造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104425569A (zh) * 2013-09-11 2015-03-18 英飞凌科技股份有限公司 半导体器件、结型场效应晶体管和垂直场效应晶体管
CN104425569B (zh) * 2013-09-11 2018-02-23 英飞凌科技股份有限公司 半导体器件、结型场效应晶体管和垂直场效应晶体管
CN103779416A (zh) * 2014-01-20 2014-05-07 张家港凯思半导体有限公司 一种低vf的功率mosfet器件及其制造方法
CN103779416B (zh) * 2014-01-20 2016-06-29 张家港凯思半导体有限公司 一种低vf的功率mosfet器件及其制造方法
CN110148629A (zh) * 2019-03-18 2019-08-20 电子科技大学 一种沟槽型碳化硅mosfet器件及其制备方法
CN111244181A (zh) * 2020-01-19 2020-06-05 深圳市昭矽微电子科技有限公司 金属氧化物半导体场效应晶体管及其制作方法
CN111244181B (zh) * 2020-01-19 2022-05-17 深圳市昭矽微电子科技有限公司 金属氧化物半导体场效应晶体管及其制作方法

Also Published As

Publication number Publication date
US20120098058A1 (en) 2012-04-26
US8716784B2 (en) 2014-05-06
CN102456690B (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
CN108198851B (zh) 一种具有载流子存储效应的超结igbt
CN105531825B (zh) 半导体装置及半导体装置的制造方法
US7465964B2 (en) Semiconductor device in which an injector region is isolated from a substrate
CN101645448B (zh) 用于在沟槽下形成pn嵌位区的结构和方法
US8933506B2 (en) Diode structures with controlled injection efficiency for fast switching
US9685523B2 (en) Diode structures with controlled injection efficiency for fast switching
US9105680B2 (en) Insulated gate bipolar transistor
CN102867846B (zh) 半导体器件
US10593813B2 (en) Vertical rectifier with added intermediate region
CN102456690B (zh) 半导体器件及其制造方法
KR20150076814A (ko) 전력 반도체 소자
CN109216444A (zh) 半导体装置
CN103855206A (zh) 绝缘栅双极晶体管及其制造方法
CN103872097B (zh) 功率半导体设备及其制造方法
KR20150051067A (ko) 전력 반도체 소자 및 그의 제조 방법
CN103199018B (zh) 场阻断型半导体器件的制造方法和器件结构
CN104253152A (zh) 一种igbt及其制造方法
CN113659009A (zh) 体内异性掺杂的功率半导体器件及其制造方法
CN115483281A (zh) 逆导型横向绝缘栅双极型晶体管
KR20150061201A (ko) 전력 반도체 소자 및 그 제조 방법
CN104253154A (zh) 一种具有内置二极管的igbt及其制造方法
CN102544083B (zh) 一种mos型功率器件及其制造方法
CN116978925A (zh) 一种超结mosfet及其制作方法
CN101385151A (zh) 具有自偏压电极的横向功率器件
CN101512738B (zh) 半导体器件和形成半导体器件的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant