CN102455549A - 液晶显示装置 - Google Patents

液晶显示装置 Download PDF

Info

Publication number
CN102455549A
CN102455549A CN2011103204581A CN201110320458A CN102455549A CN 102455549 A CN102455549 A CN 102455549A CN 2011103204581 A CN2011103204581 A CN 2011103204581A CN 201110320458 A CN201110320458 A CN 201110320458A CN 102455549 A CN102455549 A CN 102455549A
Authority
CN
China
Prior art keywords
electrode
liquid crystal
pixel
edge
crystal indicator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103204581A
Other languages
English (en)
Other versions
CN102455549B (zh
Inventor
岩本宜久
福嶋宙人
片野邦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010241386A external-priority patent/JP5584091B2/ja
Priority claimed from JP2010241408A external-priority patent/JP5572061B2/ja
Priority claimed from JP2010241238A external-priority patent/JP5511626B2/ja
Priority claimed from JP2010263294A external-priority patent/JP5511640B2/ja
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Publication of CN102455549A publication Critical patent/CN102455549A/zh
Application granted granted Critical
Publication of CN102455549B publication Critical patent/CN102455549B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13373Disclination line; Reverse tilt
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

本发明提供液晶显示装置。可使在从反视认方向观察时的各像素的边缘附近的漏光均匀,可提高显示质量。本发明的液晶显示装置具有:第1电极(11),其设置在第1基板的一面上,朝第1方向延伸;第2电极(12),其设置在第2基板的一面上,朝与第1方向大致垂直的第2方向延伸;以及大致垂直取向的液晶层,其设置在第1基板的一面和第2基板的一面的相互之间,在第1电极和第2电极交叉的区域内构成像素。朝与第1方向大致平行的方向对第1基板和第2基板中的至少一方实施取向处理(13、14)。第1电极是两侧的电极边缘朝第1方向延伸的直线状的形状,第2电极是包含至少单侧的电极边缘与第1方向斜交的线段的折线状形状。上述的像素包含上述的斜交的线段来划定像素边缘。

Description

液晶显示装置
技术领域
本发明涉及被多工驱动的垂直取向型的液晶显示装置。
背景技术
液晶显示装置广泛用作例如民生用和车载用的各种电子设备中的信息显示部。一般的液晶显示装置是在设置数μm左右的间隙进行对置配置的2块基板间配置由液晶材料构成的液晶层而构成的。作为这种液晶显示装置之一公知有垂直取向型的液晶显示装置(例如日本特开2005-234254号公报)。垂直取向型的液晶显示装置具有以下部件作为主要结构:即,垂直取向模式的液晶单元,其使配置在2块基板间的液晶层的内部的液晶分子相对于各基板的表面大致垂直取向;以及偏光板,其分别设置在该液晶单元的外侧。各偏光板大多采用正交尼科尔(cross Nicol)配置。这样,液晶显示装置的无电压施加时的透射率非常低,因而能够比较简单地实现高对比度。
在通过多工驱动实现液晶显示装置的图像显示的情况下,例如,使各自具有长方形状(条状)的电极的基板之间对置配置成使各自的电极的延伸方向大致垂直,将一个基板的电极和另一个基板的电极交叉的区域分别设定为像素。此时,各像素的形状为大致矩形。并且,对各基板的表面实施摩擦处理等取向处理。针对各基板的表面的取向处理的方向被设定为例如相反的方向(反平行取向)。由此,将设置在基板间的液晶层的层厚方向的大致中央的无电压施加时的液晶分子的取向方向决定为单方向。例如,在对各基板的取向处理的方向从液晶显示装置的正面观察为6时方向、12时方向的情况下,将液晶层的大致中央的液晶分子的取向方向决定为6时方向。此时,相对于液晶层的大致中央的液晶层的取向方向,一个基板的电极的延伸方向为大致平行于该取向方向,另一个基板的电极的延伸方向大致垂直于该取向方向。
在上述的垂直取向模式的液晶显示装置中,考虑了在各基板的外侧配置了采用大致正交尼科尔配置的一对偏光板。假定,一个偏光板被配置成其吸收轴相对于对一个基板施加的取向方向成大致45°的角度。当使用具有负的介电常数各向异性的液晶材料来构成液晶层、并在各基板的电极间施加了阈值电压以上的电压时,液晶层内的大部分液晶分子根据取向处理的方向朝水平取向方向倾斜。当观察该液晶显示装置时,处于这样的状态:从6时方向能良好地观察到亮显示状态,反之从12时方向观察不到亮显示。此时的6时方向被称为最佳视认方向(最佳视认方位),12时方向被称为反视认方向(反视认方位)。
在上述的垂直取向模式的液晶显示装置中,在正面观察时为亮显示状态的状态下从反视认方向观察的情况下,在像素内在大致暗状态下进行观察,而在矩形的像素的4边的像素边缘中的1边附近产生漏光。该漏光的产生状态没有规则性且随各像素而不同,使外观上的显示质量显著下降。
并且,在上述的垂直取向模式的液晶显示装置中存在这样的情况:当在多工驱动时为正面观察时的亮显示状态时,在各像素内产生暗区域,显示质量下降。通过减少帧频率该现象将表现得显著,因而为了消除该现象,有必要将驱动频率设定得更高。然而,当使驱动频率上升时,电极间的阻抗增加,因而消耗电流增加,驱动装置的负载增加,并且,电极上的电位差也变得显著,显示质量下降。具体地说,容易产生所谓的串扰(crosstalk)。
【专利文献1】日本特开2005-234254号公报
发明内容
本发明涉及的具体形态,其一个目的是在通过多工驱动进行动作的垂直取向型的液晶显示装置中,使在从反视认方向观察时的各像素的边缘附近的漏光均匀,提高显示质量。
本发明涉及的具体形态,其另一个目的是在通过多工驱动进行动作的垂直取向型的液晶显示装置中,使在从反视认方向观察时的各像素的边缘附近的漏光均匀,提高显示质量,并且以尽可能低的帧频率实现正面观察时的显示均匀性。
本发明涉及的一个形态的液晶显示装置,该液晶显示装置包括:(a)对置配置的第1基板和第2基板;(b)第1电极,其设置在所述第1基板的一面上,朝第1方向延伸;(c)第2电极,其设置在所述第2基板的一面上,朝与第1方向大致垂直的第2方向延伸;(d)以及大致垂直取向的液晶层,其设置在所述第1基板的一面和所述第2基板的一面的相互间,(e)在所述第1电极和所述第2电极交叉的区域内构成像素,(f)朝与所述第1方向大致平行的方向对所述第1基板和所述第2基板中的至少一方实施取向处理,(g)所述第1电极是两侧的电极边缘朝所述第1方向延伸的直线状的形状,(h)所述第2电极是包含至少单侧的电极边缘与所述第1方向斜交的线段的折线状的形状,(i)所述像素包含所述斜交的线段在内划定像素边缘。另外,在本说明书中,“斜交”是指以垂直以外的角度倾斜交叉。
根据该结构,由于包含与取向处理的方向进行斜交的线段来划定像素边缘,因而能够使在从反视认方向观察时的各像素的边缘附近的漏光均匀,提高显示质量。
优选的是,上述斜交的线段以所述第2方向为基准形成大于0°且小于等于15°的角度进行斜交。
并且,还优选的是,上述斜交的线段是将朝相互不同的方向延伸的第1直线和第2直线连接而构成的。在该情况下,优选的是,所述第1直线和所述第2直线存在这样的关系:设将它们朝所述第1方向投影时的长度分别为Xa、Xb,则Xa是Xb的3倍以上,所述第1直线以所述第2方向为基准形成大于0°且小于等于15°的角度进行斜交。
并且,还优选的是,上述斜交的线段是将彼此长度大致相等、且朝相互不同的方向延伸的第1直线和第2直线连接而构成的。在该情况下,优选的是,所述第1直线和所述第2直线分别以所述第2方向为基准形成大于0°且小于等于15°的角度进行斜交。
优选的是,上述斜交的线段配置在特别是所述像素边缘中的反视认方向侧。
本发明涉及的另一个形态的液晶显示装置,该液晶显示装置包括:(a)对置配置的第1基板和第2基板;(b)第1电极,其设置在所述第1基板的一面上,朝第1方向延伸;(c)第2电极,其设置在所述第2基板的一面上,朝与第1方向大致垂直的第2方向延伸;(d)以及大致垂直取向的液晶层,其设置在所述第1基板的一面和所述第2基板的一面的相互间,(e)在所述第1电极和所述第2电极交叉的区域内构成像素,(f)朝单方向对所述第1基板和所述第2基板中的至少一方实施取向处理,(g)所述第1电极的各像素边缘具有包含各自与第2方向斜交、且朝向相互不同的方向、相互连接的大致相同长度的2个第1线段的折线状形状,(h)所述第2电极的各像素边缘具有包含各自与第1方向斜交、且朝向相互不同的方向、相互连接的大致相同长度的2个第2线段的折线状形状,(i)所述像素由所述2个第1线段和所述2个第2线段划定像素边缘。
根据该结构,由于包含与取向处理的方向进行斜交的线段来划定像素边缘,因而能够使在从反视认方向观察时的各像素的边缘附近的漏光均匀,提高显示质量。并且,通过使像素边缘全部成为与第1方向和第2方向均斜交的状态,可获得降低得到正面观察时的显示均匀性的帧频率的效果。
优选的是,所述2个第1线段分别以所述第1方向为基准,形成大于0°且小于等于15°的角度进行斜交。
优选的是,第1电极的一侧和另一侧的各个所述像素边缘是相同的形状。由此,能提高排列多个第1电极时的面积效率。
优选的是,所述2个第2线段分别以所述第2方向为基准,形成大于0°且小于等于15°的角度进行斜交。
优选的是,第2电极的一侧和另一侧的各个所述像素边缘是相同的形状。由此,能提高排列多个第1电极时的面积效率。
本发明涉及的另一个形态的液晶显示装置,该液晶显示装置包括:(a)对置配置的第1基板和第2基板;(b)第1电极,其设置在所述第1基板的一面上,朝第1方向延伸;(c)第2电极,其设置在所述第2基板的一面上,朝与第1方向大致垂直的第2方向延伸;(d)以及大致垂直取向的液晶层,其设置在所述第1基板的一面和所述第2基板的一面的相互之间,(e)在所述第1电极和所述第2电极交叉的区域内构成像素,(f)朝与所述第1方向大致平行的方向对所述第1基板和所述第2基板中的至少一方实施取向处理,(g)所述第1电极是两侧的电极边缘朝所述第1方向延伸的直线状形状,并且具有1个以上的沿所述第1方向较长的矩形状的开口部,(h)所述第2电极是包含两侧的电极边缘与所述第1方向斜交的线段的折线状形状,(i)所述像素由所述第1电极的电极边缘和所述第2电极的像素边缘的所述斜交的线段来划定像素边缘,(j)所述开口部配置成与所述像素重叠。
根据该结构,由于包含与取向处理的方向进行斜交的线段来划定像素边缘,因而能够使在从反视认方向观察时的各像素的边缘附近的漏光均匀,提高显示质量。并且,获得这样的效果:通过设置与像素重叠的矩形部,使获得正面观察时的显示均匀性的帧频率下降。
在上述的液晶显示装置中,优选的是,所述进行斜交的线段以所述第1方向为基准形成大于0°且小于等于15°的角度进行斜交。
在上述的液晶显示装置中,优选的是,所述开口部配置成使长度方向与所述第1方向平行。
在上述的液晶显示装置中,还优选的是,所述开口部配置成使长度方向相对于所述第1方向倾斜。在该情况下,还优选的是,所述开口部配置成使所述长度方向与所述进行斜交的线段大致垂直。
本发明涉及的另一个形态的液晶显示装置,该液晶显示装置包括:(a)对置配置的第1基板和第2基板;(b)第1电极,其设置在所述第1基板的一面上,朝第1方向延伸;(c)第2电极,其设置在所述第2基板的一面上,朝与第1方向大致垂直的第2方向延伸;(d)以及大致垂直取向的液晶层,其设置在所述第1基板的一面和所述第2基板的一面的相互间,(e)在所述第1电极和所述第2电极交叉的区域内构成像素,(f)朝与所述第1方向大致平行的方向对所述第1基板和所述第2基板中的至少一方实施取向处理,(g)所述第1电极是两侧的电极边缘朝所述第1方向延伸的直线状的形状,(h)所述第2电极是包含两侧的电极边缘与所述第1方向斜交的线段的折线状的形状,(i)所述第1电极的电极宽度小于所述第2电极的电极宽度,(j)所述像素由所述第1电极的电极边缘和所述第2电极的像素边缘的所述进行斜交的线段划定像素边缘,(k)所述像素边缘形成为沿着所述第1方向较长的形状。
根据该结构,由于包含相对于取向处理的方向进行斜交的线段在内划定像素边缘,因而能够使在从反视认方向观察时的各像素的边缘附近的漏光均匀,提高显示质量。并且,获得这样的效果:通过使第1电极的电极宽度相对小,并使像素边缘形成为沿着第1方向长的形状,使获得正面观察时的显示均匀性的帧频率下降。
在上述的液晶显示装置中,优选的是,例如,所述第2电极具有两侧的所述电极边缘的形状大致相同、所述电极宽度大致恒定的结构,所述像素边缘是沿着所述第1方向长的大致平行四边形状。
在上述的液晶显示装置中,还优选的是,例如,所述第2电极具有使一侧的所述电极边缘的弯曲点和另一侧的所述电极边缘的弯曲点相对接近的部位和分离的部位交替重复的结构,所述像素边缘是沿着所述第1方向长的梯形形状。
在上述的液晶显示装置中,优选的是,所述第1电极的电极宽度是所述第2电极的电极宽度的大致1/2以下。
附图说明
图1是示出一个实施方式的液晶显示装置的结构的示意性截面图。
图2是示出类型A的电极结构的示意性平面图。
图3是示出类型B的电极结构的示意性平面图。
图4是示出类型C的电极结构的示意性平面图。
图5是示出类型D的电极结构的示意性平面图。
图6是示出类型E的电极结构的示意性平面图。
图7是示出类型F的电极结构的示意性平面图。
图8是示出类型G的电极结构的示意性平面图。
图9是示出具有类型A的电极结构的液晶显示装置的电压施加时的取向组织观察像的图。
图10是示出具有类型B的电极结构的液晶显示装置的电压施加时的取向组织观察像的图。
图11是示出具有类型C的电极结构的液晶显示装置的电压施加时的取向组织观察像的图。
图12是示出具有类型D的电极结构的液晶显示装置的电压施加时的取向组织观察像的图。
图13是示出具有类型E的电极结构的液晶显示装置(在θ=10°的情况下)的电压施加时的取向组织观察像的图。
图14是示出具有类型G的电极结构的液晶显示装置(在θ=10°的情况下)的电压施加时的取向组织观察像的图。
图15是示出类型H的电极结构的示意性平面图。
图16是示出具有类型G的电极结构的液晶显示装置的电压施加时的取向组织观察像的图。
图17是示出具有类型F的电极结构的液晶显示装置的电压施加时的取向组织观察像的图。
图18是示出作为第1电极具有类型H的电极结构、且作为第2电极具有与类型G的电极结构相同的电极结构的液晶显示装置的电压施加时的取向组织观察像的图。
图19是示出作为第1电极具有类型H的电极结构、且作为第2电极具有与类型F的电极结构相同的电极结构的液晶显示装置的电压施加时的取向组织观察像的图。
图20是示出具有开口部的第1电极的电极结构的一例的图。
图21是示出具有开口部的第1电极的电极结构的一例的图。
图22是示出电极结构的一例的图。
图23是示出电极结构的另一例的图。
图24是示出电极结构的另一例的图。
图25(a)是示出在类型D的电极结构中将θ设定为10°的情况下的电压施加时的取向组织观察像的图。
图25(b)是示出在类型E的电极结构中将θ设定为10°的情况下的电压施加时的取向组织观察像的图。
图25(c)是示出在类型G的电极结构中将θ设定为10°的情况下的电压施加时的取向组织观察像的图。
图26是示出在将类型F的电极结构和图20所示的电极结构进行组合、并将θ设定为10°的情况下的电压施加时的取向组织观察像的图。
图27(a)是示出在将类型D的电极结构和图20所示的电极结构进行组合、并将θ设定为10°的情况下的电压施加时的取向组织观察像的图。
图27(b)是示出在将类型D的电极结构和图21所示的电极结构进行组合、并将θ设定为10°的情况下的电压施加时的取向组织观察像的图。
图28是示出电极结构的一例的示意性平面图。
图29是示出电极结构的另一例的示意性平面图。
图30是示出电极结构的另一例的示意性平面图。
图31是示出电极结构的另一例的示意性平面图。
图32是示出具有类型I的电极结构的液晶显示装置的电压施加时的取向组织观察像的图。
图33是示出具有类型L的电极结构的液晶显示装置的电压施加时的取向组织观察像的图。
图34是示意性示出在使长方形电极之间交叉获得的1个像素内的电压施加时的液晶层的大致中央的液晶分子的取向方向(取向分布)的平面图。
图35是示出现有例的液晶显示装置的电压施加时的像素的偏光显微镜观察像的图。
图36是示出使一个长方形电极的电极宽度变窄的液晶显示装置的亮显示时的取向组织的图。
具体实施方式
本申请发明者对在多工驱动垂直取向型的液晶显示装置的情况下在各像素的像素边缘附近产生漏光的主要原因作了探讨。图34是示意性示出在使长方形电极之间交叉获得的矩形状的1个像素内的电压施加时的液晶层的大致中央的液晶分子的取向方向(取向分布)的平面图。另外,假定图34的上方向对应于液晶显示装置中的12时方向,左右方向分别对应于9时方向、3时方向,下方向对应于6时方向,下方向是最佳视认方向。图34所示的像素是使长方形电极111和长方形电极112交叉而形成的。长方形电极111设置在未图示的第1基板上,长方形电极112设置在未图示的第2基板上。对第1基板实施的取向处理的方向114是6时方向,对第2基板实施的取向处理的方向113是12时方向。由于在反视认方向的12时方向的像素边缘附近在无电压施加时的取向方向和由倾斜电场的产生而规定的取向方向有180°的不同,因而在该附近产生液晶分子的取向方向121的旋转。另一方面,由于在左右方向的各像素边缘附近倾斜电场与无电压施加时的取向方向有90°的不同,因而产生取向方向121的旋转。预想到,当采用正交尼科尔配置的偏光板的各吸收轴配置为相对于无电压施加时的取向方向分别大致成45度时,平行于其的区域即使施加电压也不会成为亮显示。并且,由于在左右、上的3边的各像素边缘附近产生在电压施加时取向方向121不同的区域,因而该液晶显示装置在电压施加时呈现多畴(multidomain)取向。因此,在各像素边缘附近最佳视认方向不同,特别是在从反视认方向的12时方向观察时视认为产生漏光的区域。
图35是示出实际制作的现有例的液晶显示装置的电压施加时的像素的偏光显微镜观察像的图。液晶显示装置的1个像素是0.43mm角,长方形电极的电极间隔是30μm。当观察1个像素内部时可知观察到交叉状的暗区域。如上所述,由于在电压施加时因像素边缘附近的倾斜电场的影响而产生液晶分子的取向方向的旋转,因而认为在该暗区域附近取向方向为接近与偏光板的吸收轴平行的方向或者垂直的方向。特别是发现以下状况:在液晶层的大致中央的液晶分子的取向方向的旋转角度大的12时方向的像素边缘附近,暗区域从像素边缘大幅进入到像素内。并且,在该像素边缘附近观察到暗区域的交叉点。认为该交叉点是不管是否电压施加液晶分子都保持为大致垂直取向的向错(disclination)。当观察各像素时,存在该交叉点是1个的情况和3个的情况,交叉点的产生状况是不规则的。而且,交叉状的暗区域的形状随像素而完全不同。当该暗区域的形状不均匀时,多畴取向中的各畴的面积比产生差异,认为视角特性产生差异。即,认为这是产生在反视认方向的显示不均匀性的主要原因。
因此,对图35的观察像作了更详细探讨,可知,在各像素中暗区域的形状处于不规则的状态由12时方向的像素边缘附近占大多数。在该区域中,长方形电极112的电极边缘和各取向处理的方向113、114大致垂直。另一方面,在同样产生暗区域的9时方向、3时方向的各像素边缘附近,在各像素中有规则地产生暗区域。在该区域中,长方形电极111的电极边缘和各取向处理的方向113、114大致平行。据此认为,通过进一步减少像素边缘和取向处理的方向垂直的部位,可使在各像素产生的暗区域的形状均匀,可提高显示质量。
另一方面,对图35所示的现有例的液晶显示装置进行1/64占空比、1/9偏置、帧反转波形的多工驱动,调查在进行了亮显示的情况下的正面观察时的显示均匀性的帧频率的下限值,结果,帧频率是105Hz。与此相对,对使帧频率的下限值进一步降低的方法作了探讨,结果获得这样的见解:使一个长方形电极的电极宽度相对变窄是有效的。具体地说,在上述图35所示的现有例的液晶显示装置中,将各长方形电极的电极宽度设定为0.4mm,结果,制作出使一个长方形电极(分段电极)的电极宽度减半为0.185mm的液晶显示装置,在与上述相同条件下进行了多工驱动。此时,获得在进行了亮显示的情况下的正面观察时的显示均匀性的帧频率的下限值是85Hz。可知,从反视认方向对该液晶显示装置进行外观观察时的显示状态与图35所示的液晶显示装置相比改善了显示均匀性,然而仍不充分。图36是示出使一个长方形电极的电极宽度变窄的液晶显示装置的亮显示时的取向组织的图。可知,尽管一个一个像素为长方形状,然而在其4边中的12时方向的边上产生的暗区域在各像素中没有规则性。而且可知,在3时方向、9时方向的各边产生的暗区域的均匀性也不充分。据此,考虑是不是难以确保当从反视认方向观察时的显示均匀性。
因此,对图35和图36的观察像作了更详细探讨,可知,在各像素中暗区域的形状处于不规则状态是由于12时方向的像素边缘附近占大多数。在该区域中,长方形电极112的电极边缘和各取向处理的方向113、114大致垂直。另一方面,在同样产生暗区域的9时方向、3时方向的各像素边缘附近,在各像素中有规则地产生暗区域。在该区域中,长方形电极111的电极边缘和各取向处理的方向113、114大致平行。据此认为,通过进一步减少像素边缘和取向处理的方向垂直的部位,可使在各像素产生的暗区域的形状均匀,可提高显示质量。
以下说明基于上述见解的本发明的实施方式。
(第1实施方式)
图1是示出第1实施方式的液晶显示装置的结构的示意性截面图。图1所示的本实施方式的液晶显示装置主要具有:对置配置的第1基板和第2基板,以及配置在两基板之间的液晶层3。在第1基板1的外侧配置有第1偏光板4,在第2基板2的外侧配置有第2偏光板5。在第1基板1和第1偏光板4之间配置有第1视角补偿板6,在第2基板2和第2偏光板5之间配置有第2视角补偿板7。液晶层3的周围由密封材料密封。以下,更详细地说明液晶显示装置的结构。
第1基板1和第2基板2分别是例如玻璃基板、塑料基板等透明基板。在第1基板1和第2基板2相互之间分散配置有间隔物(粒状体)。利用这些间隔物将第1基板1和第2基板2的间隙保持在预定距离(在本实施方式中是约4.3μm左右)。
液晶层3设置在第1基板1的第1电极11和第2基板2的第2电极12相互之间。在本实施方式中,使用介电常数各向异性Δε是负(Δε<0)的液晶材料(向列液晶材料)来构成液晶层3。液晶层3图示的粗线示意性表示在无电压施加时的液晶分子的取向方向。如图所示,在本实施方式的液晶显示装置中,液晶层3的液晶分子的取向状态被限制为单畴取向。本实施方式中的液晶层3的预倾角被设定为大致89.9°。并且,液晶层3的延迟是大致1100nm。
偏光板4和偏光板5配置成使各自的吸收轴相互大致垂直(正交尼科尔配置)。并且,偏光板4和偏光板5配置成使各自的吸收轴与被施加给第1基板1的取向处理的方向14、被施加给第2基板的取向处理的方向13均形成大致45°的角度。由此,各偏光板4、5的吸收轴相对于由各取向处理的方向13、14定义的液晶层3的大致中央的液晶层的取向方向形成大致45°的角度。
取向膜8设置在第1基板1的一面侧以覆盖第1电极11。同样,取向膜9设置在第2基板2的一面侧以覆盖第2电极12。对各取向膜8、9实施摩擦处理等取向处理。对取向膜8施加的取向处理的方向14如图所示,与第1电极11的延伸方向(第1方向)大致一致。对取向膜9施加的取向处理的方向13如图所示,与第2电极12的延伸方向(第2方向)大致一致。在本实施方式中,作为取向膜8和取向膜9使用将液晶层3的初始状态(无电压施加时)的取向状态限制为垂直取向状态的取向膜(垂直取向膜)。更详细地说,作为各取向膜8、9,使用可对液晶层3的液晶分子赋予极接近90°的角度的预倾角的取向膜。
第1电极11设置在第1基板1的一面上。并且,第2电极12设置在第2基板2的一面上。在本实施方式中,各自朝特定方向延伸的多个第1电极11和多个第2电极12使各自的延伸方向大致垂直而对置配置。各第1电极11和各第2电极12是通过对例如铟锡氧化物(ITO)等的透明导电膜进行适当的图形形成而构成的。在本实施方式的液晶显示装置中,第1电极11和第2电极12在平面视图中重合的部位分别为像素。
在本实施方式中,通过将各第2电极12的电极边缘形成为包含与第1电极的延伸方向(第1方向)斜交的线段的折线状的形状,实现各像素中由各第2电极12的电极边缘划定的部分的像素边缘和各取向处理的方向13、14不垂直的结构。以下,对若干具体结构进行例示。
图2是示出电极结构的一例的示意性平面图。如图2(a)所示,朝图中的左右方向延伸的各第2电极12的电极边缘形成为锯齿状,锯齿的1个间距与各第1电极11的电极宽度大致一致。图2(b)示出与1个像素对应的电极部分的放大图。在图2(b)中,朝图中的上下方向延伸的各第1电极11由虚线表示(图3以后的图中也一样)。由于各第1电极11和各第2电极12交叉的区域分别为1个像素,因而1个像素的形状为由第1电极11的电极边缘的2边和由第2电极12的电极边缘的2边划定的大致平行四边形状,全部像素的形状相等。以下,有时将该图2所示的电极结构称为“类型A的电极结构”。另外,在第1电极11、第2电极12的各自的电极间隔大的情况下,1个像素的形状为大致六边形状。
当将锯齿状的第2电极12的电极边缘和水平方向(图中的左右方向)形成的角度定义为θ时,该角度θ被设定为大于0°且在15°以下。这样,可实现各像素的上下2边和各取向处理的方向13、14的方向不垂直的结构。另外,图2所示的第2电极12的电极边缘是右肩上升的锯齿状,而反之,即使是右肩下降的锯齿状,也认为能获得相同效果。
图3是示出电极结构的另一例的示意性平面图。如图3(a)所示,朝图中的左右方向延伸的各第2电极12的电极边缘形成为锯齿状,然而与上述图2所示的结构不同,锯齿的1个间距与各第1电极11的电极宽度不一致。然后,如图3(b)所示,各第2电极12处于锯齿的向下的顶角部分和第1电极11的电极间部分不重合的状态。1个像素内的上下各电极边缘是连接了倾斜方向的不同的2边(第1直线和第2直线)而获得的形状。当针对各电极边缘设与左右方向平行的长度分量(投影时的长度)为Xa、Xb时,Xa和Xb合计的长度和各第1电极11的电极宽度被设定为大致相等。然后,将各第1电极11和各第2电极12配置成使连接倾斜方向的不同的2边而获得的电极边缘的两端部和第1电极11的电极间重合。以下,有时将该图3所示的电极结构称为“类型B的电极结构”。上述的类型A的电极结构也可以说是在该类型B的电极结构中Xa=0的特殊情况。
在类型B的电极结构中,Xa>Xb,而且优选的是,Xa被设定为Xb的4倍以内(更优选是3倍以内)。当将具有长度分量Xa的边和水平方向形成的角度定义为θ时,角度θ被设定为大于0°且在15°以下。这样,可实现各像素的上下2边和各取向处理的方向13、14的方向不垂直的结构。类型B的电极结构中的各像素的形状是变形后的“
Figure BDA0000100477110000121
字状”的六边形,全部像素是相同形状。另外,对于图3所示的第2电极12的电极边缘,左侧的边(右肩上升的边)被设定得相对长,右侧的边(右肩下降的边)被设定得相对短,即使使其左右反转,也认为能获得相同效果。
图4是示出电极结构的另一例的示意性平面图。如图4(a)所示,朝图中的左右方向延伸的各第2电极12的电极边缘形成为锯齿状,然而与上述图2所示的结构不同,锯齿的1个间距与各第1电极11的电极宽度不一致。然后,如图4(b)所示,各第2电极12处于锯齿的1个顶角部分和第1电极11的电极间部分不重合的状态。1个像素内的上下各电极边缘是连接了倾斜方向的不同的2边而获得的形状。与上述的类型B的电极结构一样,当针对各电极边缘设与左右方向平行的长度分量为Xa、Xb时,Xa和Xb合计的长度和各第1电极11的电极宽度被设定为大致相等。然后,将各第1电极11和各第2电极12配置成使连接倾斜方向的不同的2边而获得的电极边缘的两端部和第1电极11的电极间重合。以下,有时将该图4所示的电极结构称为“类型C的电极结构”。
类型C的电极结构和类型B的电极结构的不同在于,在各第2电极12的两电极边缘中,锯齿的顶点不一致。在图示的例子中,锯齿的一个顶点相对于另一个顶点朝左右方向错开大致Xb来配置。另外,错开量不限于Xb。在类型C的电极结构中,Xa>Xb,而且优选的是,Xa被设定为Xb的4倍以内(更优选是3倍以内)。当将具有长度分量Xa的边和水平方向形成的角度定义为θ时,角度θ被设定为大于0°且在15°以下。这样,可实现各像素的上下2边和各取向处理的方向13、14的方向不垂直的结构。类型C的电极结构中的各像素的形状是变形后的六边形,然而在上下方向相邻的像素的形状不同,每隔1条第2电极12就重复该形状的不同。另外,与类型B的电极结构的情况一样,即使构成为使像素形状左右反转,也认为能获得相同效果。
图5是示出电极结构的另一例的示意性平面图。如图5(a)所示,朝图中的左右方向延伸的各第2电极12的电极边缘形成为锯齿状,锯齿的1/2个间距被设定为与第1电极11的电极宽度大致相等。然后,如图5(b)所示,各第2电极12以锯齿的1个顶角部分(弯曲点)与第1电极11的电极间部分重合的状态来配置。由于各第1电极11和各第2电极12交叉的区域分别为1个像素,因而1个像素的形状为由第1电极11的电极边缘的2边和由第2电极12的电极边缘的2边划定的大致平行四边形状。以下,有时将该图5所示的电极结构称为“类型D的电极结构”。
当在图5中将第2电极12的电极边缘和水平方向(图中的左右方向)形成的角度定义为θ时,该角度θ被设定为大于0°且在15°以下。这样,可实现各像素的上下2边和各取向处理的方向13、14的方向不垂直的结构。在类型D的电极结构中的各像素中,在上下方向相邻的像素之间是相同形状,然而在左右方向相邻的像素之间不同,每隔1条第1电极11就重复该形状的不同。
图6是示出电极结构的另一例的示意性平面图。如图6(a)所示,朝图中的左右方向延伸的各第2电极12的电极边缘形成为锯齿状,锯齿的1个间隔被设定为与各第1电极11的电极宽度大致相等。与图5所示的类型D的电极结构的不同在于,在各第2电极12的一个电极边缘和另一个电极边缘上弯曲的方向相互不同,两电极边缘的弯曲的顶点重复接近或分离。然后,如图6(b)所示,各第2电极12配置成锯齿的1个顶角部分(弯曲点)与第1电极11的电极间部分重合的状态。由于各第1电极11和各第2电极12交叉的区域分别为1个像素,因而1个像素的形状为由第1电极11的电极边缘的2边和由第2电极12的电极边缘的2边划定的大致梯形状。以下,有时将该图6所示的电极结构称为“类型E的电极结构”。
当在图6中将第2电极12的电极边缘和水平方向(图中的左右方向)形成的角度定义为θ时,该角度θ被设定为大于0°且在15°以下。这样,可实现各像素的上下2边和各取向处理的方向13、14的方向不垂直的结构。在类型E的电极结构中的各像素中,在上下方向相邻的像素之间、在左右方向相邻的像素之间均不同,每隔1条第1电极11和每隔1条第2电极12就重复该形状的不同。
图7是示出电极结构的另一例的示意性平面图。如图7(a)所示,朝图中的左右方向延伸的各第2电极12的电极边缘形成为锯齿状,锯齿的1个间距被设定为与各第1电极11的电极宽度大致相等。然后,如图7(b)所示,各第2电极12配置成锯齿的1个顶角部分(弯曲点)与第1电极11的大致中央部重合、另1个顶角部分(弯曲点)与第1电极11的电极间部分重合的状态。由于各第1电极11和各第2电极12交叉的区域分别为1个像素,因而1个像素的形状为由第1电极11的电极边缘的2边和由第2电极12的电极边缘的2边划定的大致倒V字状的六边形。以下,有时将该图7所示的电极结构称为“类型F的电极结构”。
当在图7中将第2电极12的电极边缘和水平方向(图中的左右方向)形成的角度定义为θ时,该角度θ被设定为大于0°且在15°以下。这样,可实现各像素的上下2边和各取向处理的方向13、14的方向不垂直的结构。在类型F的电极结构中的各像素中,在上下方向以及左右方向,相邻的像素之间均为相同形状。另外,各像素的形状可以是大致V字状的六边形。
图8是示出电极结构的另一例的示意性平面图。如图8(a)所示,朝图中的左右方向延伸的各第2电极12的电极边缘形成为锯齿状,锯齿的1个间隔被设定为与各第1电极11的电极宽度大致相等。与图7所示的类型F的电极结构的不同在于,在各第2电极12的一个电极边缘和另一个电极边缘弯曲的方向相互不同,两电极边缘的弯曲点重复接近或分离。然后,如图8(b)所示,各第2电极12配置成锯齿的1个弯曲点(顶点)与第1电极11的大致中央部重合、另1个弯曲点(顶点)与第1电极11的电极间部分重合的状态。由于各第1电极11和各第2电极12交叉的区域分别为1个像素,因而1个像素的形状为由第1电极11的电极边缘的2边和由第2电极12的电极边缘的2边划定的大致六边形。以下,有时将该图8所示的电极结构称为“类型G的电极结构”。
当在图8中将第2电极12的电极边缘和水平方向(图中的左右方向)形成的角度定义为θ时,该角度θ被设定为大于0°且在15°以下。这样,可实现各像素的上下2边和各取向处理的方向13、14的方向不垂直的结构。在类型G的电极结构中的各像素中,在上下方向相邻的像素之间为不同形状,在左右方向相邻的像素之间为相同形状。
下面,对实际制作具有上述的类型A~G的各像素结构的液晶显示装置、并进行了该液晶显示装置的取向组织观察和外观观察后的结果加以说明。在实际制作的液晶显示装置中,各电极结构的类型中的具体的数值条件如下所述。另外,在任一类型中均设计成,各第2电极12的相邻的电极间距离是0.03mm,开口部面积不减小。并且,针对第1电极11,设电极配置周期为0.43mm,设相邻的电极间距离为0.03mm。关于取向处理的方向、液晶层3的大致中央的液晶分子的取向方向、各偏光板的配置状态,如上所述。
(1)关于类型A,设锯齿的顶点周期为0.43mm,将θ设定为5°、10°、15°。
(2)关于类型B,设Xa=0.3225mm,Xb=0.1075mm,Xa+Xb=0.43mm,将θ设定为5°、10°、15°。
(3)关于类型C,设Xa=0.3225mm,Xb=0.1075mm,Xa+Xb=0.43mm,设两电极边缘间的顶点部分的偏差距离为0.1075mm,将θ设定为5°、10°、15°。
(4)关于类型D,设相邻的弯曲点间距离为0.43mm,将θ设定为5°、10°、15°。
(5)关于类型E,采用与类型D相同的设定。
(6)关于类型F,设相邻的弯曲点间距离为0.215mm,将θ设定为5°、10°、15°。
(7)关于类型G,采用与类型F相同的设定。
图9是示出具有类型A的电极结构的液晶显示装置的电压施加时的取向组织观察像的图。详细地说,图9(a)是θ=5°的观察像,图9(b)是θ=10°的观察像,图9(c)是θ=15°的观察像。如图所示可知,各像素的形状是大致平行四边形或者变形后的六边形状。与上述的现有例(参照图35)的液晶显示装置一样,在本例子中,由于在各像素的像素边缘附近观察到暗区域,因而认为同样存在像素边缘附近的斜电场的影响。然而,当对各像素的暗区域进行比较时为大致相等的形状,可知与现有例相比大幅改善了暗区域的均匀性。而且,当更详细观察对角度θ的依赖性时可知,与θ=5°相比,θ=10°、θ=15°更加改善了暗区域的均匀性。从反视认方向和以该反视认方向为中心顺时针转、逆时针转70°方位对该实施例的液晶显示装置进行外观观察的结果可确认为,与现有例相比,显著改善了显示均匀性,即像素边缘的漏光的均匀性,显著提高了显示质量。角度θ越大,显示均匀性就越优良。
图10是示出具有类型B的电极结构的液晶显示装置的电压施加时的取向组织观察像的图。图11是示出具有类型C的电极结构的液晶显示装置的电压施加时的取向组织观察像的图。均设定为θ=10°。可知,类型B、类型C的任一方都与类型A一样改善了暗区域的形状的均匀性。从反视认方向和以该反视认方向为中心顺时针转、逆时针转70°方位对类型B、C的各实施例的液晶显示装置进行外观观察的结果可确认为,与现有例相比,显著改善了显示均匀性,即像素边缘的漏光的均匀性,显著提高了显示质量。不过,也判明出,显示均匀性与类型A相比较逊色一些。这认为是由于暗区域的形状和向错(disclination)的位置不同的像素存在于一部分的原因。不过,与现有例的比较确认出,充分改善了显示均匀性。
从以上的观察结果判明出,通过采用使第2电极12的两电极边缘弯曲成锯齿状的电极结构,可显著改善液晶显示装置的显示质量。弯曲时的角度更优选是5°以上且15°以下。并且,即使在1个像素内存在由第2电极12的电极边缘形成的各边的弯曲点,也是有效果的,不过对于该弯曲点的位置,更优选的是将Xa设定为Xb的3倍以上。
图12是示出具有类型D的电极结构的液晶显示装置的电压施加时的取向组织观察像的图。详细地说,图12(a)是θ=5°的观察像,图12(b)是θ=10°的观察像,图12(c)是θ=15°的观察像。当分别观察3个取向组织时,与现有例的液晶显示装置相比,改善了暗区域的均匀性,当更详细地观察时可知,在θ=5°时,均匀性稍不充分,在θ=10°、θ=15°时,暗区域的均匀性高。进行了与上述的类型A~C的情况相同的外观观察后的结果可知,显示均匀性比类型A~C少许逊色。不过,与现有例的比较确认出,充分改善了显示均匀性。还可知,更优选是θ=10°以上。
图13是示出具有类型E的电极结构的液晶显示装置(在θ=10°的情况下)的电压施加时的取向组织观察像的图。当观察了取向组织时可知,暗区域针对各像素不同,而向错的位置大致固定在特定位置,取向均匀性比较良好。进行了与上述的类型D相同的外观观察后的结果可知,显示均匀性比类型A~C少许逊色,而比类型D良好。不过,与现有例的比较确认出,充分改善了显示均匀性。
认为类型D和类型E的显示均匀性的差异起因于像素结构的不同。对于类型D来说,表现出在左右方向相邻的像素的电压施加时的多畴取向的分布不同、视角特性不同的倾向。另一方面,对于类型E来说,在上下方向、左右方向相邻的像素的形状不同,而实际上,相同形状的像素配置成方格状,因而在电压施加时的多畴取向分布相等的像素配置成方格状,从而认为外观观察的显示均匀性比类型D良好。
图14是示出具有类型G的电极结构的液晶显示装置(在θ=10°的情况下)的电压施加时的取向组织观察像的图。当观察了取向组织时可知,暗区域对应于由第1电极11的电极边缘形成的弯曲点形成有向错,而其形状的均匀性不充分。认为或许通过该顶点的角度变为更锐的角来固定向错,也容易固定暗区域。尽管省略图示,然而该倾向对于具有类型F的电极结构的液晶显示装置也是一样。对具有类型G和类型F的电极结构的液晶显示装置进行了外观观察,与类型A~E相比未能获得显示均匀性。与现有例的液晶显示装置相比,也不能观察显著的不同。因此可知,如针对类型B、C所示,在朝像素的左右方向配置弯曲点以使Xa和Xb相等的情况下,不是有效的。然而,在上述中示出预倾角是89.9°的情况,在将预倾角设定得更低的情况下,例如在设定为89.8°的情况下,与现有例的液晶显示装置相比,可观察显著的不同,确认出其它类型同样在外观观察中能实现从反视认方向的均匀性。
另外,在上述的第1实施方式中,第2电极的两侧的电极边缘形成为折线状,然而可以仅单侧的电极边缘形成为折线状。在该情况下,期望的是,斜交叉的线段配置在像素边缘中的反视认侧。
(第2实施方式)
在第2实施方式中,通过使各电极的电极边缘形成为折线状的形状,同时实现显示质量的提高和帧频率的降低。以下,对若干具体结构进行例示。另外,液晶显示装置的基本结构与上述的第1实施方式是公用的(参照图1)。
图15是示出电极结构的一例的示意性平面图。如图15(a)所示,朝图中的上下方向延伸的各第1电极11的电极边缘形成为锯齿状,锯齿的1个间距被设定为与各第2电极12的电极宽度大致相等。并且,各第2电极12的电极边缘形成为与上述的第1实施方式中的图7所示的电极边缘相同的锯齿状,锯齿的1个间距被设定为与各第1电极11的电极宽度大致相等。如图15(b)所示,各第1电极11配置在锯齿的1个顶角部分(弯曲点)与第2电极12的大致中央部重合、另1个顶角部分(弯曲点)与第2电极12的电极间部分重合的状态。同样,各第2电极12配置在锯齿的1个顶角部分(弯曲点)与第1电极11的大致中央部重合、另1个顶角部分(弯曲点)与第1电极11的电极间部分重合的状态。由于各第1电极11和各第2电极12交叉的区域分别为1个像素,因而1个像素的形状为由第1电极11的电极边缘的2边和由第2电极12的电极边缘的2边划定的八角形。
当在图15(b)中将第1电极11的电极边缘和垂直方向(图中的上下方向)形成的角度定义为θ时,该角度θ被设定为大于0°且15°以下。这样,可实现各像素的上下2边和各取向处理的方向13、14的方向不垂直的结构。在该电极结构中的各像素中,在上下方向以及左右方向的任一方均相邻的像素之间为相同形状。并且,第2电极12的电极边缘和水平方向形成的角度被设定为大于0°且15°以下(参照图7)。这样,可实现各像素的上下2边和各取向处理的方向13、14的方向不垂直的结构。另外,各第2电极12可以具有与上述的第1实施方式中的图8所示的电极结构相同的电极结构。在该情况下,在上下方向相邻的像素之间为不同形状,在左右方向相邻的像素之间为相同形状。以下,将图15所示的电极结构称为“类型H的电极结构”。
下面,参照第1实施方式中的图7所示的电极结构(类型F的电极结构)和图8所示的电极结构(类型G的电极结构),对图15所示的电极结构(类型H的电极结构)进行说明。具体地说,对实际制作具有类型F、G、H的各像素结构的液晶显示装置、并进行了该液晶显示装置的取向组织观察和外观观察的结果加以说明。在实际制作的液晶显示装置中,各电极结构的类型中的具体的数值条件如下所述。在任一类型中均设计成,各第1电极11和各第2电极12的相邻的电极间距离分别是0.03mm,开口部面积不下降。并且,第1电极11和第2电极12均将弯曲点间距离设定为0.215mm,将θ设定为5°、10°、15°。关于取向处理的方向、液晶层3的大致中央的液晶分子的取向方向、各偏光板的配置状态,如上所述。
图16是示出具有类型G的电极结构的液晶显示装置的电压施加时的取向组织观察像的图。详细地说,图16(a)是θ=5°的观察像,图16(b)是θ=10°的观察像,图16(c)是θ=15°的观察像。可知,在任一取向组织中与现有例(参照图35)的液晶显示装置相比较,提高了像素边缘中的暗区域的分布形状的均匀性。然而,在θ=5°的取向组织中存在于弯曲点附近的向错的位置的均匀性不充分。另一方面,在θ=10°、θ=15°的各取向组织中,观察到暗区域的均匀性随着θ的增加而改善的倾向。
图17是示出具有类型F的电极结构的液晶显示装置的电压施加时的取向组织观察像的图。详细地说,图17(a)是θ=5°的观察像,图17(b)是θ=10°的观察像,图17(c)是θ=15°的观察像。这些具有类型F的电极结构的液晶显示装置也被观察到与上述的类型G的情况相同的倾向。
下面,针对具有上述的类型F、类型G的各电极结构的液晶显示装置以及现有例的液晶显示装置的各方,说明对亮显示时的显示均匀性的驱动频率依赖性的评价结果。驱动条件是采用1/64占空比、1/9偏置、帧反转波形的多工驱动,使用获得大致最大对比度的亮显示驱动电压,从外观观察评价了观察显示不均匀性的帧频率的下限值。
结果,帧频率的下限值在现有例的液晶显示装置中是105Hz,而在具有上述的类型G的电极结构的液晶显示装置中,将θ设定为5°、10°、15°时的帧频率变化为110Hz、130Hz、130Hz。另一方面,可以看出,从反视认方向观察时的显示均匀性随着θ增大而改善。并且,在具有上述的类型F的电极结构的液晶显示装置中,将θ设定为5°、10°、15°时的帧频率变化为120Hz、135Hz、150Hz。可以看出,从反视认方向观察时的显示均匀性随着θ增大而改善。从以上看出,类型F和类型G都被观察到这样的倾向:从反视认方向观察时的显示均匀性随着θ增大而改善,而在正面观察时获得显示均匀性的帧频率上升。
图18是示出作为第1电极具有类型H的电极结构、且作为第2电极具有与上述的图8所示的电极结构相同的电极结构的液晶显示装置的电压施加时的取向组织观察像的图。详细地说,图18(a)是θ=5°的观察像,图18(b)是θ=10°的观察像,图18(c)是θ=15°的观察像。可知,在任一取向组织中,像素边缘中的暗区域针对第2电极12与上述的图16所示的取向组织大致相同,在θ=5°以外分布比较均匀。针对第1电极11,暗区域的分布均匀性良好。从反视认方向的外观观察中的显示均匀性与具有上述的类型F、类型G的各电极结构的液晶显示装置相比进一步改善,与现有例的液晶显示装置相比改善。针对该液晶显示装置的正面观察时的显示均匀性的驱动频率依赖性,采用与上述相同的条件进行了评价。结果,针对θ=5°、10°、15°分别是95Hz、100Hz、90Hz,未观察到对θ的依赖性。并且,可知,与现有例的液晶显示装置和上述的类型F、G的各液晶显示装置相比,帧频率的下限值进一步下降。
图19是示出作为第1电极具有类型H的电极结构、且作为第2电极具有与上述的图7所示的电极结构相同的电极结构(类型F的电极结构)的液晶显示装置的电压施加时的取向组织观察像的图。详细地说,图19(a)是θ=10°的观察像,图19(b)是θ=15°的观察像。在第2电极12的电极边缘附近观察到的暗区域与现有例的液晶显示装置相比均匀性膏,并观察到与具有类型G的电极结构的液晶显示装置相同的倾向。另一方面,可知,在第1电极11的电极边缘中也充分获得暗区域的均匀性。可确认出,从反视认方向的外观观察中的显示均匀性与具有上述图17所示的类型F的电极结构的液晶显示装置相同,与现有例的液晶显示装置相比较改善。并且,采用与上述相同的条件对该液晶显示装置的正面观察时的显示均匀性的驱动频率依赖性进行了评价,结果可知,在θ=10°、15°时,帧频率的下限值均是100Hz,与现有例的液晶显示装置和上述的类型F、G的各液晶显示装置相比,帧频率的下限值进一步下降。
从以上结果可判断出,作为使帧频率的下限值下降的效果,采用在第1电极侧和第2电极侧的双方具有弯曲性的电极结构是有效的。在该情况下中的θ值优选是5°以上。另一方面,为了进一步提高从反视认方向的显示均匀性,认为优选的是将θ值设定为10°以上且15°以下。
另外,在上述的第2实施方式中,第1电极、第2电极的各自两侧的电极边缘为相同形状,然而可以是不同形状。
(第3实施方式)
在第3实施方式中,通过将各第2电极12的电极边缘形成为包含相对于第1电极的延伸方向(第1方向)斜交的线段的折线状的形状,实现各像素中由各第2电极12的电极边缘划定的部分的像素边缘和各取向处理的方向13、14不垂直的结构。并且,通过在各第1电极11上设置矩形状的开口部,实现帧频率的降低。以下,对若干具体结构进行例示。另外,液晶显示装置的基本结构与上述的第1实施方式是公用的(参照图1)。
第3实施方式中的第2电极的电极结构与上述的第1实施方式是公用的。具体地说,第3实施方式中的第2电极具有上述的第1实施方式中的图5所示的类型D的电极结构、图6所示的类型E的电极结构、图7所示的类型F的电极结构或者图8所示的类型G的电极结构。
图20是示出具有开口部的第1电极的电极结构的一例的图。如图20所示,在各第1电极11上,沿着各自的延伸方向即第1方向设有长的矩形状的开口部15。在图示的例子中,各开口部15的长度方向与第1方向大致平行,沿着该长度方向排列。另外,如图21所示,各开口部15的长度方向可以相对于第1方向具有预定角度来配置。例如,各开口部15的长度方向可以是与第2电极12的电极边缘大致垂直的方向。并且,在图示的例子中,在相邻的第1电极11之间各开口部15的倾斜方向相互不同,然而倾斜方向可以一致。
下面,说明使上述的第1电极11和第2电极12组合而构成的像素的结构。
图22是示出电极结构的一例的图。本例子是在使具有上述的类型F的电极结构的第2电极12和图20所示的具有开口部15的第1电极11组合的情况下的1个像素的电极结构。第1电极11的电极间距是Ws,第2电极12的电极间距是Wc,设置在第1电极11上的开口部15的长边长度(长度方向的长度)是Ls。在本例子中,开口部15配置成1个端部(短边)在相邻的第2电极12的电极间重合、且与第2电极12的弯曲点重合。
图23是示出电极结构的另一例的图。本例子是在使具有上述的类型D的电极结构的第2电极12和图20所示的具有开口部15的第1电极11组合的情况下的1个像素的电极结构。第1电极11的电极间距是Ws,第2电极12的电极间距是Wc,设置在第1电极11上的开口部15的长边长度(长度方向的长度)是Ls。在本例子中,开口部15配置成在像素内相对于第1电极11的宽度方向配置在大致中央、且1个端部(短边)在相邻的第2电极12的电极间重合。
图24是示出电极结构的另一例的图。本例子是在使具有上述的类型D的电极结构的第2电极12和具有图21所示的斜配置的开口部15的第1电极11组合的情况下的1个像素的电极结构。第1电极11的电极间距是Ws,第2电极12的电极间距是Wh。并且,设置在第1电极11上的倾斜配置的开口部15的长边长度(长度方向的长度)是Lt。在本例子中,开口部15配置成包含像素的重心(图中,使单点划线交叉表示)。
另外,除了若干例示的组合以外,还能够使类型D~G的第2电极12的各电极结构与图21和图22所示的第1电极11的各电极结构适当组合。
下面,对实际制作具有上述的各像素结构的液晶显示装置、并进行了该液晶显示装置的取向组织观察和外观观察后的结果加以说明。在实际制作的液晶显示装置中,各电极结构的类型中的具体的数值条件如下所述。
(1)关于类型D,设相邻的弯曲点间距离为0.43mm,将θ设定为5°、10°、15°。
(2)关于类型E,采用与类型D相同的设定。
(3)关于类型F,设相邻的弯曲点间距离为0.215mm,将θ设定为5°、10°、15°。
(4)关于类型G,采用与类型F相同的设定。
另外,将第1电极11的电极间距Ws设定为0.43mm,将第2电极12的电极间距Wc设定为0.43mm,将开口部15的长边长度Ls设定为0.43mm、0.32mm、0.215mm中的任一方。关于倾斜配置的开口部15,针对第2电极12的电极宽度Wh将开口部15的长边长度Lt设定为1倍(Lt=Wh)、0.75倍(Lt=0.75Wh)、0.5倍(Lt=0.5Wh)中的任一方。
并且,任一类型均设计成使各第2电极12的相邻的电极间距离为0.03mm、且开口部面积不下降。并且,针对第1电极11,设电极配置周期为0.43mm,设相邻的电极间距离为0.03mm。关于取向处理的方向、液晶层3的大致中央的液晶分子的取向方向、各偏光板的配置状态,如上所述。
最初,说明在第1电极11未设有开口部15的情况下的液晶显示装置的取向组织观察和外观观察的结果。
图25(a)是示出在类型D的电极结构中将θ设定为10°的情况下的电压施加时的取向组织观察像的图。如图所示可知,在像素边缘附近观察到暗区域,然而与上述的现有例的液晶显示装置相比,暗区域的分布图形有规则性,均匀性高。不过,相对于第2电极12延伸的方向,像素形状不同,因而暗区域的图形完全不一致。然而,在外观观察中确认出,改善了当从反视认方向观察时的从像素边缘附近的漏光的均匀性,从而改善了显示均匀性。
图25(b)是示出在类型E的电极结构中将θ设定为10°的情况下的电压施加时的取向组织观察像的图。与上述类型D的情况一样,与现有例的液晶显示装置相比,像素边缘附近的暗区域的分布图形观察到均匀性。相邻的第1电极11、第2电极12的各延伸方向的像素形状不同,然而相同形状的像素配置成方格状。在从反视认方向的外观观察中确认出,改善了像素边缘附近的漏光的均匀性,从而改善了显示均匀性。显示均匀性比上述的类型D的电极结构的情况(参照图25(a))优良。
图25(c)是示出在类型G的电极结构中将θ设定为10°的情况下的电压施加时的取向组织观察像的图。与上述的类型D、E的电极结构的情况相比逊色,然而与现有例的液晶显示装置相比,像素边缘附近的暗区域的分布图形观察到均匀性。在从反视认方向的外观观察中可知,少许改善了像素边缘附近的漏光的均匀性,从而改善了显示均匀性。另外,尽管省略了图示,然而类型F的电极结构的情况也是相同的观察结果。
针对具有以上的类型D~G的各电极结构的液晶显示装置和现有例的液晶显示装置的各方,对正面观察时的亮显示时的显示均匀性的驱动频率依赖性进行了评价。驱动条件是采用1/64占空比、1/9偏置、帧反转波形的多工驱动,使用获得大致最大对比度的亮显示驱动电压,通过外观观察评价了观察显示不均匀性的帧频率的下限值。
结果可知,在现有例的液晶显示装置中是105Hz,在类型D的电极结构的情况下是115Hz,在类型E的电极结构的情况下是95Hz,在类型F的电极结构的情况下是135Hz,在类型G的电极结构的情况下是130Hz,在类型E以外不是帧频率的下限值比现有例高的区域不能获得显示均匀性。并且,在类型E中观察到这样的倾向:当θ变化为5°、10°、15°时,帧频率的下限值变化为120Hz、135Hz、150Hz。另一方面可知,从反视认方向观察时的显示均匀性随着θ增大而改善,因而两者存在折衷关系。该倾向对于其它类型也是一样。
下面,说明在第1电极11设置开口部15的情况下的液晶显示装置的取向组织观察和外观观察的结果。
图26是示出在将上述的类型F的电极结构和图20所示的电极结构进行组合、并将θ设定为10°的情况下的电压施加时的取向组织观察像的图。另外,设开口部15的长边长度Ls为0.43mm、0.32mm、0.215mm中的任一方,图26(a)、图26(b)、图26(c)示出各自的观察像。在图26(a)所示的观察像中可知,在开口部15的长边侧部发现的暗区域的形状的均匀性良好,而在第2电极12的电极边缘附近产生的暗区域为比较规则的分布。在图26(b)、图26(c)中观察到这样的状况:开口部15的长边长度减少,从而开口部15的侧部区域减少,因而像素的开口率上升,并且改善了暗区域的分布图形的均匀性。
并且,从反视认方向对各条件的液晶显示装置进行了外观观察后的结果可知,由于配置有开口部15,因而难以观察到各像素的不均匀性,显著改善了显示均匀性。该原因被认为是,由于在第2电极12的弯曲点配置有开口部15,因而像素内的多畴取向结构稳定。特别是认为,在未设有开口部15的情况下,在产生暗区域的像素的上部的像素边缘附近也改善了取向性,改善了外观上的均匀性。
使用上述的各条件的液晶显示装置,观察在正面观察时的亮显示时的显示均匀性的帧频率依赖性,通过外观观察评价了获得显示均匀性的帧频率的下限值。与上述一样,驱动条件是采用1/64占空比、1/9偏置、帧反转波形的多工驱动,使用获得大致最大对比度的亮显示驱动电压,通过外观观察评价了观察显示不均匀性的帧频率的下限值。结果可知,在将开口部15的长边长度Ls设定为0.43mm、0.32mm、0.215mm的各液晶显示装置中,帧频率的下限值分别是80Hz、90Hz、95Hz,均比在未设有上述的开口部15的情况下的液晶显示装置和现有例的液晶显示装置大幅下降。另外,观察到当Ls缩短时帧频率的下限值增高的倾向。不过确认出,在Ls至少是第2电极12的电极宽度或电极间距的1/2以上的情况下,获得效果。在本讨论中,采用了开口部15和第2电极12的电极边缘的弯曲点重合的结构,然而确认为,即使采用两者不重合的结构,也能获得使帧频率的下限值下降的效果。
图27(a)是示出在将上述的类型D的电极结构和图20所示的电极结构进行组合、并将θ设定为10°的情况下的电压施加时的取向组织观察像的图。另外,将θ设定为10°,将开口部15的长边长度Ls设定为0.43mm。暗区域的分布图形与上述图26所示的分布图形相比明显改善了均匀性,第2电极12的电极边缘附近的暗区域也比较均匀地分布。确认出,从反视认方向观察的像素边缘附近的漏光的均匀性与未设有开口部15的情况相比显著改善,显示均匀性大幅提高。观察在正面观察时的亮显示时的显示均匀性的帧频率依赖性,通过外观观察评价了获得显示均匀性的帧频率的下限值后的结果可知,帧频率的下限值是80Hz,与未设有开口部15的情况相比能够大幅改善。
图27(b)是示出在将上述的类型D的电极结构和图21所示的电极结构进行组合、并将θ设定为10°的情况下的电压施加时的取向组织观察像的图。另外,将θ设定为10°,将开口部15的长边长度Lt设定为与第2电极12的电极宽度相等。可以认为,暗区域的分布图形与上述图27(a)一样均匀性高而良好。确认出,从反视认方向观察的像素边缘附近的漏光的均匀性与未设有开口部15的情况相比显著改善,显示均匀性大幅提高。观察在正面观察时的亮显示时的显示均匀性的帧频率依赖性,通过外观观察评价了获得显示均匀性的帧频率的下限值后的结果可知,帧频率的下限值是75Hz,与未设有开口部15的情况相比能够大幅改善,与其它电极结构相比为最低的值。
以上,对具有开口部15的电极结构的液晶显示装置的在反视认方向的显示均匀性和在正面观察时的获得显示均匀性的帧频率的下限值进行了评价,然而可以预想的是,即使与其它类型的第2电极12的电极结构进行组合,也能获得相同的改善效果。
另外,在上述的第3实施方式中针对各像素配置1个开口部,然而可以针对各像素配置2个以上的开口部。可以认为,通过设置多个开口部,能够使帧频率的下限值进一步下降。
(第4实施方式)
在第4实施方式中,通过将各第2电极12的电极边缘形成为包含相对于第1电极的延伸方向(第1方向)斜交的线段的折线状的形状,实现各像素中由各第2电极12的电极边缘划定的部分的像素边缘和各取向处理的方向13、14不垂直、且各像素为相对于单方向长的像素边缘的结构。以下,对若干具体结构进行例示。另外,液晶显示装置的基本结构与上述的第1实施方式是公用的(参照图1)。
图28是示出电极结构的一例的示意性平面图。如图28(a)所示,朝图中的左右方向延伸的各第2电极12的电极边缘形成为锯齿状,锯齿的1/4个间距被设定为与第1电极11的电极宽度大致相等。然后,如图28(b)所示,各第2电极12配置在锯齿的1个顶角部分(弯曲点)与第1电极11的电极间部分重合的状态。由于各第1电极11和各第2电极12交叉的区域分别为1个像素,因而1个像素的形状为由第1电极11的电极边缘的2边和由第2电极12的电极边缘的2边划定的、单方向长的大致平行四边形。以下,有时将该图28所示的电极结构称为“类型I的电极结构”。
当在图28(b)中将第2电极12的电极边缘和水平方向(图中的左右方向)形成的角度定义为θ时,该角度θ被设定为大于0°且15°以下。这样,可实现各像素的上下2边和各取向处理的方向13、14的方向不垂直的结构。在该电极结构中的各像素中,在上下方向相邻的像素之间是相同形状,然而具有在各弯曲点变化的2种像素边缘的形状。另外,在图示的例子中,在各第2电极12的弯曲点的相互间配置有2根第1电极11,然而可以配置3根以上的第1电极11。换句话说,各第2电极12的各自的电极宽度可以是第1电极11的电极宽度的大致1/2以下。
图29是示出电极结构的另一例的示意性平面图。如图29(a)所示,朝图中的左右方向延伸的各第2电极12的电极边缘形成为锯齿状,锯齿的1/4间隔被设定为与各第1电极11的电极宽度大致相等。与图28所示的类型I的电极结构的不同在于,在各第2电极12的一个电极边缘和另一个电极边缘弯曲的方向相互不同,两电极边缘的弯曲的顶点重复接近或分离。然后,如图29(b)所示,各第2电极12配置在锯齿的1个顶角部分(弯曲点)与第1电极11的电极间部分重合的状态。由于各第1电极11和各第2电极12交叉的区域分别为1个像素,因而1个像素的形状为由第1电极11的电极边缘的2边和由第2电极12的电极边缘的2边划定的、单方向长的大致梯形状。以下,有时将该图29所示的电极结构称为“类型J的电极结构”。另外,在图示的例子中,在各第2电极12的弯曲点的相互间配置有2根第1电极11,然而可以配置3根以上的第1电极11。换句话说,各第2电极12的各自的电极宽度可以是第1电极11的电极宽度中最宽的部位和最窄的部位的平均值的大致1/2以下。
当在图29(b)中将第2电极12的电极边缘和水平方向(图中的左右方向)形成的角度定义为θ时,该角度θ被设定为大于0°且15°以下。这样,可实现各像素的上下2边和各取向处理的方向13、14的方向不垂直的结构。在类型J的电极结构中的各像素中,在上下方向相邻的像素之间、在左右方向相邻的像素之间均不同,具有4种像素边缘的形状。
图30是示出电极结构的另一例的示意性平面图。如图30(a)所示,朝图中的左右方向延伸的各第2电极12的电极边缘形成为锯齿状,锯齿的1/2个间距被设定为与各第1电极11的电极宽度大致相等。然后,如图30(b)所示,各第2电极12配置在锯齿的1个顶角部分(弯曲点)与第1电极11的电极间部分重合的状态。由于各第1电极11和各第2电极12交叉的区域分别为1个像素,因而1个像素的形状为由第1电极11的电极边缘的2边和由第2电极12的电极边缘的2边划定的单方向长的大致菱形状。以下,有时将该图30所示的电极结构称为“类型K的电极结构”。另外,在图示的例子中,在各第2电极12的弯曲点的相互间配置有2根第1电极11,然而可以配置3根以上的第1电极11。换句话说,可以将各第2电极12的各自的电极宽度设定为第1电极11的电极宽度的大致1/2以下。
当在图30(b)中将第2电极12的电极边缘和水平方向(图中的左右方向)形成的角度定义为θ时,该角度θ被设定为大于0°且15°以下。这样,可实现各像素的上下2边和各取向处理的方向13、14的方向不垂直的结构。在该电极结构中的各像素中,在上下方向相邻的像素之间以及在左右方向相邻的像素之间,像素边缘的形状均相同。
图31是示出电极结构的另一例的示意性平面图。图31(b)所示的电极结构是这样的电极结构:在上述的图28(b)所示的类型I的电极结构中,进一步使各第1电极11也具有弯曲性,使电极边缘形成为折线状。详细地说,如图31(b)所示,在各第1电极11中,一个电极边缘形成为直线状,另一个电极边缘形成为锯齿状。并且在本例子中,使锯齿状的电极边缘侧彼此相对而配置的2个第1电极11为一对,重复配置这些一对第1电极11。由此,提高用于配置第1电极11的空间的利用效率。以下,有时将该图31所示的电极结构称为“类型L的电极结构”。另外,图31所示的电极结构是一例,各第1电极11的两电极边缘可以形成为锯齿状。并且,可以将这样一方或双方的电极边缘形成为折线状的第1电极11与上述的各类型的电极结构进行组合。
下面,对实际制作具有上述的类型I~L的各像素结构的液晶显示装置、并进行了该液晶显示装置的取向组织观察和外观观察后的结果加以说明。在实际制作的液晶显示装置中,各电极结构的类型中的具体的数值条件如下所述。另外,在任一类型中,均将各第1电极11、各第2电极12的各自相邻的电极间距离设定为0.03mm。将第1电极11的电极宽度设定为0.185,在第2电极的电极宽度中,对于类型I、K、L,设定为0.4mm,对于类型J,将最宽的宽度和最窄的宽度的平均值设定为0.4mm。关于弯曲角度θ,均设定为5°、10°、15°。关于取向处理的方向、液晶层3的大致中央的液晶分子的取向方向、各偏光板的配置状态,如上所述。
图32是示出具有类型I的电极结构的液晶显示装置的电压施加时的取向组织观察像的图。如图所示可知,与现有例的液晶显示装置相比,改善了像素边缘的短边、长边各自的附近产生的暗区域的均匀性。可知,即使在从反视认方向的外观观察中,也比现有例的液晶显示装置显著改善了显示均匀性,可实现非常良好的均匀性。
图33是示出具有类型L的电极结构的液晶显示装置的电压施加时的取向组织观察像的图。可知,与图32所示的例子一样,改善了像素边缘的短边、长边各自的附近产生的暗区域的均匀性,即使在从反视认方向的外观观察中,也比现有例的液晶显示装置显著改善了显示均匀性,可实现非常良好的均匀性。
针对图32、图33所示的各自所示的例子的液晶显示装置,在1/64占空比、1/9偏置、帧反转波形的多工驱动条件下,调查了在正面观察时采用了亮显示的情况下的获得显示均匀性的帧频率的下限值,结果可知,分别是80Hz、75Hz,与现有例的液晶显示装置相比,帧频率的下限值下降。
在上述的第4实施方式中,第1电极、第2电极的各自两侧的电极边缘采用了相同形状,然而可以采用不同形状。
另外,本发明不限定于上述的实施方式的内容,能够在本发明的主旨的范围内进行各种变型来实施。

Claims (5)

1.一种液晶显示装置,所述液晶显示装置包括:
对置配置的第1基板和第2基板;
第1电极,其设置在所述第1基板的一面上,朝第1方向延伸;
第2电极,其设置在所述第2基板的一面上,朝与第1方向大致垂直的第2方向延伸;以及
大致垂直取向的液晶层,其设置在所述第1基板的一面和所述第2基板的一面的相互之间,
在所述第1电极和所述第2电极交叉的区域内构成像素,
朝与所述第1方向大致平行的方向对所述第1基板和所述第2基板中的至少一方实施取向处理,
所述第1电极是两侧的电极边缘朝所述第1方向延伸的直线状的形状,
所述第2电极是包含有至少单侧的电极边缘与所述第1方向斜交的线段的折线状形状,
在所述像素中,包含所述斜交的线段来划定像素边缘。
2.根据权利要求1所述的液晶显示装置,所述斜交的线段以所述第2方向为基准,形成大于0°且小于等于15°的角度而斜交。
3.根据权利要求1所述的液晶显示装置,所述斜交的线段是将朝相互不同的方向延伸的第1直线和第2直线连接而构成的,
所述第1直线和所述第2直线存在这样的关系:若将它们朝所述第1方向投影时的长度分别为Xa、Xb,则Xa是Xb的3倍以上,
所述第1直线以所述第2方向为基准形成大于0°且小于等于15°的角度而斜交。
4.根据权利要求1所述的液晶显示装置,所述斜交的线段是将彼此长度大致相等、且朝相互不同的方向延伸的第1直线和第2直线连接而构成的,
所述第1直线和所述第2直线分别以所述第2方向为基准形成大于0°且小于等于15°的角度而斜交。
5.根据权利要求1~4中任一项所述的液晶显示装置,所述斜交的线段配置在所述像素边缘中的反视认方向侧。
CN201110320458.1A 2010-10-27 2011-10-20 液晶显示装置 Active CN102455549B (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010-241386 2010-10-27
JP2010241386A JP5584091B2 (ja) 2010-10-27 2010-10-27 液晶表示装置
JP2010-241408 2010-10-27
JP2010241408A JP5572061B2 (ja) 2010-10-27 2010-10-27 液晶表示装置
JP2010-241238 2010-10-27
JP2010241238A JP5511626B2 (ja) 2010-10-27 2010-10-27 液晶表示装置
JP2010263294A JP5511640B2 (ja) 2010-11-26 2010-11-26 液晶表示装置
JP2010-263294 2010-11-26

Publications (2)

Publication Number Publication Date
CN102455549A true CN102455549A (zh) 2012-05-16
CN102455549B CN102455549B (zh) 2015-11-04

Family

ID=45996361

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110320458.1A Active CN102455549B (zh) 2010-10-27 2011-10-20 液晶显示装置

Country Status (2)

Country Link
US (1) US8842250B2 (zh)
CN (1) CN102455549B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018980A (zh) * 2012-12-31 2013-04-03 信利半导体有限公司 一种广视角液晶显示器及显示方法
CN103488005A (zh) * 2013-09-29 2014-01-01 南京中电熊猫液晶显示科技有限公司 一种液晶面板
CN103901647A (zh) * 2012-12-27 2014-07-02 群康科技(深圳)有限公司 显示装置及液晶显示面板
CN103995404A (zh) * 2013-02-14 2014-08-20 斯坦雷电气株式会社 液晶显示装置
CN105278711A (zh) * 2014-06-27 2016-01-27 群创光电股份有限公司 触控显示装置
CN105572950A (zh) * 2014-11-06 2016-05-11 立景光电股份有限公司 硅基液晶显示装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101359379B1 (ko) * 2012-03-28 2014-02-07 광주과학기술원 Cmos 이미지 센서의 픽셀 분석을 이용한 고감도 바이오센서
JP6266899B2 (ja) * 2013-05-28 2018-01-24 スタンレー電気株式会社 液晶表示装置
KR102132778B1 (ko) 2013-10-25 2020-07-13 삼성디스플레이 주식회사 액정 표시 장치
JP6296900B2 (ja) * 2014-05-27 2018-03-20 三菱電機株式会社 液晶表示装置用アレイ基板および液晶表示装置用アレイ基板の製造方法
CN104597675A (zh) * 2015-02-06 2015-05-06 京东方科技集团股份有限公司 显示基板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1860407A (zh) * 2003-09-26 2006-11-08 东芝松下显示技术有限公司 液晶显示面板
CN101169530A (zh) * 2006-10-23 2008-04-30 中华映管股份有限公司 像素结构及应用此像素结构的液晶显示面板
CN201336029Y (zh) * 2009-01-16 2009-10-28 汕头超声显示器(二厂)有限公司 电容式触摸屏
WO2010001647A1 (ja) * 2008-06-30 2010-01-07 シャープ株式会社 液晶表示装置
EP2233969A2 (en) * 2009-03-24 2010-09-29 Stanley Electric Co., Ltd. Liquid crystal display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4546586B2 (ja) 1998-12-28 2010-09-15 スタンレー電気株式会社 液晶表示素子とその製造方法
KR101309139B1 (ko) * 2003-12-29 2013-09-17 엘지디스플레이 주식회사 어레이 기판 및 이를 포함하는 액정표시장치
JP4614200B2 (ja) 2004-02-20 2011-01-19 スタンレー電気株式会社 ノーマリブラック垂直配向型液晶表示装置およびその製造方法
JP5096857B2 (ja) 2007-09-28 2012-12-12 スタンレー電気株式会社 液晶表示素子
JP5101268B2 (ja) 2007-12-25 2012-12-19 スタンレー電気株式会社 液晶表示素子
JP5417003B2 (ja) * 2009-03-24 2014-02-12 スタンレー電気株式会社 液晶表示素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1860407A (zh) * 2003-09-26 2006-11-08 东芝松下显示技术有限公司 液晶显示面板
CN101169530A (zh) * 2006-10-23 2008-04-30 中华映管股份有限公司 像素结构及应用此像素结构的液晶显示面板
WO2010001647A1 (ja) * 2008-06-30 2010-01-07 シャープ株式会社 液晶表示装置
CN201336029Y (zh) * 2009-01-16 2009-10-28 汕头超声显示器(二厂)有限公司 电容式触摸屏
EP2233969A2 (en) * 2009-03-24 2010-09-29 Stanley Electric Co., Ltd. Liquid crystal display device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103901647A (zh) * 2012-12-27 2014-07-02 群康科技(深圳)有限公司 显示装置及液晶显示面板
CN103018980A (zh) * 2012-12-31 2013-04-03 信利半导体有限公司 一种广视角液晶显示器及显示方法
CN103995404A (zh) * 2013-02-14 2014-08-20 斯坦雷电气株式会社 液晶显示装置
CN103995404B (zh) * 2013-02-14 2019-05-17 斯坦雷电气株式会社 液晶显示装置
CN103488005A (zh) * 2013-09-29 2014-01-01 南京中电熊猫液晶显示科技有限公司 一种液晶面板
CN103488005B (zh) * 2013-09-29 2016-05-25 南京中电熊猫液晶显示科技有限公司 一种液晶面板
CN105278711A (zh) * 2014-06-27 2016-01-27 群创光电股份有限公司 触控显示装置
CN105572950A (zh) * 2014-11-06 2016-05-11 立景光电股份有限公司 硅基液晶显示装置

Also Published As

Publication number Publication date
CN102455549B (zh) 2015-11-04
US8842250B2 (en) 2014-09-23
US20120105786A1 (en) 2012-05-03

Similar Documents

Publication Publication Date Title
CN102455549A (zh) 液晶显示装置
CN105551446B (zh) 液晶显示面板的驱动方法
CN103185993B (zh) Ips/ffs型液晶显示装置的阵列基板
US20130176523A1 (en) Pixel structure for liquid crystal display device
CN103529607A (zh) 一种液晶显示面板、显示装置及其驱动方法
US9835911B2 (en) Liquid crystal display device
CN104020615A (zh) 一种液晶显示面板及显示装置
CN103226268B (zh) 一种阵列基板、液晶显示面板及显示装置
EP2801859A2 (en) Active-matrix liquid crystal display which combines both IPS and FFS electrode configurations to generate a horizontal component of the electric field
CN103207479B (zh) 液晶显示装置
US20150261053A1 (en) Liquid crystal panel and display device
CN103676353B (zh) 像素结构、阵列基板及显示装置
CN102654694A (zh) 一种液晶显示面板及液晶显示器
CN102608813A (zh) 液晶显示装置
US9766510B2 (en) Pixel unit and array substrate
CN102053411B (zh) 垂直配向型液晶显示装置
CN108873417A (zh) 液晶显示装置的驱动方法
JP5511626B2 (ja) 液晶表示装置
CN102998855B (zh) 像素单元、薄膜晶体管阵列基板及液晶显示器
CN103185992A (zh) 一种液晶显示装置的像素结构及液晶显示装置
CN102629036A (zh) 阵列基板以及显示器件
WO2019056459A1 (zh) 液晶显示装置
CN203480173U (zh) 一种液晶显示面板和显示装置
CN203849530U (zh) 一种液晶显示面板及显示装置
CN203365866U (zh) 一种液晶面板和显示装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant