CN102438300A - 射频信号控制模块与射频信号控制方法 - Google Patents

射频信号控制模块与射频信号控制方法 Download PDF

Info

Publication number
CN102438300A
CN102438300A CN2011102748973A CN201110274897A CN102438300A CN 102438300 A CN102438300 A CN 102438300A CN 2011102748973 A CN2011102748973 A CN 2011102748973A CN 201110274897 A CN201110274897 A CN 201110274897A CN 102438300 A CN102438300 A CN 102438300A
Authority
CN
China
Prior art keywords
wireless
radiofrequency signal
coupling
value
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011102748973A
Other languages
English (en)
Inventor
杨文蔚
宋大伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MediaTek Inc
Original Assignee
MediaTek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MediaTek Inc filed Critical MediaTek Inc
Publication of CN102438300A publication Critical patent/CN102438300A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了射频信号控制模块及射频信号控制方法。射频信号控制模块包括检测与控制装置。检测与控制装置根据无线耦接信号检测传送频带中的至少一无线耦接值,以及根据被检测到的无线耦接值产生控制信号,用以控制即将被传送的射频信号的传送功率。本发明所提出的射频信号控制模块与射频信号控制方法根据无线耦接信号检测无线耦接值来控制即将被传送的射频信号的传送功率,能够全方向校正比吸收率。

Description

射频信号控制模块与射频信号控制方法
技术领域
本发明有关于射频(radio frequency,RF)信号控制模块,特别是有关于控制通信装置的传送功率的射频信号控制模块及射频信号控制方法。
背景技术
比吸收率(Specific absorption rate,SAR)为用以测量当人体暴露在射频电磁场中时,人体所吸收的射频能量的比值。比吸收率定义为单位质量组织器官所吸收的电磁能量。此数值以瓦特每千克(Watts per kilogram,W/Kg)作为单位,用以计算每单位人体组织器官吸收能量的数值。比吸收率通常为计算整个人体的平均值,或计算小样本体积(通常为1克或10克人体组织器官)的平均值。接着采用对所研究的人体体积或质量的身体部分所测量的最大值作为比吸收率。可以下列方程式从人体组织器官的电场来计算比吸收率:
SAR = σ | E | 2 2 ρ
其中σ代表样本导电系数,|E|代表电场强度,ρ代表样本密度。
通常通过嵌入接近传感器(Proximity Sensor)至电子装置中,用以校正比吸收率。当接近传感器检测到人体接近电子装置时,则限制射频最大传送功率。然而,接近传感器为单一方向装置,当需要检测更多方向以校正比吸收率时,则需要提供更多的接近传感器。
因此,需要一种无方向限制的传送功率检测与控制方案。
发明内容
由此,本发明提供改良的射频信号控制模块与射频信号控制方法,以解决上述问题。
本发明提供一种射频(RF)信号控制模块,包括:检测与控制装置,用以根据无线耦接信号检测传送频带中的至少一无线耦接值,以及根据被检测到的无线耦接值产生控制信号,用以控制即将被传送的射频信号的传送功率。
本发明还提供一种射频信号控制方法,包括:根据无线耦接信号检测无线耦接值的绝对值或变化量;确定无线耦接值的绝对值或变化量是否超过既定临界值;以及当无线耦接值的绝对值或变化量超过既定临界值时,限制即将被传送的射频信号的最大传送功率,或将即将被传送的射频信号的传送功率降低一等级。
本发明所提出的射频信号控制模块与射频信号控制方法根据无线耦接信号检测无线耦接值来控制即将被传送的射频信号的传送功率,能够全方向校正特定吸收比率。
附图说明
图1为根据本发明实施方式的通信装置的示意图。
图2为根据本发明实施方式的射频信号控制模块的示意图。
图3为根据本发明实施方式的通信装置的示意图。
图4为根据本发明实施方式的通信装置的示意图。
图5为根据本发明实施方式的耦接器的示意图。
图6为根据本发明实施方式的检测与控制装置的示意图。
图7为根据本发明实施方式的具有多传送天线的通信装置的示意图。
图8为根据本发明实施方式的具有多传送天线的通信装置的示意图。
图9为根据本发明实施方式的射频信号控制方法的流程图。
具体实施方式
为使本发明的制造、操作方法、目标和优点能更明显易懂,下文特举几个较佳实施方式,并配合所附图式,作详细说明如下。本发明的保护范围当视权利要求所界定者为准。
图1为根据本发明实施方式的通信装置的示意图。通信装置100至少包括收发器模块102与射频信号控制模块104。收发器模块102用以产生即将被传送至空中界面(air interface)的射频信号SRF。射频信号控制模块104用以产生控制信号SCtrl以调整收发器模块102的传送功率,收发器模块102利用调整过的传送功率以传送射频信号SRF。显然的,图1仅显示与本发明设计相关的装置,因此本发明并不限于此。
根据本发明的实施方式,射频信号控制模块104取得或接收无线耦接信号SCouple,且根据无线耦接信号SCouple产生控制信号SCtrl。在本发明的实施方式中,无线耦接信号SCouple对应于射频信号SRF的传送。
图2为根据本发明实施方式的射频信号控制模块104的示意图。射频信号控制模块104包括无线耦接装置202以及检测与控制装置204。无线耦接装置202用以通过无线耦接路径来从传送频带中取得或接收无线耦接信号SCouple,该无线耦接路径建立在用以传送射频信号SRF的传送天线与射频信号控制模块104之间(在后续段落中详细讨论)。检测与控制装置204用以根据无线耦接信号SCouple检测至少一无线耦接值,以及根据检测到的无线耦接值产生控制信号SCtrl用以控制射频信号SRF的传送功率,该射频信号SRF为即将被传送的信号。
根据本发明的实施方式,无线耦接装置202可通过用以接收无线耦接信号SCouple的传感器天线(sensor antenna)所实现。在此实施方式中,无线耦接信号SCouple为射频信号SRF的衰减信号。图3为根据本发明实施方式的通信装置300的示意图。如图3所示,收发器模块302耦接至用以传送产生的射频信号SRF的传送天线324。在某些实施方式中,传送天线324也可以整合至收发器模块302中,但并不限于此。射频信号控制模块104包括检测与控制装置304与传感器天线326。传感器天线326接收来自无线耦接路径330的被传送的射频信号SR F,无线耦接路径330为传送天线324与传感器天线326之间的路径。根据本发明的实施方式,因为从传送天线324到传感器天线326的无线耦接为全向且固定,检测与控制装置304可检测与监控无线耦接信号SCouple的功率或相位,或根据无线耦接信号SCouple检测与监控其他无线耦接值,以及当没有人体接近通信装置300时,确定当下检测到的无线耦接值是否超过既定临界值。当无线耦接值被确定为超过既定临界值时,检测与控制装置304则确定有至少一人体接近通信装置300,接着产生控制信号SCtrl,用以限制收发器模块302的最大传送功率或将即将被传送的射频信号SRF的传送功率降低一特定等级。因此,当人体暴露在射频电磁场中时,由人体吸收的射频能量得以降低。在本发明的某些实施方式中,既定临界值可被设为当没有人体接近通信装置300时,所确定的无线耦接值的可能变化量。检测与控制装置304检测与监控无线耦接值的变化量。当无线耦接值的变化量超过既定临界值时,检测与控制装置304则确定至少一人体接近通信装置300,接着产生控制信号SCtrl用以限制收发器模块302的最大传送功率或将即将被传送的射频信号SRF的传送功率降低一特定等级。在其他实施方式中,既定临界值可被设为既定无线耦接值的百分比或绝对值或当没有人体接近通信装置300时,所确定的无线耦接值的可能变化量,也可基于相似概念被设为其他值,并不限于以上所述的范例。
根据本发明的实施方式,当没有人体接近通信装置时,先测量理想无线耦接值或无线耦接值理想的可能变化量。举例而言,假设当没有人体接近通信装置300时,被传送的射频信号SRF的功率为23dBm,接收到的无线耦接信号SCouple的功率为-7dBm,因此,理想无线耦接路径损耗为(-7-23)=30dBm。应用10%的裕度(margin),因此无线耦接路径损耗的既定临界值为33dBm。也就是说,一旦检测与控制装置304确定当前取得的无线耦接路径损耗超过33dBm时,检测与控制装置304则确定至少一人体接近通信装置300,接着产生控制信号SCtrl用以限制收发器模块302的最大传送功率。
另一实施方式中,当没有人体接近通信装置300时,先测量接收到的无线耦接信号SCouple的理想相位。相位可经由接收到的无线耦接信号SCouple的虚部得到。应用合适的裕度,以确定对应于接收到的无线耦接信号SCouple的相位的一或多个既定临界值。当接收到的无线耦接信号SCouple的当前取得相位被确定为不同于既定临界值时,检测与控制装置304则确定至少一人体接近通信装置300,接着产生控制信号SCtrl,用以限制收发器模块302的最大传送功率或将即将被传送的射频信号SRF的传送功率降低一特定等级。
根据本发明的另一实施方式,无线耦接装置202可由用以取得无线耦接信号SCouple的耦接器所实现。在一实施方式中,无线耦接信号SCouple为射频信号SRF的反射(或回传)信号。图4为根据本发明的实施方式的通信装置400的示意图。如图4所示,耦接器428耦接在用以传送射频信号SRF的传送天线424与功率放大器422之间。收发器模块402包括功率放大器422。在某些实施方式中,传送天线424可整合至收发器模块402中,但本发明并不限于此。在某些实施方式中,耦接器可整合至功率放大器422中,或嵌入至印刷电路板(printed circuitboard)中,但本发明不限于此。图5为根据本发明实施方式的耦接器528的示意图。耦接器528包括输入端口501,用以接收来自功率放大器422的射频信号SRF;传送端口502,用以输出射频信号SRF与接收反射(或回传)射频信号S’RF;耦接端口503,用以耦接反射(或回传)射频信号S’RF以产生无线耦接信号SCouple;以及分离端口504。根据本发明的实施方式,图4的检测与控制装置404用以检测与监控无线耦接信号SCouple的功率或相位,或根据无线耦接信号SCouple检测与监控其他无线耦接值(如传送天线424的阻抗),以及当没有人体接近通信装置400时,确定无线耦接值或无线耦接值的变化量是否超过既定临界值。当确定无线耦接值或无线耦接值的变化量超过既定临界值时,检测与控制装置404则确定至少一人体接近通信装置400,接着产生控制信号SCtrl,用以限制收发器模块402的最大传送功率或将即将被传送的射频信号SRF的传送功率降低一特定等级。因此,当人体暴露在射频电磁场时,由人体吸收的射频能量得以降低。
举例而言,当没有人体接近通信装置400时,先测量传送天线424的理想阻抗。传送天线424的阻抗可通过测量对应于传送天线424的S参数所取得。举例而言,当耦接器428为具有端口P1与端口P2的多端口装置时,测量到的输入回传损耗S11可代表传送天线424的阻抗。具体而言,当没有人体接近通信装置400时,检测与控制装置404根据无线耦接信号SCouple对应射频信号SRF的比值取得理想的输入回传损耗S11。假设所取得的理想输入回传损耗S11用S11=a+bj表示,其中a与b为实数,j为表示虚部的数学符号。检测与控制装置404将虚部的数字b作为无线耦接值,用以表示传送天线424的阻抗。相似地,应用合适的裕度,以确定对应于传送天线424阻抗的既定临界值。当确定当前取得的输入回传损耗S11(或当前取得的传送天线424的阻抗)超过既定临界值时,检测与控制装置404则确定至少一人体接近通信装置400,接着产生控制信号SCtrl,用以限制收发器模块402的最大传送功率或将即将被传送的射频信号SRF的传送功率降低一特定等级。
在本发明的其他实施方式中,由测量到的输入回传损耗S11所得到的其他信息也可作为无线耦接值。举例而言,实部的数字a,或实部的数字a与虚部的数字b的结合如
Figure BSA00000575136200051
也可作为无线耦接值。此外,取得的插入损耗S21也可作为无线耦接值,但本发明并不限于此。举例而言,当插入损耗S21以S21=c+dj表示时,其中c与d为实数,实部的数字c、虚部的数字d或实部的数字c与虚部的数字d的结合如
Figure BSA00000575136200052
也可作为无线耦接值。
图6为根据本发明实施方式的检测与控制装置604的示意图。检测与控制装置604包括检测器641、采样器642、比较器643与存储器644。根据本发明的一实施方式,检测器641接收来自无线耦接装置的无线耦接信号SCouple,以及根据无线耦接信号SCouple检测无线耦接值及/或无线耦接值的变化量。举例而言,检测器641通过执行波形至电压转换(waveform to voltage),以检测无线耦接信号SCouple的功率及/或功率变化。再举例而言,检测器641通过撷取无线耦接信号SCouple的虚部,以检测无线耦接信号SCouple的相位及/或相位变化。又举例而言,检测器641通过测量收发器网络中的S参数以检测传送天线的阻抗及/或阻抗变化。由检测器641检测到的值SV更进一步由采样器642采样。举例而言,采样器642可为模数转换器。经过采样的值SV’进一步传送至比较器643。比较器643比较经过采样的值SV’与储存在存储器644中的既定临界值TH,接着根据比较结果产生控制信号SCtrl。图6仅显示检测与控制装置的一实施方式,本发明并不限于此。除此之外,在本发明的实施方式中,检测与控制装置可由专用硬件实现,或者上述由检测与控制装置执行的功能可编码为软件指令以由通用处理器执行。因此,本发明并不限于以上所述的方法。
图7为根据本发明实施方式的具有多传送天线的通信装置700的示意图。通信装置700至少包括两个传送天线724与726,用以同时传送射频信号(适用于多输入多输出的情形中)或非同时传送射频信号(适用于选择天线的情形中)。在一实施方式中,无线耦接装置706与708配置在靠近传送天线724与726的位置,用以分别检测无线耦接信号。举例而言,在多输入多输出的情形中,传送天线724与726皆用以传送射频信号。无线耦接装置706与708配置在靠近传送天线724与726的位置,用以分别检测反射至传送天线724与传送天线726的无线耦接信号,或检测从传送天线724耦接至传送天线726的无线耦接信号,或检测从传送天线726耦接至传送天线724的无线耦接信号。再举例而言,在选择天线的情形中,当传送天线724用以传送射频信号而传送天线726不用以传送射频信号时,对应于传送天线726的无线耦接装置708则用以检测从传送天线724耦接至传送天线726的无线耦接信号,反之亦然。接收到的耦接信号更进一步被传送至检测与控制装置704,用以控制传送功率。显然的,图7仅显示与本发明设计相关的装置,而省略配置在通信装置内的其他装置,以更清楚地说明本发明的概念。图7所示为简化示意图,因此本发明不限于此。当多于一个传送天线用以传送射频信号(例如多输入多输出情形中)时,可根据对应于任一传送天线的无线耦接信号取得无线耦接值,或根据对应于多个传送天线取得的无线耦接信号取得无线耦接值,或根据对应于多个传送天线的无线耦接信号的组合取得无线耦接值,或根据其他情形取得。决定既定临界值的方法可根据取得无线耦接值的方案所变化。
图8为根据本发明实施方式的具有多传送天线的通信装置800的示意图。通信装置800至少包括两个传送天线824与826,用以同时传送射频信号(适用于多输入多输出的情形)或非同时传送射频信号(适用于选择天线的情形)。在一实施方式中,在靠近传送天线824与826的位置,或在天线824与826之间配置一个无线耦接装置806,用以检测无线耦接信号。举例而言,在多输入多输出的情形中,传送天线824与826皆用以传送射频信号。无线耦接装置806用以检测反射至传送天线824与传送天线826的无线耦接信号,或检测从传送天线826耦接至传送天线824的无线耦接信号,或检测从传送天线824耦接至传送天线826的无线耦接信号。再举例而言,在选择天线情形中,当传送天线824用以传送射频信号而传送天线826不用以传送射频信号时,无线耦接装置806则用以检测从传送天线824耦接至传送天线826的无线耦接信号,反之亦然。接收到的耦接信号更进一步被传送至检测与控制装置804,用以控制传送功率。显然的,图8仅显示与本发明设计相关的装置而省略配置在通信装置内的其他装置,以更清楚地说明本发明的概念。图8所示为简化示意图,因此本发明不限于此。在本发明的某些实施方式中,如以上所述的选择天线的情形中,未被选择用以传送射频信号的天线也可作为无线耦接装置,用以接收或取得无线耦接信号SCouple。在此情形中,可省略专用的无线耦接装置(如图7与图8所示的无线耦接装置706、708或806)。
图9为根据本发明实施方式的射频信号控制方法的流程图。在步骤S902中,根据无线耦接信号检测相对应于通信装置的无线耦接值的绝对值或变化量。接着,在步骤S904中,确定无线耦接值的绝对值或变化量是否超过既定临界值。当无线耦接值的绝对值或变化量并未超过既定临界值时,则确定为无人体接近相对应的通信装置,并结束流程图。否则,当无线耦接值的绝对值或变化量超过既定临界值时,则进行至步骤S906。在步骤S906中,限制用以传送射频信号的通信装置的最大传送功率,或根据无线耦接值的绝对值或变化量来将即将被传送的射频信号SRF的传送功率降低一特定等级。当确定为至少一人体接近相对应的通信装置时,则限制最大传送功率至由相对应规格所定义的较小功率值,以降低由人体吸收的射频能量。在另一实施方式中,可根据检测到的无线耦接值,直接降低用以传送射频信号的通信装置的传送功率,但本发明不限于此。图9所示的流程可周期性地重复执行,以动态地控制通信装置的传送功率。
上述本发明的实施方式可用多种方式实现。举例而言,可利用硬件、软件或两者的结合以实现本发明的实施方式。用以执行上述功能的任何组件或组件组合可为一或多处理器其用以控制上述功能。可用多种方式实现一或多处理器,例如使用微码或软件编程以执行上述功能的专用硬件或通用硬件。
本发明虽以较佳实施方式揭露如上,然其并非用以限定本发明的范围,任何本领域的技术人员,在不脱离本发明的精神和范围内,当可做些许的更动与润饰,因此本发明的保护范围当视权利要求所界定者为准。

Claims (19)

1.一种射频信号控制模块,包括:
检测与控制装置,用以根据无线耦接信号检测传送频带中的至少一无线耦接值,以及根据被检测到的该无线耦接值产生控制信号,用以控制即将被传送的射频信号的传送功率。
2.如权利要求1所述的射频信号控制模块,更包括:
无线耦接装置,用以从无线耦接路径取得该无线耦接信号,该无线耦接路径介于用以传送该射频信号的传送天线与该无线耦接装置之间。
3.如权利要求2所述的射频信号控制模块,其特征在于,该无线耦接装置为天线。
4.如权利要求2所述的射频信号控制模块,其特征在于,该无线耦接装置为耦接器。
5.如权利要求1所述的射频信号控制模块,其特征在于,该无线耦接值为该无线耦接信号的功率。
6.如权利要求1所述的射频信号控制模块,其特征在于,该无线耦接值为该无线耦接信号的相位。
7.如权利要求1所述的射频信号控制模块,其特征在于,该无线耦接值为传送天线的阻抗,该传送天线用以传送该射频信号。
8.如权利要求1所述的射频信号控制模块,其特征在于,该无线耦接信号为该射频信号的衰减信号。
9.如权利要求1所述的射频信号控制模块,其特征在于,该无线耦接信号为该射频信号的反射信号。
10.如权利要求1所述的射频信号控制模块,其特征在于,该无线耦接值为通过测量S参数进行检测,该S参数对应于用以传送该射频信号的传送天线。
11.如权利要求1所述的射频信号控制模块,其特征在于,该检测与控制装置还包括:
存储器,用以储存既定临界值;
检测器,用以根据该无线耦接信号检测该无线耦接值;
采样器,用以采样被检测到的该无线耦接值以取得采样无线耦接值;以及
比较器,用以比较该采样无线耦接值与该既定临界值,并根据比较结果产生该控制信号。
12.一种射频信号控制方法,包括:
根据无线耦接信号检测无线耦接值的绝对值或变化量;
确定该无线耦接值的该绝对值或该变化量是否超过既定临界值;以及
当该无线耦接值的该绝对值或该变化量超过该既定临界值时,限制即将被传送的射频信号的最大传送功率,或将即将被传送的该射频信号的传送功率降低一等级。
13.如权利要求12所述的射频信号控制方法,更包括:
从无线耦接路径取得该无线耦接信号,该无线耦接路径耦接至用以传送该射频信号的传送天线。
14.如权利要求12所述的射频信号控制方法,其特征在于,该无线耦接信号为该射频信号的衰减信号。
15.如权利要求12所述的射频信号控制方法,其特征在于,该无线耦接信号为该射频信号的反射信号。
16.如权利要求12所述的射频信号控制方法,其特征在于,该无线耦接值为该无线耦接信号的功率。
17.如权利要求12所述的射频信号控制方法,其特征在于,该无线耦接值为该无线耦接信号的相位。
18.如权利要求12所述的射频信号控制方法,其特征在于,该无线耦接值为传送天线的阻抗,该传送天线用以传送该射频信号。
19.如权利要求12所述的射频信号控制方法,其特征在于,检测该无线耦接值的该绝对值或该变化量的步骤更包括:
测量S参数,该S参数对应于用以传送该射频信号的传送天线。
CN2011102748973A 2010-09-20 2011-09-16 射频信号控制模块与射频信号控制方法 Pending CN102438300A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US38452310P 2010-09-20 2010-09-20
US61/384,523 2010-09-20
US13/113,296 US20120071108A1 (en) 2010-09-20 2011-05-23 Radio Frequency Signal Control Module and Radio Frequency Signal Controlling Method
US13/113,296 2011-05-23

Publications (1)

Publication Number Publication Date
CN102438300A true CN102438300A (zh) 2012-05-02

Family

ID=45817740

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011102748973A Pending CN102438300A (zh) 2010-09-20 2011-09-16 射频信号控制模块与射频信号控制方法

Country Status (4)

Country Link
US (2) US9161321B2 (zh)
JP (1) JP2012065321A (zh)
CN (1) CN102438300A (zh)
TW (1) TW201215202A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103545619A (zh) * 2012-07-13 2014-01-29 联想(北京)有限公司 天线装置和调节天线装置的辐射的方法
CN103582103A (zh) * 2012-07-18 2014-02-12 纬创资通股份有限公司 通信系统及控制电路
TWI465747B (zh) * 2013-05-28 2014-12-21
CN105101373A (zh) * 2014-05-07 2015-11-25 神讯电脑(昆山)有限公司 电子装置及天线发射功率调整方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9026059B2 (en) 2011-02-17 2015-05-05 Futurewei Technologies, Inc. Adaptive maximum power limiting using capacitive sensing in a wireless device
WO2012177939A2 (en) * 2011-06-21 2012-12-27 Google Inc. Controlling mtd antenna vswr and coupling for sar control
KR102039637B1 (ko) * 2012-09-26 2019-11-01 삼성전자주식회사 송신장치에서의 전력제어장치 및 방법
CN103874180B (zh) * 2012-12-14 2017-10-31 中国电信股份有限公司 双路发射终端的最大发射功率控制方法与装置
US9831844B2 (en) * 2014-09-19 2017-11-28 Knowles Electronics, Llc Digital microphone with adjustable gain control
US9930725B2 (en) 2014-12-16 2018-03-27 Apple Inc. Wireless electronic device with multiradio controller integrated circuit
US9768889B2 (en) * 2015-12-14 2017-09-19 Maxlinear Asia Singapore PTE LTD Adaptive symbol mapping modulation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11308142A (ja) * 1998-04-21 1999-11-05 Casio Comput Co Ltd 携帯通信装置
CN1411099A (zh) * 2001-09-27 2003-04-16 株式会社东芝 便携式无线电设备
CN1767399A (zh) * 2004-10-26 2006-05-03 Lg电子株式会社 用于匹配移动通信终端的天线的装置和方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3903401A (en) * 1974-06-27 1975-09-02 Bell Telephone Labor Inc Spectrum analyzer using delta modulation encoding
US5870393A (en) * 1995-01-20 1999-02-09 Hitachi, Ltd. Spread spectrum communication system and transmission power control method therefor
US5956626A (en) * 1996-06-03 1999-09-21 Motorola, Inc. Wireless communication device having an electromagnetic wave proximity sensor
JP3462388B2 (ja) * 1998-04-28 2003-11-05 松下電器産業株式会社 無線通信装置
US6236864B1 (en) * 1998-11-27 2001-05-22 Nortel Networks Limited CDMA transmit peak power reduction
AU2001241174A1 (en) * 2000-03-22 2001-10-03 Telefonaktiebolaget Lm Ericsson Mobile radio communications apparatus and base station thereof, and method of antenna selection
US6856644B1 (en) * 2000-10-31 2005-02-15 Motorola, Inc. Method and apparatus for forward link power control bit generation in a spread-spectrum communication system
US6807429B2 (en) * 2001-08-22 2004-10-19 Qualcomm Incorporated Method and apparatus for combining power control commands received in a wireless communication system
JP2003174367A (ja) * 2001-09-27 2003-06-20 Toshiba Corp 携帯無線機
US7146139B2 (en) * 2001-09-28 2006-12-05 Siemens Communications, Inc. System and method for reducing SAR values
US7053629B2 (en) * 2001-09-28 2006-05-30 Siemens Communications, Inc. System and method for detecting the proximity of a body
US7587659B2 (en) * 2002-05-31 2009-09-08 Broadcom Corporation Efficient front end memory arrangement to support parallel bit node and check node processing in LDPC (Low Density Parity Check) decoders
US7269205B2 (en) * 2003-09-26 2007-09-11 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for signal demodulation
US20050208907A1 (en) * 2004-03-18 2005-09-22 Ryo Yamazaki Detecting and maintaining linearity in a power amplifier system through envelope power comparisons
US7349504B2 (en) * 2005-03-18 2008-03-25 Navini Networks, Inc. Method and system for mitigating interference in communication system
US8077032B1 (en) * 2006-05-05 2011-12-13 Motion Computing, Inc. System and method for selectively providing security to and transmission power from a portable electronic device depending on a distance between the device and a user
US7856048B1 (en) * 2006-11-20 2010-12-21 Marvell International, Ltd. On-chip IQ imbalance and LO leakage calibration for transceivers
WO2009003087A2 (en) * 2007-06-26 2008-12-31 Skyworks Solutions, Inc. Error vector magnitude control within a linear transmitter
US8433973B2 (en) * 2007-07-04 2013-04-30 Lg Electronics Inc. Digital broadcasting system and method of processing data
US7825775B2 (en) * 2007-07-31 2010-11-02 Symbol Technologies, Inc. Antenna-based trigger
US20100022209A1 (en) * 2008-07-25 2010-01-28 Motorola, Inc Method and apparatus for reducing peak current variation in a radio
FI20086201A0 (fi) 2008-12-16 2008-12-16 Nokia Corp Epälineaarisuusmetriikan laskeminen
US20110026430A1 (en) * 2009-07-30 2011-02-03 Qualcomm Incorporated Method and apparatus for detecting a channel condition for a wireless communication device
US8559325B2 (en) * 2009-09-15 2013-10-15 Qualcomm Incorporated Systems and methods for over the air load indicator for wireless scheduling
US8484593B2 (en) * 2010-07-19 2013-07-09 Advanced Micro Devices Method of determining event based energy weights for digital power estimation
US8582624B2 (en) * 2010-10-01 2013-11-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for enhancing the accuracy of the estimated covariance matrix in wideband-CDMA systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11308142A (ja) * 1998-04-21 1999-11-05 Casio Comput Co Ltd 携帯通信装置
CN1411099A (zh) * 2001-09-27 2003-04-16 株式会社东芝 便携式无线电设备
CN1767399A (zh) * 2004-10-26 2006-05-03 Lg电子株式会社 用于匹配移动通信终端的天线的装置和方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103545619A (zh) * 2012-07-13 2014-01-29 联想(北京)有限公司 天线装置和调节天线装置的辐射的方法
CN103582103A (zh) * 2012-07-18 2014-02-12 纬创资通股份有限公司 通信系统及控制电路
CN103582103B (zh) * 2012-07-18 2017-05-03 纬创资通股份有限公司 通信系统及控制电路
TWI465747B (zh) * 2013-05-28 2014-12-21
CN105101373A (zh) * 2014-05-07 2015-11-25 神讯电脑(昆山)有限公司 电子装置及天线发射功率调整方法
CN105101373B (zh) * 2014-05-07 2019-04-19 神讯电脑(昆山)有限公司 电子装置及天线发射功率调整方法

Also Published As

Publication number Publication date
US20120071108A1 (en) 2012-03-22
US20120069885A1 (en) 2012-03-22
US9161321B2 (en) 2015-10-13
JP2012065321A (ja) 2012-03-29
TW201215202A (en) 2012-04-01

Similar Documents

Publication Publication Date Title
CN102438300A (zh) 射频信号控制模块与射频信号控制方法
CN100571364C (zh) 使用人体天线的数字多媒体广播接收器与接收方法
WO2006044700A3 (en) Wireless patch temperature sensor system
EP1298810A3 (en) Portable type radio equipment
CA2519371A1 (en) System and method for regulating antenna electrical length
CN107102199A (zh) 用于无线功率测量的测量系统
CN116402075B (zh) 基于物联网的医疗数据采集方法及系统
Chung Embedded 3D multi‐band antenna with ETS process technology covering LTE/WCDMA/ISM band operations in a smart wrist wearable wireless mobile communication device design
CN210778990U (zh) 基于双极化天线的准平面波生成器
CN110290577B (zh) 功率补偿方法、天线组件以及电子设备
EP1476765B1 (en) Radio frequency power generation and power measurement
CN109557382A (zh) 一种电磁辐射测量方法
US20120062305A1 (en) Antenna Matching System and Device
CN107942286A (zh) 一种室内电力线定位系统及方法
SE9902341D0 (sv) Apparatus and method of detecting proximity by means of an antenna
Todtenberg et al. Estimation of 433 MHz path loss in algae culture for biosensor capsule application
CN100412555C (zh) 天线功率测量方法及其装置
US11444648B2 (en) Mobile RF radiation detection device
KR20040061644A (ko) 이동 통신 단말의 안테나 매칭 장치
CN115412117B (zh) 一种后向散射传感通信系统
Higgins In-body wireless communication made real
KR100351860B1 (ko) 휴대폰의 송신 전력 제어 장치 및 그를 이용한 송신전력제어 방법
CN211979195U (zh) 一种微波传感器及智能探测装置
CANSIZ Radio Frequency Energy Harvesting with Different Antennas and Output Powers
KR100462461B1 (ko) 특정 흡수율 측정 시스템의 유효성 시험용 표준 신호원공급 장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120502