CN102422441A - 通过添加锗定制由液态硅烷制备的太阳能电池的带隙 - Google Patents

通过添加锗定制由液态硅烷制备的太阳能电池的带隙 Download PDF

Info

Publication number
CN102422441A
CN102422441A CN2010800189028A CN201080018902A CN102422441A CN 102422441 A CN102422441 A CN 102422441A CN 2010800189028 A CN2010800189028 A CN 2010800189028A CN 201080018902 A CN201080018902 A CN 201080018902A CN 102422441 A CN102422441 A CN 102422441A
Authority
CN
China
Prior art keywords
germanium
silicon
compound
preparaton
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800189028A
Other languages
English (en)
Other versions
CN102422441B (zh
Inventor
B.施蒂策尔
W.法尔纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Publication of CN102422441A publication Critical patent/CN102422441A/zh
Application granted granted Critical
Publication of CN102422441B publication Critical patent/CN102422441B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • H01L31/03687Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table including microcrystalline AIVBIV alloys, e.g. uc-SiGe, uc-SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only AIVBIV alloys, e.g. SiGe
    • H01L31/1816Special manufacturing methods for microcrystalline layers, e.g. uc-SiGe, uc-SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • H01L31/204Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table including AIVBIV alloys, e.g. SiGe, SiC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Photovoltaic Devices (AREA)
  • Chemically Coating (AREA)

Abstract

本发明涉及在借助用含硅化合物的配制剂涂覆衬底来生产光电设备时,例如在生产太阳能电池时,降低或消除带隙迁移的方法,所述制备包括下面步骤:其中用液态硅烷配制剂涂覆衬底,其中本发明的特征在于,所述配制剂另外含有至少一种锗化合物。本发明还涉及这样的光电设备的制备方法。

Description

通过添加锗定制由液态硅烷制备的太阳能电池的带隙
本发明涉及在借助用含硅化合物的配制剂涂覆衬底来生产光电设备时,例如在生产太阳能电池时,降低或消除带隙迁移(Bandlückenverschiebung)的方法,所述制备方法包括下面步骤:用液态硅烷配制剂涂覆衬底。本发明还涉及这样的光电设备的制备方法。
太阳能电池的常规生产方法在于要么借助于依靠取向生长(Epitaxie)在掺杂半导体衬底上植入或扩散或沉积反向掺杂的半导体层来反向掺杂经掺杂的半导体衬底,要么在低压下由气相或者上述方法的变型方案沉积不同掺杂程度的半导体层。所有这些方法的缺陷在于藉此操作所必须的经济和成本投入。
为了避免所需的真空技术,高温和/或昂贵的衬底,人们寻求由液相硅烷制备层或层序列。
通过在合适的衬底上沉积一个或多个这样的硅烷层,可以产生p-n结,其充当太阳能电池。所述沉积借助旋涂器进行。所产生的层通过合适的温度处理稳定化,使得其通常呈现为微晶、纳晶(nanokristalline)和非晶态(缩写为多晶型)结构的混合物。如果未明确叙及,在此所有微晶、纳晶和/或非晶态层应通称为“多晶型(polymorph)”,因为精确区分和确定在大多情况下不太可能或者对于所实现的结果不太重要。
如何由硅烷制备硅层本身是已知的。例如,GB 2077710教导通过同时还原和聚合SiH2Cl2和碱金属来制备通式-(SiH2)n-的聚硅烷,其中n ≥ 10。这样的高级硅烷已知为硅层(例如用于太阳能电池)用的前体。在具有更小的n值(即n ≤ 4)的硅烷SinH2n+2情况下,JP 7267621教导由这样的硅烷膜制备硅层,其首先在低温经UV辐照,然后加热到超过400℃的温度。此外,EP 1284306教导由通式SinH2n的环状硅烷和通式SinH2n+2的开链硅烷能以类似的方式制备硅膜,其中在每一情况下n=3至10。其中,这些硅烷部分或全部经低聚,例如通过加热和/或UV辐照而低聚。此外,添加特定的磷化合物或硼化合物,以实现n-掺杂或p-掺杂。
根据现有技术制备的薄层表现出被称为蓝移(blue shift)并且由其它研究测量对象已知的光电性能。如果特征参数—在本发明的情况下为硅颗粒的直径—具有在纳米直径范围的值,那么光学特征值迁移到蓝色区。光子通过所产生的硅层的吸收首先在蓝色中被捕获,而在阳光其它光谱区域的吸收则显著低于对于常规微晶硅的那些。从文献中已知的是,如果所用的材料具有1.1至1.5 eV的带隙,则太阳能电池具有最大的效率。将带隙提高到例如1.95 eV意味着在1太阳照度(1-Sonne Beleuchtung)下可达到的效率降低到约71%,和在1000太阳的聚能器照度(Konzentratorbeleuchtung)下降低到57%(Goetzberger,A.等人: Crystalline Silicon Solar Cells, Wiley, New York, 第186页(1994)]。带隙升高的证据(从非晶态硅的1.4eV到多晶型硅的1.95eV)参见图1。带隙借助光谱椭偏仪(Spektralellipsometer)(J. A. Woollam Co., Inc., WVASE32™型)测定。(尤其)测定了与波长相关的消光率并将其转换成吸光系数。此外,将吸光系数与光子能量乘积的平方根对光子能量作图(Tauc图)。该曲线的直线区与能量轴的交点得出带隙。该测量的实例参见图1。
向在坩埚中拉制的多晶(multikristalline)硅中添加锗以改善其电学和光学性能的方法由其它专利中已知。在US 2007/0006915中根据浇注法在熔炼坩埚中制备多晶硅-锗合金。该方法是耗能的并且需要高的设备投入。优点在其作者看来在于改进太阳能电池的电学性能和量子产率。其中,作为对比产物使用了已经具有大约1.1eV的最佳带隙的多晶硅。通过添加锗,成功地将带隙改变为更小的值,使得通过提高在红光光谱区域中的吸收改善光产率。
现在,本发明的任务在于,在基于薄的多晶型硅层序列(其借助于旋涂沉积(spin-on-Abscheidung)或类似的方法制备)的太阳能电池情况下,避免、消除或补偿因大的带隙迁移引起的入射的太阳光的相对低能量产率的缺陷,而不必丧失成本和方法方面的益处,与基于单晶的太阳能电池不同,其与基于薄的多晶型硅层的另外制备的太阳能电池相关联。与在昂贵的真空室中的薄层方法(所谓的CVD方法或者PECVD方法)相比。在成本和方法方面也存在益处,在前面的方法中含硅气体,例如SiH4在气相中分解为硅(CVD = 化学气相沉积,PECVD = 等离子体增强CVD)。
本发明的任务通过下面的用于降低或消除带隙迁移的方法实现,所述带隙迁移在太阳能电池或其它光电设备中观察到,其中这些太阳能电池或者光电设备的制备方法包括这样的步骤,用含至少一种硅化合物的配制剂涂覆衬底,其中该方法的特征在于,所述配制剂还含有至少一种锗化合物。
通过向所述配制剂(用该配制剂涂覆衬底)添加锗化合物,能够生产入射太阳光的能量产率得到改善的光电设备。对此提到仅具有一个二极管序列的太阳能电池和具有多于一个活性(aktive)二极管的串联太阳能电池。能量产率能够出于下面原因得到改善:在生产光电设备情况下用仅含硅的配制剂加工时观察到的大的带隙迁移(“蓝移”)通过添加锗重新得到补偿,使得本来“差”的多晶型硅层重新得到“改善”。以此方式可以将通常超过1.9 eV的带隙重新调节到例如1.3至1.5 eV的值。由此重新实现了具有对于AM辐照,例如AM1-AM1.5辐照最优带隙的多晶型硅性能,其还具有薄层厚和有利的生产方法方面的显著优点。
当锗和硅一起形成多晶型硅-锗层时,总是能实现“校准”带隙迁移的期望效果,其中一方面锗的份额和另一方面锗在硅中的分布的程度和类型允许对带隙大小施加影响。因此,原则上所有锗化合物或者还有锗本身都是合适的,只要其能够通过涂覆方法实现在硅-锗层中的锗的相应分布即可。
在根据本发明方法的优选实施方案中,所述锗化合物是锗-氢化合物,优选通式GenH2n+2或GenH2n的锗-氢化合物,其中n = 1至10,优选其中n = 4至8;锗卤化物;锗有机基团化物;GenR2n+2或GenR2n的低聚锗化合物,其中n = 8至100且R = H,卤素,有机基团,其中每个R能够独立地选择;混合的锗-硅-氢-有机基团化物,例如RH2GeSiH3,或者这些锗化合物的任意混合物。特别优选的是GenH2n+2或GenH2n化合物(其中n= 4至8)与GenR2n+2或GenR2n的低聚锗化合物的混合物,所述低聚锗化合物的重均分子量为500至10000 g/mol,优选800至5000 g/mol。此外,这些混合的锗-硅-氢-有机基团化物,例如GeH2PhSiH3,其低聚物或者还有其与硅烷的共低聚物。
特别优选的是使用锗-氢化合物,也即锗烷和低聚或聚锗烷,因为这些物质容易得到,相对于该化合物的摩尔重量具有高的锗份额,和由于它们与优选使用的硅烷的物理-化学相似性可以与后者容易地配制。原则上合适的聚锗烷的许多实例见于WO 2007/044429 A2中。对于本发明方法,在(低聚/聚)锗烷中特别合适的是通式GenH2n+2或GenH2n的那些,其中n= 1至10,优选n = 4至8,这是因为它们能够相对容易地由GeH4通过低聚来制备,其中例如GeH4在降低压力下通过静电放电能被循环(参见例如,Hollemann-Wiberg, Lehrbuch der Anorganischen Chemie [无机化学],101版,Walter de Gruyter publishers, 1995, 第956页;或E. Wiberg, E. Amberger "Hydrides", Elsevier, Amsterdam 1971, 第639 – 718页)。此外,所述锗化合物还可以通过辐照或者热处理部分或者完全低聚,其中可以设定500 g/mol至10000 g/mol,优选800 g/mol至5000 g/mol,更优选1000至3000 g/mol的摩尔质量。
在含硅的配制剂(用其涂覆衬底)中,锗的份额优选为0.5至15.0 mol%,更优选3.0至12.0 mol%,非常特别优选4.0至10.0 mol%,基于纯硅和锗的份额。从文献中已知,在添加18% GeH4时,带隙从1.8 eV大致线性地降低到1.35 eV,参见图2(D. Tahir,R.A.C.M.M. van Swaaij: High Quality Hydrogenated Amorphous Silicon-Germanium Alloys for Grading Purposes at the Intrinsic Layer Tandem Solar Cells, SAFE 2001: proceedings CD-ROM (第191 – 194页), Utrecht: STW technology foundation, TUD)。
本发明的主题还包括上述制备方法本身,也即例如太阳能电池或者其他光电设备的制备方法,其中所述方法包括这样的步骤,其中用含至少一种硅化合物的配制剂涂覆衬底,并且所述方法的特征在于,所述配制剂还含至少一种锗化合物。
本发明方法(该方法用于生产含至少一个主要由硅构成的层的光电设备,优选用于生产太阳能电池)的一般性实施方案优选包括下面步骤:
a) 准备衬底,
b) 准备含至少一种硅化合物的配制剂,
c) 用所述配制剂涂覆所述衬底,
d) 辐照和/或热处理经涂覆的衬底,形成至少部分多晶型的主要由硅构成的层,
其特征在于,所述配制剂还含至少一种锗化合物,使得所形成的层以如下方式含有锗:使得存在至少部分多晶型的主要由硅-锗构成的层。
对于例如太阳能电池的制备,需要至少一个pn结。这可以用2个层实现,其中使用一个n-Si层和一个p-Si层。为了制备n-Si层和p-Si层使用了掺杂物质,其在n-掺杂情况下例如是磷化合物和在p-掺杂情况下例如是硼化合物。备选地,在它们之间还可以例如设置未掺杂的i-Si层。
通过在用于涂覆的含硅配制剂中优选使用0.5至15.0 mol%,更优选3.0至12.0 mol%,非常特别优选4.0至10.0 mol%的量,基于纯硅和锗的份额,在硅-锗层中锗的份额通常也在该范围内。因为取决于涂覆条件和/或热处理条件,和取决于所用硅和锗化合物的物理-化学性能,相对于在涂覆和热处理中所用的量,可能产生不同的硅和锗损失,可能在所用的配制剂和最终的硅-锗层中得到有偏差的锗mol%含量。带隙迁移还可能与形态相关联,也即不同的Si/Ge组合物还可能影响形态,使得在此可能与组合物的纯计算效果相偏离。
在根据本发明方法的优选实施方案中,所述硅化合物是硅-氢化合物,优选通式SinH2n+2的硅-氢化合物,其中n = 3至10,优选n = 4至8,或SinH2n的硅-氢化合物,其中n = 4至8;优选n = 5和6;硅卤化物;硅有机基团化物;低聚硅化合物SinR2n+2或SinR2n,其中n = 8至100且R = H,卤素,有机基团,其中每个R能够独立地选择;或者这些硅化合物的任意混合物。此外,上述化合物可以部分或者完全低聚,其中摩尔质量设定为500 g/mol至10 000 g/mol,优选1000 g/mol至5000 g/mol。此外,所述硅化合物,像如上所述的锗化合物一样,还可以部分或者全部通过辐照或者热处理而低聚,其中摩尔质量可以设定为500 g/mol至10000 g/mol,优选800 g/mol至5000 g/mol,更优选1000 g/mol至3000 g/mol。
像在锗化合物的情况一样,特别优选使用硅-氢化合物,也即硅烷和低聚或者聚硅烷,因为这些物质能通过SiH4的化学合成或催化融合(Anellierung)得到,相对于化合物的摩尔重量具有高的硅份额,并且可以与优选的锗烷容易地配制。原则上合适的聚硅烷的许多实例见于WO 2007/044429 A2中。在这些硅烷中对于本发明方法特别合适的是通式SinH2n+2的那些,其中n = 3至10,优选n = 4至8,或通式SinH2n的那些,其中n= 4至8,优选n = 5和6。
在本发明方法中所用的含硅和锗的配制剂通常是液体配制剂。其由上述硅化合物和锗化合物组成以及任选地为与溶剂的混合物。合适的溶剂是例如在室温呈液态的脂族或芳族烃以及他们的混合物。实例是辛烷、壬烷、癸烷、甲苯、二甲苯、1,3,5-三甲基苯、环辛烷。所述涂覆溶液的粘度通常为200至2000 mPas。
在本发明方法的变型方案中,含硅和锗的配制剂可以通过如下方式制备:使包含至少一种通式SinH2n+2的高级硅烷,其中n = 3至10,优选n = 4至8,或者SinH2n,其中n = 4至8,优选n = 5至6,和至少一种通式GenH2n+2的高级锗烷,其中n = 3至10,优选n = 4至8,或GenH2n,其中n = 4至8,优选n= 5至6的混合物低聚和/或聚合。为了借助UV辐照或者热处理而低聚,使用其中n≥3的上述式的高级硅烷和锗烷。以此方式可以由液态的低粘度混合物以一步制备含有低聚/聚锗烷、低聚/聚硅烷和/或相应的共聚物/共低聚物的所需高粘度液态混合物。任选地,还可以额外添加溶剂、掺杂剂和/或其它助剂。其中,这些其它试剂或物质可以在所述低聚和/或聚合之前已经添加到该混合物中或者在所述低聚和/或聚合之后才添加。如果向该混合物中添加掺杂剂,那么在n-掺杂的情况下可以例如是磷化合物,和在p-掺杂的情况下可以例如是硼化合物。在这种情况下,所述低聚和/或聚合还可以通过辐照或者热处理部分或者完全进行,其中摩尔质量可以设定为500 g/mol至10000 g/mol,优选800 g/mol至5000 g/mol,更优选1000 g/mol至3000 g/mol。
在WO 2007/044429 A2的13页14行-28页20行存在大量的含硅和锗的化合物,它们也可以用于本发明方法中。那里记载的化合物和混合物可以是本文记载的配制剂的一部分或者可以直接用作所述配制剂。
任选地额外添加到所述含硅和锗的配制剂中的溶剂、掺杂剂和/或其它助剂可以在涂覆之前、期间和/或之后添加。基于总的配制剂,溶剂的含量可以为5至93重量%,优选15至60重量%,更优选25至45重量%。
用含硅和锗的配制剂涂覆衬底可以以已知的方式实施。典型的方式是:流延、旋涂沉积、由液相喷雾、刮涂和辊涂。在根据本发明方法的优选实施方案中,所述衬底通过旋涂沉积来涂覆。
经涂覆衬底的辐照和/或热处理也可以以已知的方式进行。例如,用配制剂涂覆的衬底被加热到300至1000℃,优选400至900℃,更优选500至800℃的温度。其中,根据本发明,形成至少部分多晶型的主要由硅-锗构成的层。在新制备的层的情况下,还可以用UV灯(例如波长254 nm,功率15瓦或波长180 nm)通过交联进行预固化。在根据本发明方法的优选实施方案中,经涂覆的衬底未经辐照直接送去热处理。作为加热装置可考虑例如加热板、红外区、管式炉或者马弗炉,在每一情形下基本隔绝O2和H2O。温度为300℃至1000℃。所述层还可以在形成气体混合物(Formiergas-Mischung)下在350℃至800℃,优选400℃至700℃的温度通过加热进行后处理,所述形成气体混合物由氢和氮形成或者由氢和氦形成(例如H2/N2,体积比为5/95至10/90,或H2/Ar,体积比为5/95至10/90)。
作为衬底可以考虑半导体、金属、金属合金、石墨和其它传导性碳衬底或者其它传导性配制剂,例如在塑料基质中的金属亮片和用导电材料涂覆的绝缘体例如玻璃、陶瓷或热稳定的塑料。在经涂覆的绝缘体情况下应注意,在后续的用硅-锗覆盖衬底时不完全地整面进行,由此侧面保持导电化合物,例如用于电流引出。
本发明还提供光电设备,特别是太阳能电池或由此制备的太阳能电池组合,例如串联电池,它们可以通过使用在此所述的本发明的方法制备。
本发明特别还包括锗化合物在光电设备的制备方法中的用途,其中所述方法包括这样的步骤,其中用含至少一种硅化合物的配制剂涂覆衬底,且所述配制剂还含至少一种这样的锗化合物。
图1示出了用于测定非晶态、多晶或者多晶型半导体的带隙的Tauc图。用吸光系数(单位cm-1)和光子能量(单位eV)之乘积的平方根对光子能量作图。四边形是测得的值;拟合直线(Ausgleichsgerade)位于它们之间。该直线与横坐标的交点给出带隙(Tauc,Grigorovici, Vancu (1966), Phys. Stat. Sol. 15, 627)。曲线“由高级硅烷制得的硅”依据对比实施例1获得。
图2示出了作为以mol%添加的Ge的函数的光学带隙。正方形是根据Tahir和van Swaaij的值(High Quality Hydrogenated Amorphous Silicon-Germanium Alloys for Grading Purposes at the Intrinsic Layer Tandem Solar Cells, SAFE 2001: proceedings CD-ROM (第191-194页), Utrecht: STW technology foundation, TUD),圆形是来自权利要求的值。为了便于观察,得自权利要求的值用拟合曲线连接。
实施例
对比实施例
在含有≤ 0.5 ppm O2和≤ 0.5 ppm H2O的氩气气氛下(手套箱),用UV灯(波长254 nm,功率15瓦)以6cm的间距辐照在敞开容器中的10g环戊硅烷(Cyclopentasilan)15分钟。在此期间,稀液状的硅烷变得粘稠。使用凝胶渗透色谱(GPC)借助聚苯乙烯校准曲线测定高分子量成分的重均分子量,为Mw = 2400 g/mol。此外,该混合物还含有残余的单体环戊硅烷。用3份甲苯稀释所述混合物,并借助旋涂器施加到预先清洁的石英小块(3 cm × 3 cm)上。然后借助加热板将该层加热到500℃。得到黑色硅层。该层在炉子中在惰性气体下在750℃继续加热30分钟。
通过用外形仪(KLA Tencor,仪器型号P15 (KLA-Tencor Corporation,Film and Surface Technology; 160 Rio Robles, San Jose, California USA 95134))测定,层厚为250纳米。层的导电性大于107 Ohm × cm,作为欧姆电阻表示,借助Hewlett Packard P 4156A分析仪测量并转换为Ohm × cm。所测得的带隙为1.95 eV。
对比实施例 2
重复对比实施例1,在稀释时,向通过UV辐照制得的由高分子量成分的重均分子量Mw = 2400 g/mol的低聚环戊硅烷和单体环戊硅烷组成的混合物添加和甲苯一起的三(邻甲苯基)磷作为掺杂剂。溶液再借助旋涂器施加到预先清洁的石英小块(3 cm × 3 cm)上,并借助加热板将该层加热到500℃。得到黑色的n-掺杂硅层。该层在炉子中在惰性气体下在750℃继续加热30分钟。
通过用外形仪(KLA Tencor, 仪器型号P15 (KLA-Tencor Corporation, Film and Surface Technology; 160 Rio Robles, San Jose, California USA 95134))测定,层厚为210纳米。层的导电性为40 Ohm × cm,作为欧姆电阻表示,按照对比实施例1阐述的方法进行。用对比实施例1所述方法测得的带隙为1.90 eV。
对比实施例 3
重复对比实施例1,在稀释时,向通过UV辐照制得的由高分子量成分的重均分子量Mw = 2400 g/mol的低聚环戊硅烷和单体环戊硅烷组成的混合物添加和甲苯一起的癸硼烷(Dekaboran)-14作为掺杂剂。溶液再借助旋涂器施加到预先清洁的石英小块(3 cm × 3 cm)上,并借助加热板将该层加热到500℃。得到黑色的p-掺杂硅层。该层在炉子中在惰性气体下在750℃继续加热30分钟。
通过用外形仪(KLA Tencor, 仪器型号P15 (KLA-Tencor Corporation, Film and Surface Technology; 160 Rio Robles, San Jose, California USA 95134))测定,层厚为270纳米。用对比实施例1所述方法测得的带隙为1.90 eV。层的导电性为15 Ohm × cm,作为欧姆电阻表示,按照对比实施例1阐述的方法进行。
实施例 1
在含有≤ 0.5 ppm O2和≤ 0.5 ppm H2O的氩气气氛下(手套箱),用UV灯(波长254 nm, 功率15瓦)以6cm的间距辐照在敞开容器中的10.1g环戊硅烷和0.76 g PhH2GeSiH3 15分钟。在此期间,混合物变得粘稠。使用凝胶渗透色谱(GPC)借助聚苯乙烯校准曲线测定高分子量成分的重均分子量,为Mw = 2300 g/mol。高分子量成分含有环戊硅烷的低聚物,其中锗通过共低聚反应部分嵌入。此外,该混合物还含有残余的单体环戊硅烷和未转化的PhH2GeSiH3。该混合物用3份甲苯稀释,并借助旋涂器施加到预先清洁的石英小块(3 cm × 3 cm)上。然后借助加热板将该层加热到500℃。该层在炉子中在惰性气体下在750℃继续加热30分钟。产生黑色的硅-锗层。
通过用外形仪(KLA Tencor, 仪器型号P15 (KLA-Tencor Corporation, Film and Surface Technology; 160 Rio Robles, San Jose, California USA 95134))测定,层厚为240纳米。用对比实施例1所述方法测得的带隙为1.85 eV。层的导电性大于107 Ohm × cm,作为欧姆电阻表示,按照对比实施例1阐述的方法进行。
实施例 2
重复实施例1,但是在稀释由环戊硅烷低聚物和单体环戊硅烷以及未转化的PhH2GeSiH3组成的混合物的步骤中添加三(邻甲苯基)磷作为掺杂剂,其中在环戊硅烷低聚物中通过共低聚反应部分嵌入锗。溶液借助旋涂器施加到预先清洁的石英小块(3 cm × 3 cm)上。然后借助加热板将该层加热到500℃。得到黑色的硅-锗层。该层在炉子中在惰性气体下在750℃继续加热30分钟。
通过用外形仪(KLA Tencor, 仪器型号P15 (KLA-Tencor Corporation, Film and Surface Technology; 160 Rio Robles, San Jose, California USA 95134))测定,层厚为220纳米。用对比实施例1所述方法测得的带隙为1.84 eV。层的导电性为36 Ohm × cm,作为欧姆电阻表示,按照对比实施例1阐述的方法进行。
实施例 3
重复实施例1,但是在稀释由环戊硅烷低聚物和单体环戊硅烷以及未转化的PhH2GeSiH3组成的混合物的步骤中添加癸硼烷-14作为掺杂剂,其中在环戊硅烷低聚物中通过共低聚部分嵌入锗。溶液借助旋涂器施加到预先清洁的石英小块(3 cm × 3 cm)上。然后借助加热板将该层加热到500℃。该层在炉子中在惰性气体下在750℃继续加热30分钟。得到黑色的硅-锗层。
通过用外形仪(KLA Tencor, 仪器型号P15 (KLA-Tencor Corporation, Film and Surface Technology; 160 Rio Robles, San Jose, California USA 95134))测定,层厚为270纳米。用对比实施例1所述方法测得的带隙为1.81 eV。层的导电性为17 Ohm × cm,作为欧姆电阻表示,按照对比实施例1阐述的方法进行。
实施例 4
重复实施例1,其中在第一步骤中10.1g环戊硅烷和3.04g PhH2GeSiH3经历UV低聚。所述混合物用3份甲苯稀释,并借助旋涂器施加到预先清洁的石英小块(3 cm × 3 cm)上。然后借助加热板将该层加热到500℃。得到黑色的硅-锗层。该层在炉子中在惰性气体下在750℃继续加热30分钟。
通过用外形仪(KLA Tencor, 仪器型号P15 (KLA-Tencor Corporation, Film and Surface Technology; 160 Rio Robles, San Jose, California USA 95134))测定,层厚为250纳米。用对比实施例1所述方法测得的带隙为1.53 eV。层的导电性大于107 Ohm × cm,作为欧姆电阻表示,按照对比实施例1阐述的方法进行。
实施例 5
重复实施例4,其中在第一步骤中仍然是10.1g环戊硅烷和3.04g PhH2GeSiH3经历UV低聚。但是在稀释时和甲苯一起添加三(邻甲苯基)磷作为掺杂剂。所述混合物借助旋涂器施加到预先清洁的石英小块(3 cm × 3 cm)上。然后借助加热板将该层加热到500℃。得到黑色的硅-锗层。该层在炉子中在惰性气体下在750℃继续加热30分钟。
通过用外形仪(KLA Tencor, 仪器型号P15 (KLA-Tencor Corporation, Film and Surface Technology; 160 Rio Robles, San Jose, California USA 95134))测定,层厚为230纳米。用对比实施例1所述方法测得的带隙为1.55 eV。层的导电性为42 Ohm × cm,作为欧姆电阻表示,按照对比实施例1阐述的方法进行。
实施例 6
重复实施例4,其中在第一步骤中仍然是10.1g环戊硅烷和6.08g PhH2GeSiH3经历UV低聚。但是在稀释时和甲苯一起添加癸硼烷-14作为掺杂剂。所述混合物借助旋涂器施加到预先清洁的石英小块(3 cm × 3 cm)上。然后借助加热板将该层加热到500℃。得到黑色的硅-锗层。该层在炉子中在惰性气体下在750℃继续加热30分钟。
通过用外形仪(KLA Tencor, 仪器型号P15 (KLA-Tencor Corporation, Film and Surface Technology; 160 Rio Robles, San Jose, California USA 95134))测定,层厚为260纳米。用对比实施例1所述方法测得的带隙为1.53 eV。层的导电性为12 Ohm × cm,作为欧姆电阻表示,按照对比实施例1阐述的方法进行。
实施例 7
重复实施例1,其中在第一步骤中10.1g环戊硅烷和6.08g PhH2GeSiH3经历UV低聚。所述混合物用三份甲苯稀释,并借助旋涂器施加到预先清洁的石英小块(3 cm × 3 cm)上。然后借助加热板将该层加热到500℃。得到黑色的硅-锗层。该层在炉子中在惰性气体下在750℃继续加热30分钟。
通过用外形仪(KLA Tencor, 仪器型号P15 (KLA-Tencor Corporation, Film and Surface Technology; 160 Rio Robles, San Jose, California USA 95134))测定,层厚为250纳米。用对比实施例1所述方法测得的带隙为1.41 eV。层的导电性大于107 Ohm × cm,作为欧姆电阻表示,按照对比实施例1阐述的方法进行。
实施例 8
重复实施例7,其中在第一步骤中仍然是10.1g环戊硅烷和6.08g PhH2GeSiH3经历UV低聚。但是在稀释时和甲苯一起添加三(邻甲苯基)磷作为掺杂剂。该混合物借助旋涂器施加到预先清洁的石英小块(3 cm × 3 cm)上。然后借助加热板将该层加热到500℃。得到黑色的硅-锗层。该层在炉子中在惰性气体下在750℃继续加热30分钟。
通过用外形仪(KLA Tencor, 仪器型号P15 (KLA-Tencor Corporation, Film and Surface Technology; 160 Rio Robles, San Jose, California USA 95134))测定,层厚为220纳米。用对比实施例1所述方法测得的带隙为1.39 eV。层的导电性为33 Ohm × cm,作为欧姆电阻表示,按照对比实施例1阐述的方法进行。
实施例 9
重复实施例7,其中在第一步骤中仍然是10.1g环戊硅烷和6.08g PhH2GeSiH3经历UV低聚。但是在稀释时和甲苯一起添加癸硼烷-14作为掺杂剂。该混合物借助旋涂器施加到预先清洁的石英小块(3 cm × 3 cm)上。然后借助加热板将该层加热到500℃。得到黑色的硅-锗层。该层在炉子中在惰性气体下在750℃继续加热30分钟。
通过用外形仪(KLA Tencor, 仪器型号P15 (KLA-Tencor Corporation, Film and Surface Technology; 160 Rio Robles, San Jose, California USA 95134))测定,层厚为280纳米。用对比实施例1所述方法测得的带隙为1.38 eV。层的导电性为14 Ohm × cm,作为欧姆电阻表示,按照对比实施例1阐述的方法进行。

Claims (14)

1.用于在制备太阳能电池或者其他光电设备时降低或消除带隙迁移的方法,其中所述制备方法包括这样的步骤,其中用含至少一种硅化合物的配制剂涂覆衬底,其特征在于,所述配制剂还含至少一种锗化合物。
2.用于生产光电设备的方法,所述光电设备含有至少一个主要由硅构成的层,其中所述方法包括这样的步骤,其中用含至少一种硅化合物的配制剂涂覆衬底,其特征在于,所述配制剂还含至少一种锗化合物。
3.权利要求2的方法,优选用于制备太阳能电池,包括下面的步骤:
a) 准备衬底,
b) 准备含至少一种硅化合物的配制剂,
c) 用所述配制剂涂覆所述衬底,
d) 辐照和/或热处理经涂覆的衬底,形成至少部分多晶型的主要由硅构成的层,
其特征在于,所述配制剂还含至少一种锗化合物,使得所形成的层以如下方式含有锗:使得存在至少部分多晶型的主要由硅-锗构成的层。
4.前述权利要求之一的方法,其特征在于,所述锗化合物是锗-氢化合物,优选通式GenH2n+2或GenH2n的锗-氢化合物,其中n = 1至10;锗卤化物;锗有机基团化物;GenR2n+2或GenR2n的低聚锗化合物,其中n = 8至100,且R = H,卤素,有机基团,其中每个R能够独立地选择;这些锗化合物的任意混合物;或者混合的锗-氢-有机基团化合物,并且其中所述锗化合物特别优选是式GenH2n+2或GenH2n,其中n= 4至8,的化合物与GenR2n+2或GenR2n的低聚锗化合物的混合物,其中所述低聚锗化合物的重均分子量为500至10000 g/mol,优选800至5000 g/mol。
5.前述权利要求之一的方法,其特征在于,在所述配制剂中的锗份额为0.5至15.0 mol%,基于纯硅和锗的份额。
6.前述权利要求之一的方法,其特征在于,在主要由硅-锗构成的层中的锗含量为0.5至15.0 mol%,基于纯硅和锗的份额。
7.前述权利要求之一的方法,其特征在于,所述硅化合物是硅-氢化合物,优选通式SinH2n+2的硅-氢化合物,其中n = 3至10,或者通式SinH2n的硅-氢化合物,其中n = 4至8;硅卤化物;硅有机基团化物;SinR2n+2或SinR2n的低聚硅化合物,其中n = 8至100且R = H,卤素,有机基团,其中每个R能够独立地选择;或者这些硅化合物的任意混合物。
8.前述权利要求之一的方法,其特征在于,所述含硅和锗的配制剂是液态配制剂,其任选地包含溶剂且其中涂覆溶液的粘度为200至2000 mPas。
9.前述权利要求之一的方法,其特征在于,所述含硅和锗的配制剂通过如下方式制备:使包含至少一种通式SinH2n+2的硅烷,其中n = 3至10,或者SinH2n,其中n = 4至8,和至少一种通式GenH2n+2的锗烷,其中n = 3至10或GenH2n,其中n = 4至8和任选的溶剂、掺杂剂和/或其它助剂的混合物进行低聚和/或聚合,优选通过辐照和/或热处理所述混合物使其低聚和/或聚合。
10.前述权利要求之一的方法,其特征在于,在涂覆之前、期间和/或之后,任选额外地,向所述含硅和锗的配制剂添加溶剂、掺杂剂和/或其它助剂。
11.前述权利要求之一的方法,其特征在于,所述衬底的涂覆借助旋涂沉积、流延、由液相喷雾、刮涂或者辊涂进行。
12.前述权利要求之一的方法,其特征在于,所述经涂覆的衬底经辐照或者所述热处理在300至1000℃,优选400至900℃,更优选500至800℃的温度进行。
13.光电设备,特别是太阳能电池或太阳能电池的组合,使用权利要求1-12之一的方法制备。
14.锗化合物在用于生产光电设备的方法中的用途,其中所述方法包括这样的步骤,其中用含至少一种硅化合物的配制剂涂覆衬底,特别是在权利要求1-12之一的方法中的用途,其特征在于,所述配制剂另外含至少一种这样的锗化合物。
CN201080018902.8A 2009-04-30 2010-04-28 通过添加锗定制由液态硅烷制备的太阳能电池的带隙 Expired - Fee Related CN102422441B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE200910002758 DE102009002758A1 (de) 2009-04-30 2009-04-30 Bandgap Tailoring von Solarzellen aus Flüssigsilan mittels Germanium-Zugabe
DE102009002758.0 2009-04-30
PCT/EP2010/055665 WO2010125081A2 (de) 2009-04-30 2010-04-28 Bandgap tailoring von solarzellen aus flüssigsilan mittels germanium-zugabe

Publications (2)

Publication Number Publication Date
CN102422441A true CN102422441A (zh) 2012-04-18
CN102422441B CN102422441B (zh) 2015-08-26

Family

ID=42932176

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080018902.8A Expired - Fee Related CN102422441B (zh) 2009-04-30 2010-04-28 通过添加锗定制由液态硅烷制备的太阳能电池的带隙

Country Status (7)

Country Link
US (1) US8709858B2 (zh)
EP (1) EP2425461A2 (zh)
JP (1) JP5717724B2 (zh)
KR (1) KR101687428B1 (zh)
CN (1) CN102422441B (zh)
DE (1) DE102009002758A1 (zh)
WO (1) WO2010125081A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115188842A (zh) * 2022-06-21 2022-10-14 广州诺尔光电科技有限公司 一种Si衬底上Ge雪崩光电二极管及其制造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2135844A1 (de) * 2008-06-17 2009-12-23 Evonik Degussa GmbH Verfahren zur Herstellung höherer Hydridosilane
DE102008043422B3 (de) 2008-11-03 2010-01-07 Evonik Degussa Gmbh Verfahren zur Aufreinigung niedermolekularer Hydridosilane
DE102009048087A1 (de) 2009-10-02 2011-04-07 Evonik Degussa Gmbh Verfahren zur Herstellung höherer Hydridosilane
DE102009053804B3 (de) 2009-11-18 2011-03-17 Evonik Degussa Gmbh Verfahren zur Herstellung von Hydridosilanen
DE102009053805A1 (de) 2009-11-18 2011-05-26 Evonik Degussa Gmbh Siliziumschichten aus polymermodifizierten Flüssigsilan-Formulierungen
DE102009053806A1 (de) 2009-11-18 2011-05-19 Evonik Degussa Gmbh Verfahren zur Herstellung von Siliciumschichten
DE102009053818A1 (de) 2009-11-18 2011-05-19 Evonik Degussa Gmbh Dotierung von Siliciumschichten aus flüssigen Silanen für Elektronik- und Solar-Anwendungen
DE102010002405A1 (de) 2010-02-26 2011-09-01 Evonik Degussa Gmbh Verfahren zur Oligomerisierung von Hydridosilanen, die mit dem Verfahren herstellbaren Oligomerisate und ihre Verwendung
DE102010030696A1 (de) 2010-06-30 2012-01-05 Evonik Degussa Gmbh Modifizierung von Siliciumschichten aus Silan-haltigen Formulierungen
JP5929737B2 (ja) * 2012-12-18 2016-06-08 株式会社島津製作所 バンドギャップ算出装置及びバンドギャップ算出プログラム
DE102015225289A1 (de) * 2015-12-15 2017-06-22 Evonik Degussa Gmbh Dotierte Zusammensetzungen, Verfahren zu ihrer Herstellung und ihre Verwendung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050008880A1 (en) * 2003-07-08 2005-01-13 Klaus Kunze Compositions and methods for forming a semiconducting and/or silicon-containing film, and structures formed therefrom
US20050208740A1 (en) * 2001-02-12 2005-09-22 Todd Michael A Process for deposition of semiconductor films
US20070078252A1 (en) * 2005-10-05 2007-04-05 Dioumaev Vladimir K Linear and cross-linked high molecular weight polysilanes, polygermanes, and copolymers thereof, compositions containing the same, and methods of making and using such compounds and compositions
US20080138966A1 (en) * 2006-11-15 2008-06-12 Rogojina Elena V Method of fabricating a densified nanoparticle thin film with a set of occluded pores
CN101237000A (zh) * 2007-01-29 2008-08-06 北京行者多媒体科技有限公司 基于薄膜硅的多结光伏器件的纳米晶硅和非晶锗混合型吸收层

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2077710B (en) 1980-06-11 1983-10-12 Nat Res Dev Synthesising a polysilane
JPH0582812A (ja) * 1991-09-25 1993-04-02 Matsushita Electric Ind Co Ltd 太陽電池
JP3517934B2 (ja) 1994-03-24 2004-04-12 昭和電工株式会社 シリコン膜の形成方法
JPH09237927A (ja) * 1995-12-26 1997-09-09 Toshiba Corp 半導体薄膜形成方法および太陽電池の製造方法
US5866471A (en) * 1995-12-26 1999-02-02 Kabushiki Kaisha Toshiba Method of forming semiconductor thin film and method of fabricating solar cell
JPH1154773A (ja) * 1997-08-01 1999-02-26 Canon Inc 光起電力素子及びその製造方法
US6858196B2 (en) * 2001-07-19 2005-02-22 Asm America, Inc. Method and apparatus for chemical synthesis
TW555690B (en) 2001-08-14 2003-10-01 Jsr Corp Silane composition, silicon film forming method and solar cell production method
JP3869403B2 (ja) * 2003-09-30 2007-01-17 株式会社東芝 ホログラム記録媒体、その製造方法、およびホログラム記録方法
US7750232B2 (en) 2005-07-08 2010-07-06 Sumco Solar Corporation Multi-crystalline silicon-germanium bulk crystal for use as a solar cell and method of making
EP2069368A4 (en) 2006-10-06 2011-06-22 Kovio Inc SILICON POLYMERS, METHODS FOR POLYMERIZING SILICON COMPOUNDS, AND METHODS FOR FORMING THIN FILMS OF SILICON POLYMERS
US8530589B2 (en) * 2007-05-04 2013-09-10 Kovio, Inc. Print processing for patterned conductor, semiconductor and dielectric materials
EP2135844A1 (de) 2008-06-17 2009-12-23 Evonik Degussa GmbH Verfahren zur Herstellung höherer Hydridosilane
DE102008043422B3 (de) 2008-11-03 2010-01-07 Evonik Degussa Gmbh Verfahren zur Aufreinigung niedermolekularer Hydridosilane
DE102009053805A1 (de) 2009-11-18 2011-05-26 Evonik Degussa Gmbh Siliziumschichten aus polymermodifizierten Flüssigsilan-Formulierungen
DE102009053804B3 (de) 2009-11-18 2011-03-17 Evonik Degussa Gmbh Verfahren zur Herstellung von Hydridosilanen
DE102009053818A1 (de) 2009-11-18 2011-05-19 Evonik Degussa Gmbh Dotierung von Siliciumschichten aus flüssigen Silanen für Elektronik- und Solar-Anwendungen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050208740A1 (en) * 2001-02-12 2005-09-22 Todd Michael A Process for deposition of semiconductor films
US20050008880A1 (en) * 2003-07-08 2005-01-13 Klaus Kunze Compositions and methods for forming a semiconducting and/or silicon-containing film, and structures formed therefrom
US20070078252A1 (en) * 2005-10-05 2007-04-05 Dioumaev Vladimir K Linear and cross-linked high molecular weight polysilanes, polygermanes, and copolymers thereof, compositions containing the same, and methods of making and using such compounds and compositions
US20080138966A1 (en) * 2006-11-15 2008-06-12 Rogojina Elena V Method of fabricating a densified nanoparticle thin film with a set of occluded pores
CN101237000A (zh) * 2007-01-29 2008-08-06 北京行者多媒体科技有限公司 基于薄膜硅的多结光伏器件的纳米晶硅和非晶锗混合型吸收层

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115188842A (zh) * 2022-06-21 2022-10-14 广州诺尔光电科技有限公司 一种Si衬底上Ge雪崩光电二极管及其制造方法

Also Published As

Publication number Publication date
US8709858B2 (en) 2014-04-29
JP5717724B2 (ja) 2015-05-13
JP2012525695A (ja) 2012-10-22
KR20120018128A (ko) 2012-02-29
US20120042951A1 (en) 2012-02-23
DE102009002758A1 (de) 2010-11-11
EP2425461A2 (de) 2012-03-07
CN102422441B (zh) 2015-08-26
WO2010125081A3 (de) 2011-09-15
WO2010125081A2 (de) 2010-11-04
KR101687428B1 (ko) 2016-12-19

Similar Documents

Publication Publication Date Title
CN102422441B (zh) 通过添加锗定制由液态硅烷制备的太阳能电池的带隙
US6518087B1 (en) Method for manufacturing solar battery
JP6099563B2 (ja) p型ドープされたシリコン層
US20120222741A1 (en) Solar cell with improved performance
WO2008103948A1 (en) Carbon-containing semiconducting devices and methods of making thereof
CA2645474A1 (en) Silicon carbonitride antireflective coating
WO2015076678A1 (en) Passivation stack on a crystalline silicon solar cell
JP6012469B2 (ja) シリコン層の製造方法
JP5972263B2 (ja) シラン含有配合物から成るシリコン層の改質
US9978902B2 (en) Passivation stack on a crystalline silicon solar cell
Cádiz Bedini et al. Approaching Solar‐Grade a‐Si: H for Photovoltaic Applications via Atmospheric Pressure CVD Using a Trisilane‐Derived Liquid Precursor
Du et al. Impact of hydrogen dilution on microstructure and optoelectronic properties of silicon films deposited using trisilane
Jumaa et al. Effect of PECVD a-Si Growth Temperature on the Performance of a-Si/c-Si Solar Cells
US10370392B2 (en) Doped hydridosilane compositions, and method for producing same
Miyajima et al. Low temperature deposition of hydrogenated nanocrystalline cubic silicon carbide thin films by HWCVD and VHF-PECVD
Miyajima et al. Properties of Nanocrystalline 3C-SiC: H and SiC: Ge: H Films Deposited at Low Substrate Temperatures
JPH11214311A (ja) シリコン膜の形成方法及び太陽電池の製造方法
WO2014145107A1 (en) Silicon materials from the processing of liquid silanes and heteroatom additives

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150826

Termination date: 20190428

CF01 Termination of patent right due to non-payment of annual fee